linux-next/arch/powerpc/include/asm/kvm_book3s_64.h

431 lines
11 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2010
*
* Authors: Alexander Graf <agraf@suse.de>
*/
#ifndef __ASM_KVM_BOOK3S_64_H__
#define __ASM_KVM_BOOK3S_64_H__
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
{
preempt_disable();
return &get_paca()->shadow_vcpu;
}
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
{
preempt_enable();
}
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 00:21:34 +00:00
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
KVM: PPC: Book3S HV: Make the guest hash table size configurable This adds a new ioctl to enable userspace to control the size of the guest hashed page table (HPT) and to clear it out when resetting the guest. The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter a pointer to a u32 containing the desired order of the HPT (log base 2 of the size in bytes), which is updated on successful return to the actual order of the HPT which was allocated. There must be no vcpus running at the time of this ioctl. To enforce this, we now keep a count of the number of vcpus running in kvm->arch.vcpus_running. If the ioctl is called when a HPT has already been allocated, we don't reallocate the HPT but just clear it out. We first clear the kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold the kvm->lock mutex, it will prevent any vcpus from starting to run until we're done, and (b) it means that the first vcpu to run after we're done will re-establish the VRMA if necessary. If userspace doesn't call this ioctl before running the first vcpu, the kernel will allocate a default-sized HPT at that point. We do it then rather than when creating the VM, as the code did previously, so that userspace has a chance to do the ioctl if it wants. When allocating the HPT, we can allocate either from the kernel page allocator, or from the preallocated pool. If userspace is asking for a different size from the preallocated HPTs, we first try to allocate using the kernel page allocator. Then we try to allocate from the preallocated pool, and then if that fails, we try allocating decreasing sizes from the kernel page allocator, down to the minimum size allowed (256kB). Note that the kernel page allocator limits allocations to 1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to 16MB (on 64-bit powerpc, at least). Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix module compilation] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 02:32:53 +00:00
#define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
#endif
#define VRMA_VSID 0x1ffffffUL /* 1TB VSID reserved for VRMA */
/*
* We use a lock bit in HPTE dword 0 to synchronize updates and
* accesses to each HPTE, and another bit to indicate non-present
* HPTEs.
*/
#define HPTE_V_HVLOCK 0x40UL
#define HPTE_V_ABSENT 0x20UL
/*
* We use this bit in the guest_rpte field of the revmap entry
* to indicate a modified HPTE.
*/
#define HPTE_GR_MODIFIED (1ul << 62)
/* These bits are reserved in the guest view of the HPTE */
#define HPTE_GR_RESERVED HPTE_GR_MODIFIED
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
{
unsigned long tmp, old;
__be64 be_lockbit, be_bits;
/*
* We load/store in native endian, but the HTAB is in big endian. If
* we byte swap all data we apply on the PTE we're implicitly correct
* again.
*/
be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
be_bits = cpu_to_be64(bits);
asm volatile(" ldarx %0,0,%2\n"
" and. %1,%0,%3\n"
" bne 2f\n"
" or %0,%0,%4\n"
" stdcx. %0,0,%2\n"
" beq+ 2f\n"
" mr %1,%3\n"
"2: isync"
: "=&r" (tmp), "=&r" (old)
: "r" (hpte), "r" (be_bits), "r" (be_lockbit)
: "cc", "memory");
return old == 0;
}
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
hpte_v &= ~HPTE_V_HVLOCK;
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
hpte[0] = cpu_to_be64(hpte_v);
}
/* Without barrier */
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
hpte_v &= ~HPTE_V_HVLOCK;
hpte[0] = cpu_to_be64(hpte_v);
}
static inline int __hpte_actual_psize(unsigned int lp, int psize)
{
int i, shift;
unsigned int mask;
/* start from 1 ignoring MMU_PAGE_4K */
for (i = 1; i < MMU_PAGE_COUNT; i++) {
/* invalid penc */
if (mmu_psize_defs[psize].penc[i] == -1)
continue;
/*
* encoding bits per actual page size
* PTE LP actual page size
* rrrr rrrz >=8KB
* rrrr rrzz >=16KB
* rrrr rzzz >=32KB
* rrrr zzzz >=64KB
* .......
*/
shift = mmu_psize_defs[i].shift - LP_SHIFT;
if (shift > LP_BITS)
shift = LP_BITS;
mask = (1 << shift) - 1;
if ((lp & mask) == mmu_psize_defs[psize].penc[i])
return i;
}
return -1;
}
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
unsigned long pte_index)
{
int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K;
unsigned int penc;
unsigned long rb = 0, va_low, sllp;
unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
if (v & HPTE_V_LARGE) {
for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) {
/* valid entries have a shift value */
if (!mmu_psize_defs[b_psize].shift)
continue;
a_psize = __hpte_actual_psize(lp, b_psize);
if (a_psize != -1)
break;
}
}
/*
* Ignore the top 14 bits of va
* v have top two bits covering segment size, hence move
* by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
* AVA field in v also have the lower 23 bits ignored.
