linux-next/lib/crc_kunit.c

436 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Unit tests and benchmarks for the CRC library functions
*
* Copyright 2024 Google LLC
*
* Author: Eric Biggers <ebiggers@google.com>
*/
#include <kunit/test.h>
#include <linux/crc16.h>
#include <linux/crc-t10dif.h>
#include <linux/crc32.h>
#include <linux/crc32c.h>
#include <linux/crc64.h>
#include <linux/prandom.h>
#include <linux/vmalloc.h>
#define CRC_KUNIT_SEED 42
#define CRC_KUNIT_MAX_LEN 16384
#define CRC_KUNIT_NUM_TEST_ITERS 1000
static struct rnd_state rng;
static u8 *test_buffer;
static size_t test_buflen;
/**
* struct crc_variant - describes a CRC variant
* @bits: Number of bits in the CRC, 1 <= @bits <= 64.
* @le: true if it's a "little endian" CRC (reversed mapping between bits and
* polynomial coefficients in each byte), false if it's a "big endian" CRC
* (natural mapping between bits and polynomial coefficients in each byte)
* @poly: The generator polynomial with the highest-order term omitted.
* Bit-reversed if @le is true.
* @func: The function to compute a CRC. The type signature uses u64 so that it
* can fit any CRC up to CRC-64.
* @combine_func: Optional function to combine two CRCs.
*/
struct crc_variant {
int bits;
bool le;
u64 poly;
u64 (*func)(u64 crc, const u8 *p, size_t len);
u64 (*combine_func)(u64 crc1, u64 crc2, size_t len2);
};
static u32 rand32(void)
{
return prandom_u32_state(&rng);
}
static u64 rand64(void)
{
u32 n = rand32();
return ((u64)n << 32) | rand32();
}
static u64 crc_mask(const struct crc_variant *v)
{
return (u64)-1 >> (64 - v->bits);
}
/* Reference implementation of any CRC variant */
static u64 crc_ref(const struct crc_variant *v,
u64 crc, const u8 *p, size_t len)
{
size_t i, j;
for (i = 0; i < len; i++) {
for (j = 0; j < 8; j++) {
if (v->le) {
crc ^= (p[i] >> j) & 1;
crc = (crc >> 1) ^ ((crc & 1) ? v->poly : 0);
} else {
crc ^= (u64)((p[i] >> (7 - j)) & 1) <<
(v->bits - 1);
if (crc & (1ULL << (v->bits - 1)))
crc = ((crc << 1) ^ v->poly) &
crc_mask(v);
else
crc <<= 1;
}
}
}
return crc;
}
static int crc_suite_init(struct kunit_suite *suite)
{
/*
* Allocate the test buffer using vmalloc() with a page-aligned length
* so that it is immediately followed by a guard page. This allows
* buffer overreads to be detected, even in assembly code.
*/
test_buflen = round_up(CRC_KUNIT_MAX_LEN, PAGE_SIZE);
test_buffer = vmalloc(test_buflen);
if (!test_buffer)
return -ENOMEM;
prandom_seed_state(&rng, CRC_KUNIT_SEED);
prandom_bytes_state(&rng, test_buffer, test_buflen);
return 0;
}
static void crc_suite_exit(struct kunit_suite *suite)
{
vfree(test_buffer);
test_buffer = NULL;
}
/* Generate a random initial CRC. */
static u64 generate_random_initial_crc(const struct crc_variant *v)
{
switch (rand32() % 4) {
case 0:
return 0;
case 1:
return crc_mask(v); /* All 1 bits */
default:
return rand64() & crc_mask(v);
}
}
/* Generate a random length, preferring small lengths. */
static size_t generate_random_length(size_t max_length)
{
size_t len;
switch (rand32() % 3) {
case 0:
len = rand32() % 128;
break;
case 1:
len = rand32() % 3072;
break;
default:
len = rand32();
break;
}
return len % (max_length + 1);
}
/* Test that v->func gives the same CRCs as a reference implementation. */
static void crc_main_test(struct kunit *test, const struct crc_variant *v)
{
size_t i;
for (i = 0; i < CRC_KUNIT_NUM_TEST_ITERS; i++) {
u64 init_crc, expected_crc, actual_crc;
size_t len, offset;
bool nosimd;
init_crc = generate_random_initial_crc(v);
len = generate_random_length(CRC_KUNIT_MAX_LEN);
/* Generate a random offset. */
if (rand32() % 2 == 0) {
/* Use a random alignment mod 64 */
offset = rand32() % 64;
offset = min(offset, CRC_KUNIT_MAX_LEN - len);
} else {
/* Go up to the guard page, to catch buffer overreads */
offset = test_buflen - len;
}
if (rand32() % 8 == 0)
/* Refresh the data occasionally. */
prandom_bytes_state(&rng, &test_buffer[offset], len);
nosimd = rand32() % 8 == 0;
/*
* Compute the CRC, and verify that it equals the CRC computed
* by a simple bit-at-a-time reference implementation.
