License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2007-10-22 11:03:36 +10:00
|
|
|
#ifndef _LINUX_VIRTIO_CONFIG_H
|
|
|
|
#define _LINUX_VIRTIO_CONFIG_H
|
2008-05-30 15:09:45 -05:00
|
|
|
|
2009-06-12 22:16:36 -06:00
|
|
|
#include <linux/err.h>
|
2011-11-23 20:12:59 -05:00
|
|
|
#include <linux/bug.h>
|
2008-05-02 21:50:49 -05:00
|
|
|
#include <linux/virtio.h>
|
2014-10-22 15:35:56 +03:00
|
|
|
#include <linux/virtio_byteorder.h>
|
2020-07-10 03:20:21 -04:00
|
|
|
#include <linux/compiler_types.h>
|
2012-10-13 10:46:48 +01:00
|
|
|
#include <uapi/linux/virtio_config.h>
|
2007-10-22 11:03:36 +10:00
|
|
|
|
2017-02-05 18:15:22 +01:00
|
|
|
struct irq_affinity;
|
|
|
|
|
2020-08-19 18:19:41 -04:00
|
|
|
struct virtio_shm_region {
|
|
|
|
u64 addr;
|
|
|
|
u64 len;
|
|
|
|
};
|
|
|
|
|
2007-10-22 11:03:36 +10:00
|
|
|
/**
|
|
|
|
* virtio_config_ops - operations for configuring a virtio device
|
2019-01-03 17:08:04 +01:00
|
|
|
* Note: Do not assume that a transport implements all of the operations
|
|
|
|
* getting/setting a value as a simple read/write! Generally speaking,
|
|
|
|
* any of @get/@set, @get_status/@set_status, or @get_features/
|
|
|
|
* @finalize_features are NOT safe to be called from an atomic
|
|
|
|
* context.
|
2008-02-04 23:49:56 -05:00
|
|
|
* @get: read the value of a configuration field
|
2007-10-22 11:03:36 +10:00
|
|
|
* vdev: the virtio_device
|
2008-02-04 23:49:56 -05:00
|
|
|
* offset: the offset of the configuration field
|
2007-10-22 11:03:36 +10:00
|
|
|
* buf: the buffer to write the field value into.
|
2008-02-04 23:49:56 -05:00
|
|
|
* len: the length of the buffer
|
|
|
|
* @set: write the value of a configuration field
|
2007-10-22 11:03:36 +10:00
|
|
|
* vdev: the virtio_device
|
2008-02-04 23:49:56 -05:00
|
|
|
* offset: the offset of the configuration field
|
2007-10-22 11:03:36 +10:00
|
|
|
* buf: the buffer to read the field value from.
|
2008-02-04 23:49:56 -05:00
|
|
|
* len: the length of the buffer
|
2019-01-03 17:08:03 +01:00
|
|
|
* @generation: config generation counter (optional)
|
2014-12-14 16:55:44 +02:00
|
|
|
* vdev: the virtio_device
|
|
|
|
* Returns the config generation counter
|
2007-10-22 11:03:36 +10:00
|
|
|
* @get_status: read the status byte
|
|
|
|
* vdev: the virtio_device
|
|
|
|
* Returns the status byte
|
|
|
|
* @set_status: write the status byte
|
|
|
|
* vdev: the virtio_device
|
|
|
|
* status: the new status byte
|
2008-02-04 23:50:03 -05:00
|
|
|
* @reset: reset the device
|
|
|
|
* vdev: the virtio device
|
|
|
|
* After this, status and feature negotiation must be done again
|
2011-11-17 17:41:15 +02:00
|
|
|
* Device must not be reset from its vq/config callbacks, or in
|
|
|
|
* parallel with being added/removed.
|
2009-06-12 22:16:36 -06:00
|
|
|
* @find_vqs: find virtqueues and instantiate them.
|
2007-10-22 11:03:36 +10:00
|
|
|
* vdev: the virtio_device
|
2009-06-12 22:16:36 -06:00
|
|
|
* nvqs: the number of virtqueues to find
|
|
|
|
* vqs: on success, includes new virtqueues
|
|
|
|
* callbacks: array of callbacks, for each virtqueue
|
2012-09-05 21:47:45 +03:00
|
|
|
* include a NULL entry for vqs that do not need a callback
|
2009-06-12 22:16:36 -06:00
|
|
|
* names: array of virtqueue names (mainly for debugging)
|
2012-09-05 21:47:45 +03:00
|
|
|
* include a NULL entry for vqs unused by driver
|
2009-06-12 22:16:36 -06:00
|
|
|
* Returns 0 on success or error status
|
|
|
|
* @del_vqs: free virtqueues found by find_vqs().
|
2022-05-27 14:01:14 +08:00
|
|
|
* @synchronize_cbs: synchronize with the virtqueue callbacks (optional)
|
|
|
|
* The function guarantees that all memory operations on the
|
|
|
|
* queue before it are visible to the vring_interrupt() that is
|
|
|
|
* called after it.
|
|
|
|
* vdev: the virtio_device
|
2008-05-02 21:50:50 -05:00
|
|
|
* @get_features: get the array of feature bits for this device.
|
|
|
|
* vdev: the virtio_device
|
2019-01-03 17:08:03 +01:00
|
|
|
* Returns the first 64 feature bits (all we currently need).
|
2008-07-25 12:06:07 -05:00
|
|
|
* @finalize_features: confirm what device features we'll be using.
|
2008-05-02 21:50:50 -05:00
|
|
|
* vdev: the virtio_device
|
2022-01-14 14:58:41 -05:00
|
|
|
* This sends the driver feature bits to the device: it can change
|
2008-07-25 12:06:07 -05:00
|
|
|
* the dev->feature bits if it wants.
