2019-01-16 12:11:00 +01:00
|
|
|
// SPDX-License-Identifier: GPL-2.0+
|
2009-06-01 23:43:33 +05:30
|
|
|
/*
|
|
|
|
* Copyright (C) 2007 Alan Stern
|
|
|
|
* Copyright (C) IBM Corporation, 2009
|
2009-09-09 19:22:48 +02:00
|
|
|
* Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*
|
|
|
|
* Thanks to Ingo Molnar for his many suggestions.
|
2009-11-23 21:17:13 +05:30
|
|
|
*
|
|
|
|
* Authors: Alan Stern <stern@rowland.harvard.edu>
|
|
|
|
* K.Prasad <prasad@linux.vnet.ibm.com>
|
|
|
|
* Frederic Weisbecker <fweisbec@gmail.com>
|
2009-06-01 23:43:33 +05:30
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
|
|
|
|
* using the CPU's debug registers.
|
|
|
|
* This file contains the arch-independent routines.
|
|
|
|
*/
|
|
|
|
|
2022-08-29 14:47:08 +02:00
|
|
|
#include <linux/hw_breakpoint.h>
|
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
#include <linux/atomic.h>
|
2022-08-29 14:47:08 +02:00
|
|
|
#include <linux/bug.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/init.h>
|
2009-06-01 23:43:33 +05:30
|
|
|
#include <linux/irqflags.h>
|
|
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <linux/kernel.h>
|
2022-08-29 14:47:08 +02:00
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/notifier.h>
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
#include <linux/percpu-rwsem.h>
|
2009-06-01 23:43:33 +05:30
|
|
|
#include <linux/percpu.h>
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
#include <linux/rhashtable.h>
|
2009-06-01 23:43:33 +05:30
|
|
|
#include <linux/sched.h>
|
2010-04-23 05:59:55 +02:00
|
|
|
#include <linux/slab.h>
|
2009-06-01 23:43:33 +05:30
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
/*
|
2022-08-29 14:47:17 +02:00
|
|
|
* Datastructure to track the total uses of N slots across tasks or CPUs;
|
|
|
|
* bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*/
|
2022-08-29 14:47:17 +02:00
|
|
|
struct bp_slots_histogram {
|
2022-08-29 14:47:11 +02:00
|
|
|
#ifdef hw_breakpoint_slots
|
2022-08-29 14:47:17 +02:00
|
|
|
atomic_t count[hw_breakpoint_slots(0)];
|
2022-08-29 14:47:11 +02:00
|
|
|
#else
|
2022-08-29 14:47:17 +02:00
|
|
|
atomic_t *count;
|
2022-08-29 14:47:11 +02:00
|
|
|
#endif
|
2013-06-20 17:50:20 +02:00
|
|
|
};
|
2009-06-01 23:43:33 +05:30
|
|
|
|
2022-08-29 14:47:17 +02:00
|
|
|
/*
|
|
|
|
* Per-CPU constraints data.
|
|
|
|
*/
|
|
|
|
struct bp_cpuinfo {
|
|
|
|
/* Number of pinned CPU breakpoints in a CPU. */
|
|
|
|
unsigned int cpu_pinned;
|
|
|
|
/* Histogram of pinned task breakpoints in a CPU. */
|
|
|
|
struct bp_slots_histogram tsk_pinned;
|
|
|
|
};
|
|
|
|
|
2013-06-20 17:50:20 +02:00
|
|
|
static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
|
2010-04-23 05:59:55 +02:00
|
|
|
|
2013-06-20 17:50:20 +02:00
|
|
|
static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
|
|
|
|
{
|
|
|
|
return per_cpu_ptr(bp_cpuinfo + type, cpu);
|
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:18 +02:00
|
|
|
/* Number of pinned CPU breakpoints globally. */
|
|
|
|
static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
|
2022-08-29 14:47:19 +02:00
|
|
|
/* Number of pinned CPU-independent task breakpoints. */
|
|
|
|
static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];
|
2022-08-29 14:47:18 +02:00
|
|
|
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 23:00:37 +02:00
|
|
|
/* Keep track of the breakpoints attached to tasks */
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
static struct rhltable task_bps_ht;
|
|
|
|
static const struct rhashtable_params task_bps_ht_params = {
|
|
|
|
.head_offset = offsetof(struct hw_perf_event, bp_list),
|
|
|
|
.key_offset = offsetof(struct hw_perf_event, target),
|
|
|
|
.key_len = sizeof_field(struct hw_perf_event, target),
|
|
|
|
.automatic_shrinking = true,
|
|
|
|
};
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 23:00:37 +02:00
|
|
|
|
2022-08-29 14:47:10 +02:00
|
|
|
static bool constraints_initialized __ro_after_init;
|
2010-04-23 05:59:55 +02:00
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
/*
|
|
|
|
* Synchronizes accesses to the per-CPU constraints; the locking rules are:
|
|
|
|
*
|
|
|
|
* 1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
|
|
|
|
* (due to bp_slots_histogram::count being atomic, no update are lost).