*/
expected_crc = crc_ref(v, init_crc, &test_buffer[offset], len);
if (nosimd)
local_irq_disable();
actual_crc = v->func(init_crc, &test_buffer[offset], len);
if (nosimd)
local_irq_enable();
KUNIT_EXPECT_EQ_MSG(test, expected_crc, actual_crc,
"Wrong result with len=%zu offset=%zu nosimd=%d",
len, offset, nosimd);
}
}
/* Test that CRC(concat(A, B)) == combine_CRCs(CRC(A), CRC(B), len(B)). */
static void crc_combine_test(struct kunit *test, const struct crc_variant *v)
{
int i;
for (i = 0; i < 100; i++) {
u64 init_crc = generate_random_initial_crc(v);
size_t len1 = generate_random_length(CRC_KUNIT_MAX_LEN);
size_t len2 = generate_random_length(CRC_KUNIT_MAX_LEN - len1);
u64 crc1, crc2, expected_crc, actual_crc;
prandom_bytes_state(&rng, test_buffer, len1 + len2);
crc1 = v->func(init_crc, test_buffer, len1);
crc2 = v->func(0, &test_buffer[len1], len2);
expected_crc = v->func(init_crc, test_buffer, len1 + len2);
actual_crc = v->combine_func(crc1, crc2, len2);
KUNIT_EXPECT_EQ_MSG(test, expected_crc, actual_crc,
"CRC combination gave wrong result with len1=%zu len2=%zu\n",
len1, len2);
}
}
static void crc_test(struct kunit *test, const struct crc_variant *v)
{
crc_main_test(test, v);
if (v->combine_func)
crc_combine_test(test, v);
}
static __always_inline void
crc_benchmark(struct kunit *test,
u64 (*crc_func)(u64 crc, const u8 *p, size_t len))
{
static const size_t lens_to_test[] = {
1, 16, 64, 127, 128, 200, 256, 511, 512, 1024, 3173, 4096, 16384,
};
size_t len, i, j, num_iters;
/*
* Some of the CRC library functions are marked as __pure, so use
* volatile to ensure that all calls are really made as intended.
*/
volatile u64 crc = 0;
u64 t;
if (!IS_ENABLED(CONFIG_CRC_BENCHMARK))
kunit_skip(test, "not enabled");
/* warm-up */
for (i = 0; i < 10000000; i += CRC_KUNIT_MAX_LEN)
crc = crc_func(crc, test_buffer, CRC_KUNIT_MAX_LEN);
for (i = 0; i < ARRAY_SIZE(lens_to_test); i++) {
len = lens_to_test[i];
KUNIT_ASSERT_LE(test, len, CRC_KUNIT_MAX_LEN);
num_iters = 10000000 / (len + 128);
preempt_disable();
t = ktime_get_ns();
for (j = 0; j < num_iters; j++)
crc = crc_func(crc, test_buffer, len);
t = ktime_get_ns() - t;
preempt_enable();
kunit_info(test, "len=%zu: %llu MB/s\n",
len, div64_u64((u64)len * num_iters * 1000, t));
}
}
/* crc16 */
static u64 crc16_wrapper(u64 crc, const u8 *p, size_t len)
{
return crc16(crc, p, len);
}
static const struct crc_variant crc_variant_crc16 = {
.bits = 16,
.le = true,
.poly = 0xa001,
.func = crc16_wrapper,
};
static void crc16_test(struct kunit *test)
{
crc_test(test, &crc_variant_crc16);
}
static void crc16_benchmark(struct kunit *test)
{
crc_benchmark(test, crc16_wrapper);
}
/* crc_t10dif */
static u64 crc_t10dif_wrapper(u64 crc, const u8 *p, size_t len)
{
return crc_t10dif_update(crc, p, len);
}
static const struct crc_variant crc_variant_crc_t10dif = {
.bits = 16,
.le = false,
.poly = 0x8bb7,
.func = crc_t10dif_wrapper,