|
2022-01-14 14:58:41 -05:00
|
|
|
* Note: despite the name this can be called any number of times.
|
2014-12-04 20:20:27 +02:00
|
|
|
* Returns 0 on success or error status
|
2019-01-03 17:08:03 +01:00
|
|
|
* @bus_name: return the bus name associated with the device (optional)
|
2011-11-14 14:17:08 +00:00
|
|
|
* vdev: the virtio_device
|
|
|
|
* This returns a pointer to the bus name a la pci_name from which
|
|
|
|
* the caller can then copy.
|
2019-01-03 17:08:03 +01:00
|
|
|
* @set_vq_affinity: set the affinity for a virtqueue (optional).
|
2017-02-05 18:15:23 +01:00
|
|
|
* @get_vq_affinity: get the affinity for a virtqueue (optional).
|
2020-08-19 18:19:41 -04:00
|
|
|
* @get_shm_region: get a shared memory region based on the index.
|
2007-10-22 11:03:36 +10:00
|
|
|
*/
|
2009-06-12 22:16:36 -06:00
|
|
|
typedef void vq_callback_t(struct virtqueue *);
|
2009-07-30 16:03:46 -06:00
|
|
|
struct virtio_config_ops {
|
2008-02-04 23:49:56 -05:00
|
|
|
void (*get)(struct virtio_device *vdev, unsigned offset,
|
2007-10-22 11:03:36 +10:00
|
|
|
void *buf, unsigned len);
|
2008-02-04 23:49:56 -05:00
|
|
|
void (*set)(struct virtio_device *vdev, unsigned offset,
|
2007-10-22 11:03:36 +10:00
|
|
|
const void *buf, unsigned len);
|
2014-12-14 16:55:44 +02:00
|
|
|
u32 (*generation)(struct virtio_device *vdev);
|
2007-10-22 11:03:36 +10:00
|
|
|
u8 (*get_status)(struct virtio_device *vdev);
|
|
|
|
void (*set_status)(struct virtio_device *vdev, u8 status);
|
2008-02-04 23:50:03 -05:00
|
|
|
void (*reset)(struct virtio_device *vdev);
|
2009-06-12 22:16:36 -06:00
|
|
|
int (*find_vqs)(struct virtio_device *, unsigned nvqs,
|
2017-02-05 18:15:22 +01:00
|
|
|
struct virtqueue *vqs[], vq_callback_t *callbacks[],
|
2017-03-06 18:32:29 +02:00
|
|
|
const char * const names[], const bool *ctx,
|
|
|
|
struct irq_affinity *desc);
|
2009-06-12 22:16:36 -06:00
|
|
|
void (*del_vqs)(struct virtio_device *);
|
2022-05-27 14:01:14 +08:00
|
|
|
void (*synchronize_cbs)(struct virtio_device *);
|
2014-10-07 16:39:43 +02:00
|
|
|
u64 (*get_features)(struct virtio_device *vdev);
|
2014-12-04 20:20:27 +02:00
|
|
|
int (*finalize_features)(struct virtio_device *vdev);
|
2011-11-14 14:17:08 +00:00
|
|
|
const char *(*bus_name)(struct virtio_device *vdev);
|
2018-08-09 18:18:28 -07:00
|
|
|
int (*set_vq_affinity)(struct virtqueue *vq,
|
|
|
|
const struct cpumask *cpu_mask);
|
2017-02-05 18:15:23 +01:00
|
|
|
const struct cpumask *(*get_vq_affinity)(struct virtio_device *vdev,
|
|
|
|
int index);
|
2020-08-19 18:19:41 -04:00
|
|
|
bool (*get_shm_region)(struct virtio_device *vdev,
|
|
|
|
struct virtio_shm_region *region, u8 id);
|
2007-10-22 11:03:36 +10:00
|
|
|
};
|
|
|
|
|
2008-05-02 21:50:50 -05:00
|
|
|
/* If driver didn't advertise the feature, it will never appear. */
|
|
|
|
void virtio_check_driver_offered_feature(const struct virtio_device *vdev,
|
|
|
|
unsigned int fbit);
|
|
|
|
|
|
|
|
/**
|
2014-11-27 21:19:02 +02:00
|
|
|
* __virtio_test_bit - helper to test feature bits. For use by transports.
|
|
|
|
* Devices should normally use virtio_has_feature,
|
|
|
|
* which includes more checks.
|
2008-05-02 21:50:50 -05:00
|
|
|
* @vdev: the device
|
|
|
|
* @fbit: the feature bit
|
|
|
|
*/
|
2014-11-27 21:19:02 +02:00
|
|
|
static inline bool __virtio_test_bit(const struct virtio_device *vdev,
|
|
|
|
unsigned int fbit)
|
|
|
|
{
|
|
|
|
/* Did you forget to fix assumptions on max features? */
|
|
|
|
if (__builtin_constant_p(fbit))
|
2014-10-07 16:39:43 +02:00
|
|
|
BUILD_BUG_ON(fbit >= 64);
|
2014-11-27 21:19:02 +02:00
|
|
|
else
|
2014-10-07 16:39:43 +02:00
|
|
|
BUG_ON(fbit >= 64);
|
2014-11-27 21:19:02 +02:00
|
|
|
|
2014-10-07 16:39:43 +02:00
|
|
|
return vdev->features & BIT_ULL(fbit);
|
2014-11-27 21:19:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __virtio_set_bit - helper to set feature bits. For use by transports.