|
|
|
|
*
|
|
|
|
* 2. Holding a write-lock is required for computations that require a
|
|
|
|
* stable snapshot of all bp_cpuinfo::tsk_pinned.
|
|
|
|
*
|
|
|
|
* 3. In all other cases, non-atomic accesses require the appropriately held
|
|
|
|
* lock (read-lock for read-only accesses; write-lock for reads/writes).
|
|
|
|
*/
|
|
|
|
DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
|
|
|
|
* rhltable synchronizes concurrent insertions/deletions, independent tasks may
|
|
|
|
* insert/delete concurrently; therefore, a mutex per task is sufficient.
|
|
|
|
*
|
|
|
|
* Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
|
|
|
|
* hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
|
|
|
|
* that hw_breakpoint may contend with per-task perf event list management. The
|
|
|
|
* assumption is that perf usecases involving hw_breakpoints are very unlikely
|
|
|
|
* to result in unnecessary contention.
|
|
|
|
*/
|
|
|
|
static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
struct task_struct *tsk = bp->hw.target;
|
|
|
|
|
|
|
|
return tsk ? &tsk->perf_event_mutex : NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mutex *bp_constraints_lock(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
|
|
|
|
|
|
|
|
if (tsk_mtx) {
|
2022-10-04 12:20:39 +02:00
|
|
|
/*
|
|
|
|
* Fully analogous to the perf_try_init_event() nesting
|
|
|
|
* argument in the comment near perf_event_ctx_lock_nested();
|
|
|
|
* this child->perf_event_mutex cannot ever deadlock against
|
|
|
|
* the parent->perf_event_mutex usage from
|
|
|
|
* perf_event_task_{en,dis}able().
|
|
|
|
*
|
|
|
|
* Specifically, inherited events will never occur on
|
|
|
|
* ->perf_event_list.
|
|
|
|
*/
|
|
|
|
mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
percpu_down_read(&bp_cpuinfo_sem);
|
|
|
|
} else {
|
|
|
|
percpu_down_write(&bp_cpuinfo_sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
return tsk_mtx;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bp_constraints_unlock(struct mutex *tsk_mtx)
|
|
|
|
{
|
|
|
|
if (tsk_mtx) {
|
|
|
|
percpu_up_read(&bp_cpuinfo_sem);
|
|
|
|
mutex_unlock(tsk_mtx);
|
|
|
|
} else {
|
|
|
|
percpu_up_write(&bp_cpuinfo_sem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool bp_constraints_is_locked(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
|
|
|
|
|
|
|
|
return percpu_is_write_locked(&bp_cpuinfo_sem) ||
|
|
|
|
(tsk_mtx ? mutex_is_locked(tsk_mtx) :
|
|
|
|
percpu_is_read_locked(&bp_cpuinfo_sem));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
struct mutex *tsk_mtx = get_task_bps_mutex(bp);
|
|
|
|
|
|
|
|
if (tsk_mtx)
|
|
|
|
lockdep_assert_held(tsk_mtx);
|
|
|
|
lockdep_assert_held(&bp_cpuinfo_sem);
|
|
|
|
}
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
2022-08-29 14:47:11 +02:00
|
|
|
#ifdef hw_breakpoint_slots
|
|
|
|
/*
|
|
|
|
* Number of breakpoint slots is constant, and the same for all types.
|
|
|
|
*/
|
|
|
|
static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
|
|
|
|
static inline int hw_breakpoint_slots_cached(int type) { return hw_breakpoint_slots(type); }
|
|
|
|
static inline int init_breakpoint_slots(void) { return 0; }
|
|
|
|
#else
|
|
|
|
/*
|
|
|
|
* Dynamic number of breakpoint slots.