* For base page size 4K we need 14 .. 65 bits (so need to
* collect extra 11 bits)
* For others we need 14..14+i
*/
/* This covers 14..54 bits of va*/
rb = (v & ~0x7fUL) << 16; /* AVA field */
rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
/*
* AVA in v had cleared lower 23 bits. We need to derive
* that from pteg index
*/
va_low = pte_index >> 3;
if (v & HPTE_V_SECONDARY)
va_low = ~va_low;
/*
* get the vpn bits from va_low using reverse of hashing.
* In v we have va with 23 bits dropped and then left shifted
* HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
* right shift it with (SID_SHIFT - (23 - 7))
*/
if (!(v & HPTE_V_1TB_SEG))
va_low ^= v >> (SID_SHIFT - 16);
else
va_low ^= v >> (SID_SHIFT_1T - 16);
va_low &= 0x7ff;
switch (b_psize) {
case MMU_PAGE_4K:
sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) |
((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4);
rb |= sllp << 5; /* AP field */
rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
break;
default:
{
int aval_shift;
/*
* remaining bits of AVA/LP fields
* Also contain the rr bits of LP
*/
rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000;
/*
* Now clear not needed LP bits based on actual psize
*/
rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1);
/*
* AVAL field 58..77 - base_page_shift bits of va
* we have space for 58..64 bits, Missing bits should
* be zero filled. +1 is to take care of L bit shift
*/
aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1;
rb |= ((va_low << aval_shift) & 0xfe);
rb |= 1; /* L field */
penc = mmu_psize_defs[b_psize].penc[a_psize];
rb |= penc << 12; /* LP field */
break;
}
}
rb |= (v >> 54) & 0x300; /* B field */
return rb;
}
static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
bool is_base_size)
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region() This removes the code from kvmppc_core_prepare_memory_region() that looked up the VMA for the region being added and called hva_to_page to get the pfns for the memory. We have no guarantee that there will be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION ioctl call; userspace can do that ioctl and then map memory into the region later. Instead we defer looking up the pfn for each memory page until it is needed, which generally means when the guest does an H_ENTER hcall on the page. Since we can't call get_user_pages in real mode, if we don't already have the pfn for the page, kvmppc_h_enter() will return H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back to kernel context. That calls kvmppc_get_guest_page() to get the pfn for the page, and then calls back to kvmppc_h_enter() to redo the HPTE insertion. When the first vcpu starts executing, we need to have the RMO or VRMA region mapped so that the guest's real mode accesses will work. Thus we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot starting at guest physical 0 now has RMO memory mapped there; if so it sets it up for the guest, otherwise on POWER7 it sets up the VRMA. The function that does that, kvmppc_map_vrma, is now a bit simpler, as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself. Since we are now potentially updating entries in the slot_phys[] arrays from multiple vcpu threads, we now have a spinlock protecting those updates to ensure that we don't lose track of any references to pages. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 12:31:00 +00:00
{
int size, a_psize;
/* Look at the 8 bit LP value */
unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region() This removes the code from kvmppc_core_prepare_memory_region() that looked up the VMA for the region being added and called hva_to_page to get the pfns for the memory. We have no guarantee that there will be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION ioctl call; userspace can do that ioctl and then map memory into the region later. Instead we defer looking up the pfn for each memory page until it is needed, which generally means when the guest does an H_ENTER hcall on the page. Since we can't call get_user_pages in real mode, if we don't already have the pfn for the page, kvmppc_h_enter() will return H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back to kernel context. That calls kvmppc_get_guest_page() to get the pfn for the page, and then calls back to kvmppc_h_enter() to redo the HPTE insertion. When the first vcpu starts executing, we need to have the RMO or VRMA region mapped so that the guest's real mode accesses will work. Thus we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot starting at guest physical 0 now has RMO memory mapped there; if so it sets it up for the guest, otherwise on POWER7 it sets up the VRMA. The function that does that, kvmppc_map_vrma, is now a bit simpler, as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself. Since we are now potentially updating entries in the slot_phys[] arrays from multiple vcpu threads, we now have a spinlock protecting those updates to ensure that we don't lose track of any references to pages. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 12:31:00 +00:00
/* only handle 4k, 64k and 16M pages for now */
if (!(h & HPTE_V_LARGE))
return 1ul << 12;
else {
for (size = 0; size < MMU_PAGE_COUNT; size++) {
/* valid entries have a shift value */
if (!mmu_psize_defs[size].shift)
continue;
a_psize = __hpte_actual_psize(lp, size);
if (a_psize != -1) {
if (is_base_size)
return 1ul << mmu_psize_defs[size].shift;
return 1ul << mmu_psize_defs[a_psize].shift;
}
}
}
return 0;
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region() This removes the code from kvmppc_core_prepare_memory_region() that looked up the VMA for the region being added and called hva_to_page to get the pfns for the memory. We have no guarantee that there will be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION ioctl call; userspace can do that ioctl and then map memory into the region later. Instead we defer looking up the pfn for each memory page until it is needed, which generally means when the guest does an H_ENTER hcall on the page. Since we can't call get_user_pages in real mode, if we don't already have the pfn for the page, kvmppc_h_enter() will return H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back to kernel context. That calls kvmppc_get_guest_page() to get the pfn for the page, and then calls back to kvmppc_h_enter() to redo the HPTE insertion. When the first vcpu starts executing, we need to have the RMO or VRMA region mapped so that the guest's real mode accesses will work. Thus we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot starting at guest physical 0 now has RMO memory mapped there; if so it sets it up for the guest, otherwise on POWER7 it sets up the VRMA. The function that does that, kvmppc_map_vrma, is now a bit simpler, as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself. Since we are now potentially updating entries in the slot_phys[] arrays from multiple vcpu threads, we now have a spinlock protecting those updates to ensure that we don't lose track of any references to pages. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 12:31:00 +00:00
}
static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
{
return __hpte_page_size(h, l, 0);
}
static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
{
return __hpte_page_size(h, l, 1);
}
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
{
return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
}
static inline int hpte_is_writable(unsigned long ptel)
{
unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
return pp != PP_RXRX && pp != PP_RXXX;
}
static inline unsigned long hpte_make_readonly(unsigned long ptel)
{
if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
else
ptel |= PP_RXRX;
return ptel;
}
static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
{
unsigned int wimg = hptel & HPTE_R_WIMG;
/* Handle SAO */
if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
cpu_has_feature(CPU_FTR_ARCH_206))
wimg = HPTE_R_M;
if (!is_ci)
return wimg == HPTE_R_M;
/*
* if host is mapped cache inhibited, make sure hptel also have
* cache inhibited.