|
|
|
|
* @vdev: the device
|
|
|
|
* @fbit: the feature bit
|
|
|
|
*/
|
|
|
|
static inline void __virtio_set_bit(struct virtio_device *vdev,
|
|
|
|
unsigned int fbit)
|
|
|
|
{
|
|
|
|
/* Did you forget to fix assumptions on max features? */
|
|
|
|
if (__builtin_constant_p(fbit))
|
2014-10-07 16:39:43 +02:00
|
|
|
BUILD_BUG_ON(fbit >= 64);
|
2014-11-27 21:19:02 +02:00
|
|
|
else
|
2014-10-07 16:39:43 +02:00
|
|
|
BUG_ON(fbit >= 64);
|
2014-11-27 21:19:02 +02:00
|
|
|
|
2014-10-07 16:39:43 +02:00
|
|
|
vdev->features |= BIT_ULL(fbit);
|
2014-11-27 21:19:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __virtio_clear_bit - helper to clear feature bits. For use by transports.
|
|
|
|
* @vdev: the device
|
|
|
|
* @fbit: the feature bit
|
|
|
|
*/
|
|
|
|
static inline void __virtio_clear_bit(struct virtio_device *vdev,
|
2008-05-02 21:50:50 -05:00
|
|
|
unsigned int fbit)
|
|
|
|
{
|
|
|
|
/* Did you forget to fix assumptions on max features? */
|
2011-01-24 14:45:10 -06:00
|
|
|
if (__builtin_constant_p(fbit))
|
2014-10-07 16:39:43 +02:00
|
|
|
BUILD_BUG_ON(fbit >= 64);
|
2011-01-24 14:45:10 -06:00
|
|
|
else
|
2014-10-07 16:39:43 +02:00
|
|
|
BUG_ON(fbit >= 64);
|
2008-05-02 21:50:50 -05:00
|
|
|
|
2014-10-07 16:39:43 +02:00
|
|
|
vdev->features &= ~BIT_ULL(fbit);
|
2014-11-27 21:19:02 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* virtio_has_feature - helper to determine if this device has this feature.
|
|
|
|
* @vdev: the device
|
|
|
|
* @fbit: the feature bit
|
|
|
|
*/
|
|
|
|
static inline bool virtio_has_feature(const struct virtio_device *vdev,
|
|
|
|
unsigned int fbit)
|
|
|
|
{
|
2009-05-11 18:11:44 +01:00
|
|
|
if (fbit < VIRTIO_TRANSPORT_F_START)
|
|
|
|
virtio_check_driver_offered_feature(vdev, fbit);
|
|
|
|
|
2014-11-27 21:19:02 +02:00
|
|
|
return __virtio_test_bit(vdev, fbit);
|
2008-05-02 21:50:50 -05:00
|
|
|
}
|
|
|
|
|
virtio: new feature to detect IOMMU device quirk
The interaction between virtio and IOMMUs is messy.
On most systems with virtio, physical addresses match bus addresses,
and it doesn't particularly matter which one we use to program
the device.
On some systems, including Xen and any system with a physical device
that speaks virtio behind a physical IOMMU, we must program the IOMMU
for virtio DMA to work at all.
On other systems, including SPARC and PPC64, virtio-pci devices are
enumerated as though they are behind an IOMMU, but the virtio host
ignores the IOMMU, so we must either pretend that the IOMMU isn't
there or somehow map everything as the identity.
Add a feature bit to detect that quirk: VIRTIO_F_IOMMU_PLATFORM.
Any device with this feature bit set to 0 needs a quirk and has to be
passed physical addresses (as opposed to bus addresses) even though
the device is behind an IOMMU.
Note: it has to be a per-device quirk because for example, there could
be a mix of passed-through and virtual virtio devices. As another
example, some devices could be implemented by an out of process
hypervisor backend (in case of qemu vhost, or vhost-user) and so support
for an IOMMU needs to be coded up separately.
It would be cleanest to handle this in IOMMU core code, but that needs
per-device DMA ops. While we are waiting for that to be implemented, use
a work-around in virtio core.
Note: a "noiommu" feature is a quirk - add a wrapper to make
that clear.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2016-04-18 12:58:14 +03:00
|
|
|
/**
|
2020-06-24 19:17:04 -04:00
|
|
|
* virtio_has_dma_quirk - determine whether this device has the DMA quirk
|
virtio: new feature to detect IOMMU device quirk
The interaction between virtio and IOMMUs is messy.
On most systems with virtio, physical addresses match bus addresses,
and it doesn't particularly matter which one we use to program
the device.
On some systems, including Xen and any system with a physical device
that speaks virtio behind a physical IOMMU, we must program the IOMMU
for virtio DMA to work at all.
On other systems, including SPARC and PPC64, virtio-pci devices are
enumerated as though they are behind an IOMMU, but the virtio host
ignores the IOMMU, so we must either pretend that the IOMMU isn't
there or somehow map everything as the identity.
Add a feature bit to detect that quirk: VIRTIO_F_IOMMU_PLATFORM.
Any device with this feature bit set to 0 needs a quirk and has to be
passed physical addresses (as opposed to bus addresses) even though
the device is behind an IOMMU.
Note: it has to be a per-device quirk because for example, there could
be a mix of passed-through and virtual virtio devices. As another
example, some devices could be implemented by an out of process
hypervisor backend (in case of qemu vhost, or vhost-user) and so support
for an IOMMU needs to be coded up separately.
It would be cleanest to handle this in IOMMU core code, but that needs
per-device DMA ops. While we are waiting for that to be implemented, use
a work-around in virtio core.
Note: a "noiommu" feature is a quirk - add a wrapper to make
that clear.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2016-04-18 12:58:14 +03:00
|
|
|
* @vdev: the device
|
|
|
|
*/
|
2020-06-24 19:17:04 -04:00
|
|
|
static inline bool virtio_has_dma_quirk(const struct virtio_device *vdev)
|
virtio: new feature to detect IOMMU device quirk
The interaction between virtio and IOMMUs is messy.