|
|
|
|
*/
|
|
|
|
static int __nr_bp_slots[TYPE_MAX] __ro_after_init;
|
|
|
|
|
|
|
|
static inline int hw_breakpoint_slots_cached(int type)
|
|
|
|
{
|
|
|
|
return __nr_bp_slots[type];
|
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:17 +02:00
|
|
|
static __init bool
|
|
|
|
bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
|
|
|
|
{
|
|
|
|
hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
|
|
|
|
return hist->count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
|
|
|
|
{
|
|
|
|
kfree(hist->count);
|
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:11 +02:00
|
|
|
static __init int init_breakpoint_slots(void)
|
|
|
|
{
|
|
|
|
int i, cpu, err_cpu;
|
|
|
|
|
|
|
|
for (i = 0; i < TYPE_MAX; i++)
|
|
|
|
__nr_bp_slots[i] = hw_breakpoint_slots(i);
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
for (i = 0; i < TYPE_MAX; i++) {
|
|
|
|
struct bp_cpuinfo *info = get_bp_info(cpu, i);
|
|
|
|
|
2022-08-29 14:47:17 +02:00
|
|
|
if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
|
2022-08-29 14:47:11 +02:00
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
2022-08-29 14:47:18 +02:00
|
|
|
for (i = 0; i < TYPE_MAX; i++) {
|
|
|
|
if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
|
|
|
|
goto err;
|
2022-08-29 14:47:19 +02:00
|
|
|
if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
|
|
|
|
goto err;
|
2022-08-29 14:47:18 +02:00
|
|
|
}
|
2022-08-29 14:47:11 +02:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
err:
|
|
|
|
for_each_possible_cpu(err_cpu) {
|
|
|
|
for (i = 0; i < TYPE_MAX; i++)
|
2022-08-29 14:47:17 +02:00
|
|
|
bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
|
2022-08-29 14:47:11 +02:00
|
|
|
if (err_cpu == cpu)
|
|
|
|
break;
|
|
|
|
}
|
2022-08-29 14:47:19 +02:00
|
|
|
for (i = 0; i < TYPE_MAX; i++) {
|
2022-08-29 14:47:18 +02:00
|
|
|
bp_slots_histogram_free(&cpu_pinned[i]);
|
2022-08-29 14:47:19 +02:00
|
|
|
bp_slots_histogram_free(&tsk_pinned_all[i]);
|
|
|
|
}
|
2022-08-29 14:47:11 +02:00
|
|
|
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2022-08-29 14:47:17 +02:00
|
|
|
static inline void
|
|
|
|
bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
|
|
|
|
{
|
|
|
|
const int old_idx = old - 1;
|
|
|
|
const int new_idx = old_idx + val;
|
|
|
|
|
|
|
|
if (old_idx >= 0)
|
|
|
|
WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
|
|
|
|
if (new_idx >= 0)
|
|
|
|
WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
|
|
|
|
{
|
|
|
|
for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
|
|
|
|
const int count = atomic_read(&hist->count[i]);
|
|
|
|
|
|
|
|
/* Catch unexpected writers; we want a stable snapshot. */
|
|
|
|
ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
|
|
|
|
if (count > 0)
|
|
|
|
return i + 1;
|
|
|
|
WARN(count < 0, "inconsistent breakpoint slots histogram");
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:19 +02:00
|
|
|
static int
|
|
|
|
bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
|
|
|
|
enum bp_type_idx type)
|
|
|
|
{
|
|
|
|
for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
|
|
|
|
const int count1 = atomic_read(&hist1->count[i]);
|
|
|
|
const int count2 = atomic_read(&hist2->count[i]);
|
|
|
|
|
|
|
|
/* Catch unexpected writers; we want a stable snapshot. */
|
|
|
|
ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
|
|
|
|
ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
|
|
|
|
if (count1 + count2 > 0)
|
|
|
|
return i + 1;
|
|
|
|
WARN(count1 < 0, "inconsistent breakpoint slots histogram");
|
|
|
|
WARN(count2 < 0, "inconsistent breakpoint slots histogram");
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:12 +02:00
|
|
|
#ifndef hw_breakpoint_weight
|
|
|
|
static inline int hw_breakpoint_weight(struct perf_event *bp)
|
2010-04-13 00:32:30 +02:00
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
2022-08-29 14:47:12 +02:00
|
|
|
#endif
|
2010-04-13 00:32:30 +02:00
|
|
|
|
2018-03-12 14:45:41 +01:00
|
|
|
static inline enum bp_type_idx find_slot_idx(u64 bp_type)
|
2010-04-11 18:55:56 +02:00
|
|
|
{
|
2018-03-12 14:45:41 +01:00
|
|
|
if (bp_type & HW_BREAKPOINT_RW)
|
2010-04-11 18:55:56 +02:00
|
|
|
return TYPE_DATA;
|
|
|
|
|
|
|
|
return TYPE_INST;
|
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
/*
|
2022-08-29 14:47:17 +02:00
|
|
|
* Return the maximum number of pinned breakpoints a task has in this CPU.