};
static void crc_t10dif_test(struct kunit *test)
{
crc_test(test, &crc_variant_crc_t10dif);
}
static void crc_t10dif_benchmark(struct kunit *test)
{
crc_benchmark(test, crc_t10dif_wrapper);
}
/* crc32_le */
static u64 crc32_le_wrapper(u64 crc, const u8 *p, size_t len)
{
return crc32_le(crc, p, len);
}
static u64 crc32_le_combine_wrapper(u64 crc1, u64 crc2, size_t len2)
{
return crc32_le_combine(crc1, crc2, len2);
}
static const struct crc_variant crc_variant_crc32_le = {
.bits = 32,
.le = true,
.poly = 0xedb88320,
.func = crc32_le_wrapper,
.combine_func = crc32_le_combine_wrapper,
};
static void crc32_le_test(struct kunit *test)
{
crc_test(test, &crc_variant_crc32_le);
}
static void crc32_le_benchmark(struct kunit *test)
{
crc_benchmark(test, crc32_le_wrapper);
}
/* crc32_be */
static u64 crc32_be_wrapper(u64 crc, const u8 *p, size_t len)
{
return crc32_be(crc, p, len);
}
static const struct crc_variant crc_variant_crc32_be = {
.bits = 32,
.le = false,
.poly = 0x04c11db7,
.func = crc32_be_wrapper,
};
static void crc32_be_test(struct kunit *test)
{
crc_test(test, &crc_variant_crc32_be);
}
static void crc32_be_benchmark(struct kunit *test)
{
crc_benchmark(test, crc32_be_wrapper);
}
/* crc32c */
static u64 crc32c_wrapper(u64 crc, const u8 *p, size_t len)
{
return crc32c(crc, p, len);
}
static u64 crc32c_combine_wrapper(u64 crc1, u64 crc2, size_t len2)
{
return __crc32c_le_combine(crc1, crc2, len2);
}
static const struct crc_variant crc_variant_crc32c = {
.bits = 32,
.le = true,
.poly = 0x82f63b78,
.func = crc32c_wrapper,
.combine_func = crc32c_combine_wrapper,
};
static void crc32c_test(struct kunit *test)
{
crc_test(test, &crc_variant_crc32c);
}
static void crc32c_benchmark(struct kunit *test)
{
crc_benchmark(test, crc32c_wrapper);
}
/* crc64_be */
static u64 crc64_be_wrapper(u64 crc, const u8 *p, size_t len)
{
return crc64_be(crc, p, len);
}
static const struct crc_variant crc_variant_crc64_be = {
.bits = 64,
.le = false,
.poly = 0x42f0e1eba9ea3693,
.func = crc64_be_wrapper,
};
static void crc64_be_test(struct kunit *test)
{
crc_test(test, &crc_variant_crc64_be);
}
static void crc64_be_benchmark(struct kunit *test)
{
crc_benchmark(test, crc64_be_wrapper);
}
static struct kunit_case crc_test_cases[] = {
KUNIT_CASE(crc16_test),
KUNIT_CASE(crc16_benchmark),
KUNIT_CASE(crc_t10dif_test),
KUNIT_CASE(crc_t10dif_benchmark),
KUNIT_CASE(crc32_le_test),
KUNIT_CASE(crc32_le_benchmark),
KUNIT_CASE(crc32_be_test),
KUNIT_CASE(crc32_be_benchmark),
KUNIT_CASE(crc32c_test),
KUNIT_CASE(crc32c_benchmark),
KUNIT_CASE(crc64_be_test),
KUNIT_CASE(crc64_be_benchmark),
{},
};
static struct kunit_suite crc_test_suite = {
.name = "crc",
.test_cases = crc_test_cases,
.suite_init = crc_suite_init,
.suite_exit = crc_suite_exit,
};
kunit_test_suite(crc_test_suite);
MODULE_DESCRIPTION("Unit tests and benchmarks for the CRC library functions");
MODULE_LICENSE("GPL");