On most systems with virtio, physical addresses match bus addresses,
and it doesn't particularly matter which one we use to program
the device.
On some systems, including Xen and any system with a physical device
that speaks virtio behind a physical IOMMU, we must program the IOMMU
for virtio DMA to work at all.
On other systems, including SPARC and PPC64, virtio-pci devices are
enumerated as though they are behind an IOMMU, but the virtio host
ignores the IOMMU, so we must either pretend that the IOMMU isn't
there or somehow map everything as the identity.
Add a feature bit to detect that quirk: VIRTIO_F_IOMMU_PLATFORM.
Any device with this feature bit set to 0 needs a quirk and has to be
passed physical addresses (as opposed to bus addresses) even though
the device is behind an IOMMU.
Note: it has to be a per-device quirk because for example, there could
be a mix of passed-through and virtual virtio devices. As another
example, some devices could be implemented by an out of process
hypervisor backend (in case of qemu vhost, or vhost-user) and so support
for an IOMMU needs to be coded up separately.
It would be cleanest to handle this in IOMMU core code, but that needs
per-device DMA ops. While we are waiting for that to be implemented, use
a work-around in virtio core.
Note: a "noiommu" feature is a quirk - add a wrapper to make
that clear.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2016-04-18 12:58:14 +03:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Note the reverse polarity of the quirk feature (compared to most
|
|
|
|
* other features), this is for compatibility with legacy systems.
|
|
|
|
*/
|
2020-06-24 18:24:33 -04:00
|
|
|
return !virtio_has_feature(vdev, VIRTIO_F_ACCESS_PLATFORM);
|
virtio: new feature to detect IOMMU device quirk
The interaction between virtio and IOMMUs is messy.
On most systems with virtio, physical addresses match bus addresses,
and it doesn't particularly matter which one we use to program
the device.
On some systems, including Xen and any system with a physical device
that speaks virtio behind a physical IOMMU, we must program the IOMMU
for virtio DMA to work at all.
On other systems, including SPARC and PPC64, virtio-pci devices are
enumerated as though they are behind an IOMMU, but the virtio host
ignores the IOMMU, so we must either pretend that the IOMMU isn't
there or somehow map everything as the identity.
Add a feature bit to detect that quirk: VIRTIO_F_IOMMU_PLATFORM.
Any device with this feature bit set to 0 needs a quirk and has to be
passed physical addresses (as opposed to bus addresses) even though
the device is behind an IOMMU.
Note: it has to be a per-device quirk because for example, there could
be a mix of passed-through and virtual virtio devices. As another
example, some devices could be implemented by an out of process
hypervisor backend (in case of qemu vhost, or vhost-user) and so support
for an IOMMU needs to be coded up separately.
It would be cleanest to handle this in IOMMU core code, but that needs
per-device DMA ops. While we are waiting for that to be implemented, use
a work-around in virtio core.
Note: a "noiommu" feature is a quirk - add a wrapper to make
that clear.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2016-04-18 12:58:14 +03:00
|
|
|
}
|
|
|
|
|
2009-06-12 22:16:36 -06:00
|
|
|
static inline
|
|
|
|
struct virtqueue *virtio_find_single_vq(struct virtio_device *vdev,
|
|
|
|
vq_callback_t *c, const char *n)
|
|
|
|
{
|
|
|
|
vq_callback_t *callbacks[] = { c };
|
|
|
|
const char *names[] = { n };
|
|
|
|
struct virtqueue *vq;
|
2017-03-06 18:32:29 +02:00
|
|
|
int err = vdev->config->find_vqs(vdev, 1, &vq, callbacks, names, NULL,
|
|
|
|
NULL);
|
2009-06-12 22:16:36 -06:00
|
|
|
if (err < 0)
|
|
|
|
return ERR_PTR(err);
|
|
|
|
return vq;
|
|
|
|
}
|
2011-11-14 14:17:08 +00:00
|
|
|
|
2017-03-06 18:19:39 +02:00
|
|
|
static inline
|
|
|
|
int virtio_find_vqs(struct virtio_device *vdev, unsigned nvqs,
|
|
|
|
struct virtqueue *vqs[], vq_callback_t *callbacks[],
|
|
|
|
const char * const names[],
|
|
|
|
struct irq_affinity *desc)
|
|
|
|
{
|
2017-03-06 18:32:29 +02:00
|
|
|
return vdev->config->find_vqs(vdev, nvqs, vqs, callbacks, names, NULL, desc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline
|
|
|
|
int virtio_find_vqs_ctx(struct virtio_device *vdev, unsigned nvqs,
|
|
|
|
struct virtqueue *vqs[], vq_callback_t *callbacks[],
|
|
|
|
const char * const names[], const bool *ctx,
|
|
|
|
struct irq_affinity *desc)
|
|
|
|
{
|
|
|
|
return vdev->config->find_vqs(vdev, nvqs, vqs, callbacks, names, ctx,
|
|
|
|
desc);
|
2017-03-06 18:19:39 +02:00
|
|
|
}
|
|
|
|
|
2022-05-27 14:01:14 +08:00
|
|
|
/**
|
|
|
|
* virtio_synchronize_cbs - synchronize with virtqueue callbacks
|
|
|
|
* @vdev: the device
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
void virtio_synchronize_cbs(struct virtio_device *dev)
|
|
|
|
{
|
|
|
|
if (dev->config->synchronize_cbs) {
|
|
|
|
dev->config->synchronize_cbs(dev);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* A best effort fallback to synchronize with
|
|
|
|
* interrupts, preemption and softirq disabled
|
|
|
|
* regions. See comment above synchronize_rcu().