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*/
|
2010-04-11 18:55:56 +02:00
|
|
|
static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
2022-08-29 14:47:17 +02:00
|
|
|
struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;
|
2009-06-01 23:43:33 +05:30
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
/*
|
|
|
|
* At this point we want to have acquired the bp_cpuinfo_sem as a
|
|
|
|
* writer to ensure that there are no concurrent writers in
|
|
|
|
* toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
|
|
|
|
*/
|
|
|
|
lockdep_assert_held_write(&bp_cpuinfo_sem);
|
2022-08-29 14:47:19 +02:00
|
|
|
return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
|
2009-06-01 23:43:33 +05:30
|
|
|
}
|
|
|
|
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 23:00:37 +02:00
|
|
|
/*
|
|
|
|
* Count the number of breakpoints of the same type and same task.
|
|
|
|
* The given event must be not on the list.
|
2022-08-29 14:47:18 +02:00
|
|
|
*
|
|
|
|
* If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
|
|
|
|
* returns a negative value.
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 23:00:37 +02:00
|
|
|
*/
|
2012-10-26 18:28:56 +02:00
|
|
|
static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
|
2009-12-07 06:46:48 +01:00
|
|
|
{
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
struct rhlist_head *head, *pos;
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 23:00:37 +02:00
|
|
|
struct perf_event *iter;
|
2009-12-07 06:46:48 +01:00
|
|
|
int count = 0;
|
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
/*
|
|
|
|
* We need a stable snapshot of the per-task breakpoint list.
|
|
|
|
*/
|
|
|
|
assert_bp_constraints_lock_held(bp);
|
|
|
|
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
rcu_read_lock();
|
|
|
|
head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
|
|
|
|
if (!head)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
|
2022-08-29 14:47:18 +02:00
|
|
|
if (find_slot_idx(iter->attr.bp_type) != type)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (iter->cpu >= 0) {
|
|
|
|
if (cpu == -1) {
|
|
|
|
count = -1;
|
|
|
|
goto out;
|
|
|
|
} else if (cpu != iter->cpu)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
count += hw_breakpoint_weight(iter);
|
2009-12-07 06:46:48 +01:00
|
|
|
}
|
|
|
|
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
out:
|
|
|
|
rcu_read_unlock();
|
2009-12-07 06:46:48 +01:00
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
2013-06-20 17:50:15 +02:00
|
|
|
static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
if (bp->cpu >= 0)
|
|
|
|
return cpumask_of(bp->cpu);
|
|
|
|
return cpu_possible_mask;
|
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
/*
|
2022-08-29 14:47:13 +02:00
|
|
|
* Returns the max pinned breakpoint slots in a given
|
|
|
|
* CPU (cpu > -1) or across all of them (cpu = -1).
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*/
|
2022-08-29 14:47:13 +02:00
|
|
|
static int
|
|
|
|
max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
{
|
2013-06-20 17:50:15 +02:00
|
|
|
const struct cpumask *cpumask = cpumask_of_bp(bp);
|
2022-08-29 14:47:13 +02:00
|
|
|
int pinned_slots = 0;
|
2013-06-20 17:50:15 +02:00
|
|
|
int cpu;
|
2009-12-07 06:46:48 +01:00
|
|
|
|
2022-08-29 14:47:18 +02:00
|
|
|
if (bp->hw.target && bp->cpu < 0) {
|
|
|
|
int max_pinned = task_bp_pinned(-1, bp, type);
|
|
|
|
|
|
|
|
if (max_pinned >= 0) {
|
|
|
|
/*
|
|
|
|
* Fast path: task_bp_pinned() is CPU-independent and
|
|
|
|
* returns the same value for any CPU.