*/
if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
return false;
return !!(wimg & HPTE_R_I);
}
/*
* If it's present and writable, atomically set dirty and referenced bits and
* return the PTE, otherwise return 0.
*/
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
{
pte_t old_pte, new_pte = __pte(0);
while (1) {
/*
* Make sure we don't reload from ptep
*/
old_pte = READ_ONCE(*ptep);
/*
* wait until H_PAGE_BUSY is clear then set it atomically
*/
if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
cpu_relax();
continue;
}
/* If pte is not present return None */
if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
return __pte(0);
new_pte = pte_mkyoung(old_pte);
if (writing && pte_write(old_pte))
new_pte = pte_mkdirty(new_pte);
if (pte_xchg(ptep, old_pte, new_pte))
break;
}
return new_pte;
}
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
{
if (key)
return PP_RWRX <= pp && pp <= PP_RXRX;
return true;
}
static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
{
if (key)
return pp == PP_RWRW;
return pp <= PP_RWRW;
}
static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
{
unsigned long skey;
skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
((hpte_r & HPTE_R_KEY_LO) >> 9);
return (amr >> (62 - 2 * skey)) & 3;
}
static inline void lock_rmap(unsigned long *rmap)
{
do {
while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
cpu_relax();
} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
}
static inline void unlock_rmap(unsigned long *rmap)
{
__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
}
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
unsigned long pagesize)
{
unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
if (pagesize <= PAGE_SIZE)
return true;
return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
}
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on this fd return the contents of the HPT (hashed page table), writes create and/or remove entries in the HPT. There is a new capability, KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl takes an argument structure with the index of the first HPT entry to read out and a set of flags. The flags indicate whether the user is intending to read or write the HPT, and whether to return all entries or only the "bolted" entries (those with the bolted bit, 0x10, set in the first doubleword). This is intended for use in implementing qemu's savevm/loadvm and for live migration. Therefore, on reads, the first pass returns information about all HPTEs (or all bolted HPTEs). When the first pass reaches the end of the HPT, it returns from the read. Subsequent reads only return information about HPTEs that have changed since they were last read. A read that finds no changed HPTEs in the HPT following where the last read finished will return 0 bytes. The format of the data provides a simple run-length compression of the invalid entries. Each block of data starts with a header that indicates the index (position in the HPT, which is just an array), the number of valid entries starting at that index (may be zero), and the number of invalid entries following those valid entries. The valid entries, 16 bytes each, follow the header. The invalid entries are not explicitly represented. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix documentation] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-19 22:57:20 +00:00
/*
* This works for 4k, 64k and 16M pages on POWER7,
* and 4k and 16M pages on PPC970.
*/
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
{
unsigned long senc = 0;
if (psize > 0x1000) {
senc = SLB_VSID_L;
if (psize == 0x10000)
senc |= SLB_VSID_LP_01;
}
return senc;
}
static inline int is_vrma_hpte(unsigned long hpte_v)
{
return (hpte_v & ~0xffffffUL) ==
(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
}
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
/*
* Note modification of an HPTE; set the HPTE modified bit
* if anyone is interested.
*/
static inline void note_hpte_modification(struct kvm *kvm,
struct revmap_entry *rev)
{
if (atomic_read(&kvm->arch.hpte_mod_interest))
rev->guest_rpte |= HPTE_GR_MODIFIED;
}
/*
* Like kvm_memslots(), but for use in real mode when we can't do
* any RCU stuff (since the secondary threads are offline from the
* kernel's point of view), and we can't print anything.
* Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
*/
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
{
return rcu_dereference_raw_notrace(kvm->memslots[0]);
}
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
extern void kvmhv_rm_send_ipi(int cpu);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
#endif /* __ASM_KVM_BOOK3S_64_H__ */