|
|
|
|
*/
|
|
|
|
synchronize_rcu();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-10-15 10:22:30 +10:30
|
|
|
/**
|
|
|
|
* virtio_device_ready - enable vq use in probe function
|
|
|
|
* @vdev: the device
|
|
|
|
*
|
|
|
|
* Driver must call this to use vqs in the probe function.
|
|
|
|
*
|
|
|
|
* Note: vqs are enabled automatically after probe returns.
|
|
|
|
*/
|
|
|
|
static inline
|
|
|
|
void virtio_device_ready(struct virtio_device *dev)
|
|
|
|
{
|
|
|
|
unsigned status = dev->config->get_status(dev);
|
|
|
|
|
|
|
|
BUG_ON(status & VIRTIO_CONFIG_S_DRIVER_OK);
|
2022-05-27 14:01:19 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The virtio_synchronize_cbs() makes sure vring_interrupt()
|
|
|
|
* will see the driver specific setup if it sees vq->broken
|
|
|
|
* as false (even if the notifications come before DRIVER_OK).
|
|
|
|
*/
|
|
|
|
virtio_synchronize_cbs(dev);
|
|
|
|
__virtio_unbreak_device(dev);
|
|
|
|
/*
|
|
|
|
* The transport should ensure the visibility of vq->broken
|
|
|
|
* before setting DRIVER_OK. See the comments for the transport
|
|
|
|
* specific set_status() method.
|
|
|
|
*
|
|
|
|
* A well behaved device will only notify a virtqueue after
|
|
|
|
* DRIVER_OK, this means the device should "see" the coherenct
|
|
|
|
* memory write that set vq->broken as false which is done by
|
|
|
|
* the driver when it sees DRIVER_OK, then the following
|
|
|
|
* driver's vring_interrupt() will see vq->broken as false so
|
|
|
|
* we won't lose any notification.
|
|
|
|
*/
|
2014-10-15 10:22:30 +10:30
|
|
|
dev->config->set_status(dev, status | VIRTIO_CONFIG_S_DRIVER_OK);
|
|
|
|
}
|
|
|
|
|
2011-11-14 14:17:08 +00:00
|
|
|
static inline
|
|
|
|
const char *virtio_bus_name(struct virtio_device *vdev)
|
|
|
|
{
|
|
|
|
if (!vdev->config->bus_name)
|
|
|
|
return "virtio";
|
|
|
|
return vdev->config->bus_name(vdev);
|
|
|
|
}
|
|
|
|
|
2012-08-28 13:54:14 +02:00
|
|
|
/**
|
|
|
|
* virtqueue_set_affinity - setting affinity for a virtqueue
|
|
|
|
* @vq: the virtqueue
|
|
|
|
* @cpu: the cpu no.
|
|
|
|
*
|
|
|
|
* Pay attention the function are best-effort: the affinity hint may not be set
|
|
|
|
* due to config support, irq type and sharing.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static inline
|
2018-08-09 18:18:28 -07:00
|
|
|
int virtqueue_set_affinity(struct virtqueue *vq, const struct cpumask *cpu_mask)
|
2012-08-28 13:54:14 +02:00
|
|
|
{
|
|
|
|
struct virtio_device *vdev = vq->vdev;
|
|
|
|
if (vdev->config->set_vq_affinity)
|
2018-08-09 18:18:28 -07:00
|
|
|
return vdev->config->set_vq_affinity(vq, cpu_mask);
|
2012-08-28 13:54:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-08-19 18:19:41 -04:00
|
|
|
static inline
|
|
|
|
bool virtio_get_shm_region(struct virtio_device *vdev,
|
|
|
|
struct virtio_shm_region *region, u8 id)
|
|
|
|
{
|
|
|
|
if (!vdev->config->get_shm_region)
|
|
|
|
return false;
|
|
|
|
return vdev->config->get_shm_region(vdev, region, id);
|
|
|
|
}
|
|
|
|
|
2015-04-24 14:24:27 +02:00
|
|
|
static inline bool virtio_is_little_endian(struct virtio_device *vdev)
|
|
|
|
{
|
2015-04-24 14:26:24 +02:00
|
|
|
return virtio_has_feature(vdev, VIRTIO_F_VERSION_1) ||
|
|
|
|
virtio_legacy_is_little_endian();
|
2015-04-24 14:24:27 +02:00
|
|
|
}
|
|
|
|
|
2014-10-22 15:35:56 +03:00
|
|
|
/* Memory accessors */
|
|
|
|
static inline u16 virtio16_to_cpu(struct virtio_device *vdev, __virtio16 val)
|
|
|
|
{
|
2015-04-24 14:24:27 +02:00
|
|
|
return __virtio16_to_cpu(virtio_is_little_endian(vdev), val);
|
2014-10-22 15:35:56 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline __virtio16 cpu_to_virtio16(struct virtio_device *vdev, u16 val)
|
|
|
|
{
|
2015-04-24 14:24:27 +02:00
|
|
|
return __cpu_to_virtio16(virtio_is_little_endian(vdev), val);
|
2014-10-22 15:35:56 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 virtio32_to_cpu(struct virtio_device *vdev, __virtio32 val)