|
|
|
|
*/
|
|
|
|
max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
|
|
|
|
return max_pinned;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-06-20 17:50:15 +02:00
|
|
|
for_each_cpu(cpu, cpumask) {
|
2013-06-20 17:50:20 +02:00
|
|
|
struct bp_cpuinfo *info = get_bp_info(cpu, type);
|
|
|
|
int nr;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
2013-06-20 17:50:20 +02:00
|
|
|
nr = info->cpu_pinned;
|
2015-03-05 22:10:19 +01:00
|
|
|
if (!bp->hw.target)
|
2010-04-11 18:55:56 +02:00
|
|
|
nr += max_task_bp_pinned(cpu, type);
|
2009-12-07 06:46:48 +01:00
|
|
|
else
|
2012-10-26 18:28:56 +02:00
|
|
|
nr += task_bp_pinned(cpu, bp, type);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
2022-08-29 14:47:13 +02:00
|
|
|
pinned_slots = max(nr, pinned_slots);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:13 +02:00
|
|
|
return pinned_slots;
|
2010-04-13 00:32:30 +02:00
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
/*
|
|
|
|
* Add/remove the given breakpoint in our constraint table
|
|
|
|
*/
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
static int
|
2022-08-29 14:47:19 +02:00
|
|
|
toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
{
|
2022-08-29 14:47:19 +02:00
|
|
|
int cpu, next_tsk_pinned;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
2013-06-20 17:50:13 +02:00
|
|
|
if (!enable)
|
|
|
|
weight = -weight;
|
|
|
|
|
2015-03-05 22:10:19 +01:00
|
|
|
if (!bp->hw.target) {
|
2022-08-29 14:47:19 +02:00
|
|
|
/*
|
|
|
|
* Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
|
|
|
|
* global histogram.
|
|
|
|
*/
|
2022-08-29 14:47:18 +02:00
|
|
|
struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);
|
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
lockdep_assert_held_write(&bp_cpuinfo_sem);
|
2022-08-29 14:47:18 +02:00
|
|
|
bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
|
|
|
|
info->cpu_pinned += weight;
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
return 0;
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 23:00:37 +02:00
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:19 +02:00
|
|
|
/*
|
|
|
|
* If bp->hw.target, tsk_pinned is only modified, but not used
|
|
|
|
* otherwise. We can permit concurrent updates as long as there are no
|
|
|
|
* other uses: having acquired bp_cpuinfo_sem as a reader allows
|
|
|
|
* concurrent updates here. Uses of tsk_pinned will require acquiring
|
|
|
|
* bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
|
|
|
|
*/
|
|
|
|
lockdep_assert_held_read(&bp_cpuinfo_sem);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
|
|
|
|
* histogram. We need to take care of 4 cases:
|
|
|
|
*
|
|
|
|
* 1. This breakpoint targets all CPUs (cpu < 0), and there may only
|
|
|
|
* exist other task breakpoints targeting all CPUs. In this case we
|
|
|
|
* can simply update the global slots histogram.
|
|
|
|
*
|
|
|
|
* 2. This breakpoint targets a specific CPU (cpu >= 0), but there may
|
|
|
|
* only exist other task breakpoints targeting all CPUs.
|
|
|
|
*
|
|
|
|
* a. On enable: remove the existing breakpoints from the global
|
|
|
|
* slots histogram and use the per-CPU histogram.
|
|
|
|
*
|
|
|
|
* b. On disable: re-insert the existing breakpoints into the global
|
|
|
|
* slots histogram and remove from per-CPU histogram.
|
|
|
|
*
|
|
|
|
* 3. Some other existing task breakpoints target specific CPUs. Only
|
|
|
|
* update the per-CPU slots histogram.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!enable) {
|
|
|
|
/*
|
|
|
|
* Remove before updating histograms so we can determine if this
|
|
|
|
* was the last task breakpoint for a specific CPU.