|
|
|
|
{
|
2015-04-24 14:24:27 +02:00
|
|
|
return __virtio32_to_cpu(virtio_is_little_endian(vdev), val);
|
2014-10-22 15:35:56 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline __virtio32 cpu_to_virtio32(struct virtio_device *vdev, u32 val)
|
|
|
|
{
|
2015-04-24 14:24:27 +02:00
|
|
|
return __cpu_to_virtio32(virtio_is_little_endian(vdev), val);
|
2014-10-22 15:35:56 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline u64 virtio64_to_cpu(struct virtio_device *vdev, __virtio64 val)
|
|
|
|
{
|
2015-04-24 14:24:27 +02:00
|
|
|
return __virtio64_to_cpu(virtio_is_little_endian(vdev), val);
|
2014-10-22 15:35:56 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline __virtio64 cpu_to_virtio64(struct virtio_device *vdev, u64 val)
|
|
|
|
{
|
2015-04-24 14:24:27 +02:00
|
|
|
return __cpu_to_virtio64(virtio_is_little_endian(vdev), val);
|
2014-10-22 15:35:56 +03:00
|
|
|
}
|
|
|
|
|
2020-08-03 16:08:11 -04:00
|
|
|
#define virtio_to_cpu(vdev, x) \
|
|
|
|
_Generic((x), \
|
|
|
|
__u8: (x), \
|
|
|
|
__virtio16: virtio16_to_cpu((vdev), (x)), \
|
|
|
|
__virtio32: virtio32_to_cpu((vdev), (x)), \
|
2020-08-05 07:29:12 -04:00
|
|
|
__virtio64: virtio64_to_cpu((vdev), (x)) \
|
2020-08-03 16:08:11 -04:00
|
|
|
)
|
|
|
|
|
|
|
|
#define cpu_to_virtio(vdev, x, m) \
|
|
|
|
_Generic((m), \
|
|
|
|
__u8: (x), \
|
|
|
|
__virtio16: cpu_to_virtio16((vdev), (x)), \
|
|
|
|
__virtio32: cpu_to_virtio32((vdev), (x)), \
|
2020-08-05 07:29:12 -04:00
|
|
|
__virtio64: cpu_to_virtio64((vdev), (x)) \
|
2020-08-03 16:08:11 -04:00
|
|
|
)
|
2020-07-10 03:20:21 -04:00
|
|
|
|
|
|
|
#define __virtio_native_type(structname, member) \
|
2020-08-03 16:08:11 -04:00
|
|
|
typeof(virtio_to_cpu(NULL, ((structname*)0)->member))
|
2020-07-10 03:20:21 -04:00
|
|
|
|
2013-10-14 18:11:51 +10:30
|
|
|
/* Config space accessors. */
|
|
|
|
#define virtio_cread(vdev, structname, member, ptr) \
|
|
|
|
do { \
|
2020-08-03 16:08:11 -04:00
|
|
|
typeof(((structname*)0)->member) virtio_cread_v; \
|
|
|
|
\
|
2019-01-31 13:53:14 +01:00
|
|
|
might_sleep(); \
|
2020-08-03 16:08:11 -04:00
|
|
|
/* Sanity check: must match the member's type */ \
|
|
|
|
typecheck(typeof(virtio_to_cpu((vdev), virtio_cread_v)), *(ptr)); \
|
2013-10-14 18:11:51 +10:30
|
|
|
\
|
2020-08-03 16:08:11 -04:00
|
|
|
switch (sizeof(virtio_cread_v)) { \
|
2013-10-14 18:11:51 +10:30
|
|
|
case 1: \
|
|
|
|
case 2: \
|
|
|
|
case 4: \
|
2020-08-03 16:08:11 -04:00
|
|
|
vdev->config->get((vdev), \
|
|
|
|
offsetof(structname, member), \
|
|
|
|
&virtio_cread_v, \
|
|
|
|
sizeof(virtio_cread_v)); \
|
2013-10-14 18:11:51 +10:30
|
|
|
break; \
|
|
|
|
default: \
|
2020-08-03 16:08:11 -04:00
|
|
|
__virtio_cread_many((vdev), \
|
|
|
|
offsetof(structname, member), \
|
|
|
|
&virtio_cread_v, \
|
|
|
|
1, \
|
|
|
|
sizeof(virtio_cread_v)); \
|
|
|
|
break; \
|
2013-10-14 18:11:51 +10:30
|
|
|
} \
|
2020-08-03 16:08:11 -04:00
|
|
|
*(ptr) = virtio_to_cpu(vdev, virtio_cread_v); \
|
2013-10-14 18:11:51 +10:30
|
|
|
} while(0)
|
|
|
|
|
|
|
|
/* Config space accessors. */
|
|
|
|
#define virtio_cwrite(vdev, structname, member, ptr) \
|
|
|
|
do { \
|
2020-08-03 16:08:11 -04:00
|
|
|
typeof(((structname*)0)->member) virtio_cwrite_v = \
|
|
|
|
cpu_to_virtio(vdev, *(ptr), ((structname*)0)->member); \
|
|
|
|
\
|
2019-01-31 13:53:14 +01:00
|
|
|
might_sleep(); \
|
2020-08-03 16:08:11 -04:00
|
|
|
/* Sanity check: must match the member's type */ \
|
|
|
|
typecheck(typeof(virtio_to_cpu((vdev), virtio_cwrite_v)), *(ptr)); \
|
2013-10-14 18:11:51 +10:30
|
|
|
\
|
2020-08-03 16:08:11 -04:00
|
|
|
vdev->config->set((vdev), offsetof(structname, member), \
|
|
|
|
&virtio_cwrite_v, \
|
|
|
|
sizeof(virtio_cwrite_v)); \
|
2013-10-14 18:11:51 +10:30
|
|
|
} while(0)
|
|
|
|
|
2020-08-04 17:33:08 -04:00
|
|
|
/*
|
|
|
|
* Nothing virtio-specific about these, but let's worry about generalizing
|
|
|
|
* these later.
|
|
|
|
*/
|
|
|
|
#define virtio_le_to_cpu(x) \
|
|
|
|
_Generic((x), \
|
2020-08-05 19:55:50 -04:00
|
|
|
__u8: (u8)(x), \
|
|
|
|
__le16: (u16)le16_to_cpu(x), \
|
|
|
|
__le32: (u32)le32_to_cpu(x), \
|
|
|
|
__le64: (u64)le64_to_cpu(x) \
|
2020-08-04 17:33:08 -04:00
|
|
|
)
|
|
|
|
|
|
|
|
#define virtio_cpu_to_le(x, m) \
|
|
|
|
_Generic((m), \
|
|
|
|
__u8: (x), \
|
|
|
|
__le16: cpu_to_le16(x), \
|
|
|
|
__le32: cpu_to_le32(x), \
|
|
|
|
__le64: cpu_to_le64(x) \
|
|
|
|
)
|
|
|
|
|
|
|
|
/* LE (e.g. modern) Config space accessors. */
|
|
|
|
#define virtio_cread_le(vdev, structname, member, ptr) \
|
|
|
|
do { \
|
|
|
|
typeof(((structname*)0)->member) virtio_cread_v; \
|
|
|
|
\
|
|
|
|
might_sleep(); \
|
|
|
|
/* Sanity check: must match the member's type */ \
|
|
|
|
typecheck(typeof(virtio_le_to_cpu(virtio_cread_v)), *(ptr)); \
|
|
|
|
\
|
|
|
|
switch (sizeof(virtio_cread_v)) { \
|
|
|
|
case 1: \
|
|
|
|
case 2: \
|
|
|
|
case 4: \
|
|
|
|
vdev->config->get((vdev), \
|
|
|
|
offsetof(structname, member), \
|
|
|
|
&virtio_cread_v, \
|
|
|
|
sizeof(virtio_cread_v)); \
|
|
|
|
break; \
|
|
|
|
default: \
|
|
|
|
__virtio_cread_many((vdev), \
|
|
|
|
offsetof(structname, member), \
|
|
|
|
&virtio_cread_v, \
|
|
|
|
1, \
|
|
|
|
sizeof(virtio_cread_v)); \
|
|
|
|
break; \
|
|
|
|
} \
|
|
|
|
*(ptr) = virtio_le_to_cpu(virtio_cread_v); \
|
|
|
|
} while(0)
|
|
|
|
|
|
|
|
#define virtio_cwrite_le(vdev, structname, member, ptr) \
|
|
|
|
do { \
|
|
|
|
typeof(((structname*)0)->member) virtio_cwrite_v = \
|
|
|
|
virtio_cpu_to_le(*(ptr), ((structname*)0)->member); \
|
|
|
|
\
|
|
|
|
might_sleep(); \
|
|
|
|
/* Sanity check: must match the member's type */ \
|
|
|
|
typecheck(typeof(virtio_le_to_cpu(virtio_cwrite_v)), *(ptr)); \
|
|
|
|
\
|
|
|
|
vdev->config->set((vdev), offsetof(structname, member), \
|
|
|
|
&virtio_cwrite_v, \
|
|
|
|
sizeof(virtio_cwrite_v)); \
|
|
|
|
} while(0)
|
|
|
|
|
|
|
|
|
2014-12-14 16:55:44 +02:00
|
|
|
/* Read @count fields, @bytes each. */
|
|
|
|
static inline void __virtio_cread_many(struct virtio_device *vdev,
|
|
|
|
unsigned int offset,
|
|
|
|
void *buf, size_t count, size_t bytes)
|
|
|
|
{
|
|
|
|
u32 old, gen = vdev->config->generation ?
|
|
|
|
vdev->config->generation(vdev) : 0;
|
|
|
|
int i;
|
|
|
|
|
2019-01-31 13:53:14 +01:00
|
|
|
might_sleep();
|
2014-12-14 16:55:44 +02:00
|
|
|
do {
|
|
|
|
old = gen;
|
|
|
|
|
|
|
|
for (i = 0; i < count; i++)
|
|
|
|
vdev->config->get(vdev, offset + bytes * i,
|
|
|
|
buf + i * bytes, bytes);
|
|
|
|
|
|
|
|
gen = vdev->config->generation ?
|
|
|
|
vdev->config->generation(vdev) : 0;
|
|
|
|
} while (gen != old);
|
|
|
|
}
|
|
|
|
|
2013-10-14 18:11:51 +10:30
|
|
|
static inline void virtio_cread_bytes(struct virtio_device *vdev,
|
|
|
|
unsigned int offset,
|
|
|
|
void *buf, size_t len)
|
|
|
|
{
|
2014-12-14 16:55:44 +02:00
|
|
|
__virtio_cread_many(vdev, offset, buf, len, 1);
|
2013-10-14 18:11:51 +10:30
|
|
|
}
|
|
|
|
|
2015-04-01 08:21:51 +10:30
|
|
|
static inline u8 virtio_cread8(struct virtio_device *vdev, unsigned int offset)
|
|
|
|
{
|
|
|
|
u8 ret;
|
2019-01-31 13:53:14 +01:00
|
|
|
|
|
|
|
might_sleep();
|
2015-04-01 08:21:51 +10:30
|
|
|
vdev->config->get(vdev, offset, &ret, sizeof(ret));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2013-10-14 18:11:51 +10:30
|
|
|
static inline void virtio_cwrite8(struct virtio_device *vdev,
|
|
|
|
unsigned int offset, u8 val)
|
|
|
|
{
|
2019-01-31 13:53:14 +01:00
|
|
|
might_sleep();
|
2013-10-14 18:11:51 +10:30
|
|
|
vdev->config->set(vdev, offset, &val, sizeof(val));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u16 virtio_cread16(struct virtio_device *vdev,
|
|
|
|
unsigned int offset)
|
|
|
|
{
|
2020-07-30 16:12:40 -04:00
|
|
|
__virtio16 ret;
|
2019-01-31 13:53:14 +01:00
|
|
|
|
|
|
|
might_sleep();
|
2013-10-14 18:11:51 +10:30
|
|
|
vdev->config->get(vdev, offset, &ret, sizeof(ret));
|
2020-07-30 16:12:40 -04:00
|
|
|
return virtio16_to_cpu(vdev, ret);
|
2013-10-14 18:11:51 +10:30
|
|
|
}
|
|
|
|
|
|
|
|
static inline void virtio_cwrite16(struct virtio_device *vdev,
|
|
|
|
unsigned int offset, u16 val)
|
|
|
|
{
|
2020-07-30 16:12:40 -04:00
|
|
|
__virtio16 v;
|
|
|
|
|
2019-01-31 13:53:14 +01:00
|
|
|
might_sleep();
|
2020-07-30 16:12:40 -04:00
|
|
|
v = cpu_to_virtio16(vdev, val);
|
|
|
|
vdev->config->set(vdev, offset, &v, sizeof(v));
|
2013-10-14 18:11:51 +10:30
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 virtio_cread32(struct virtio_device *vdev,
|
|
|
|
unsigned int offset)
|
|
|
|
{
|
2020-07-30 16:12:40 -04:00
|
|
|
__virtio32 ret;
|
2019-01-31 13:53:14 +01:00
|
|
|
|
|
|
|
might_sleep();
|
2013-10-14 18:11:51 +10:30
|
|
|
vdev->config->get(vdev, offset, &ret, sizeof(ret));
|
2020-07-30 16:12:40 -04:00
|
|
|
return virtio32_to_cpu(vdev, ret);
|
2013-10-14 18:11:51 +10:30
|
|
|
}
|
|
|
|
|
|
|
|
static inline void virtio_cwrite32(struct virtio_device *vdev,
|
|
|
|
unsigned int offset, u32 val)
|
|
|
|
{
|
2020-07-30 16:12:40 -04:00
|
|
|
__virtio32 v;
|
|
|
|
|
2019-01-31 13:53:14 +01:00
|
|
|
might_sleep();
|
2020-07-30 16:12:40 -04:00
|
|
|
v = cpu_to_virtio32(vdev, val);
|
|
|
|
vdev->config->set(vdev, offset, &v, sizeof(v));
|
2013-10-14 18:11:51 +10:30
|
|
|
}
|
|
|
|
|
|
|
|
static inline u64 virtio_cread64(struct virtio_device *vdev,
|
|
|
|
unsigned int offset)
|
|
|
|
{
|
2020-07-30 16:12:40 -04:00
|
|
|
__virtio64 ret;
|
|
|
|
|
2014-12-14 16:55:44 +02:00
|
|
|
__virtio_cread_many(vdev, offset, &ret, 1, sizeof(ret));
|
2020-07-30 16:12:40 -04:00
|
|
|
return virtio64_to_cpu(vdev, ret);
|
2013-10-14 18:11:51 +10:30
|
|
|
}
|
|
|
|
|
|
|
|
static inline void virtio_cwrite64(struct virtio_device *vdev,
|
|
|
|
unsigned int offset, u64 val)
|
|
|
|
{
|
2020-07-30 16:12:40 -04:00
|
|
|
__virtio64 v;
|
|
|
|
|
2019-01-31 13:53:14 +01:00
|
|
|
might_sleep();
|
2020-07-30 16:12:40 -04:00
|
|
|
v = cpu_to_virtio64(vdev, val);
|
|
|
|
vdev->config->set(vdev, offset, &v, sizeof(v));
|
2013-10-14 18:11:51 +10:30
|
|
|
}
|
|
|
|
|
|
|
|
/* Conditional config space accessors. */
|
|
|
|
#define virtio_cread_feature(vdev, fbit, structname, member, ptr) \
|
|
|
|
({ \
|
|
|
|
int _r = 0; \
|
|
|
|
if (!virtio_has_feature(vdev, fbit)) \
|
|
|
|
_r = -ENOENT; \
|
|
|
|
else \
|
|
|
|
virtio_cread((vdev), structname, member, ptr); \
|
|
|
|
_r; \
|
|
|
|
})
|
2012-08-28 13:54:14 +02:00
|
|
|
|
2020-08-05 09:17:38 -04:00
|
|
|
/* Conditional config space accessors. */
|
|
|
|
#define virtio_cread_le_feature(vdev, fbit, structname, member, ptr) \
|
|
|
|
({ \
|
|
|
|
int _r = 0; \
|
|
|
|
if (!virtio_has_feature(vdev, fbit)) \
|
|
|
|
_r = -ENOENT; \
|
|
|
|
else \
|
|
|
|
virtio_cread_le((vdev), structname, member, ptr); \
|
|
|
|
_r; \
|
|
|
|
})
|
2020-09-10 10:53:49 +02:00
|
|
|
|
|
|
|
#ifdef CONFIG_ARCH_HAS_RESTRICTED_VIRTIO_MEMORY_ACCESS
|
|
|
|
int arch_has_restricted_virtio_memory_access(void);
|
|
|
|
#else
|
|
|
|
static inline int arch_has_restricted_virtio_memory_access(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_ARCH_HAS_RESTRICTED_VIRTIO_MEMORY_ACCESS */
|
|
|
|
|
2007-10-22 11:03:36 +10:00
|
|
|
#endif /* _LINUX_VIRTIO_CONFIG_H */
|