|
|
|
|
*/
|
|
|
|
int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
|
|
|
|
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
|
|
|
|
*/
|
|
|
|
next_tsk_pinned = task_bp_pinned(-1, bp, type);
|
|
|
|
|
|
|
|
if (next_tsk_pinned >= 0) {
|
|
|
|
if (bp->cpu < 0) { /* Case 1: fast path */
|
|
|
|
if (!enable)
|
|
|
|
next_tsk_pinned += hw_breakpoint_weight(bp);
|
|
|
|
bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
|
|
|
|
} else if (enable) { /* Case 2.a: slow path */
|
|
|
|
/* Add existing to per-CPU histograms. */
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
|
|
|
|
0, next_tsk_pinned);
|
|
|
|
}
|
|
|
|
/* Add this first CPU-pinned task breakpoint. */
|
|
|
|
bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
|
|
|
|
next_tsk_pinned, weight);
|
|
|
|
/* Rebalance global task pinned histogram. */
|
|
|
|
bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
|
|
|
|
-next_tsk_pinned);
|
|
|
|
} else { /* Case 2.b: slow path */
|
|
|
|
/* Remove this last CPU-pinned task breakpoint. */
|
|
|
|
bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
|
|
|
|
next_tsk_pinned + hw_breakpoint_weight(bp), weight);
|
|
|
|
/* Remove all from per-CPU histograms. */
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
|
|
|
|
next_tsk_pinned, -next_tsk_pinned);
|
|
|
|
}
|
|
|
|
/* Rebalance global task pinned histogram. */
|
|
|
|
bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
|
|
|
|
}
|
|
|
|
} else { /* Case 3: slow path */
|
|
|
|
const struct cpumask *cpumask = cpumask_of_bp(bp);
|
|
|
|
|
|
|
|
for_each_cpu(cpu, cpumask) {
|
|
|
|
next_tsk_pinned = task_bp_pinned(cpu, bp, type);
|
|
|
|
if (!enable)
|
|
|
|
next_tsk_pinned += hw_breakpoint_weight(bp);
|
|
|
|
bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
|
|
|
|
next_tsk_pinned, weight);
|
|
|
|
}
|
|
|
|
}
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
/*
|
|
|
|
* Readers want a stable snapshot of the per-task breakpoint list.
|
|
|
|
*/
|
|
|
|
assert_bp_constraints_lock_held(bp);
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
if (enable)
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
|
2022-08-29 14:47:19 +02:00
|
|
|
|
|
|
|
return 0;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2022-08-29 14:47:13 +02:00
|
|
|
* Constraints to check before allowing this new breakpoint counter.
|
|
|
|
*
|
|
|
|
* Note: Flexible breakpoints are currently unimplemented, but outlined in the
|
|
|
|
* below algorithm for completeness. The implementation treats flexible as
|
|
|
|
* pinned due to no guarantee that we currently always schedule flexible events
|
|
|
|
* before a pinned event in a same CPU.
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*
|
|
|
|
* == Non-pinned counter == (Considered as pinned for now)
|
|
|
|
*
|
|
|
|
* - If attached to a single cpu, check:
|
|
|
|
*
|
2013-06-20 17:50:20 +02:00
|
|
|
* (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
|
|
|
|
* + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*
|
|
|
|
* -> If there are already non-pinned counters in this cpu, it means
|
|
|
|
* there is already a free slot for them.
|
|
|
|
* Otherwise, we check that the maximum number of per task
|
|
|
|
* breakpoints (for this cpu) plus the number of per cpu breakpoint
|
|
|
|
* (for this cpu) doesn't cover every registers.
|
|
|
|
*
|
|
|
|
* - If attached to every cpus, check:
|
|
|
|
*
|
2013-06-20 17:50:20 +02:00
|
|
|
* (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
|
|
|
|
* + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*
|
|
|
|
* -> This is roughly the same, except we check the number of per cpu
|
|
|
|
* bp for every cpu and we keep the max one. Same for the per tasks
|
|
|
|
* breakpoints.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* == Pinned counter ==
|
|
|
|
*
|
|
|
|
* - If attached to a single cpu, check:
|
|
|
|
*
|
2013-06-20 17:50:20 +02:00
|
|
|
* ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
|
|
|
|
* + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*
|
2013-06-20 17:50:20 +02:00
|
|
|
* -> Same checks as before. But now the info->flexible, if any, must keep
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
* one register at least (or they will never be fed).
|
|
|
|
*
|
|
|
|
* - If attached to every cpus, check:
|
|
|
|
*
|
2013-06-20 17:50:20 +02:00
|
|
|
* ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
|
|
|
|
* + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
*/
|
2018-03-12 14:45:42 +01:00
|
|
|
static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
{
|
2010-04-11 18:55:56 +02:00
|
|
|
enum bp_type_idx type;
|
2022-08-29 14:47:13 +02:00
|
|
|
int max_pinned_slots;
|
2010-04-13 00:32:30 +02:00
|
|
|
int weight;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
2010-04-23 05:59:55 +02:00
|
|
|
/* We couldn't initialize breakpoint constraints on boot */
|
|
|
|
if (!constraints_initialized)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2010-04-11 18:55:56 +02:00
|
|
|
/* Basic checks */
|
2018-03-12 14:45:42 +01:00
|
|
|
if (bp_type == HW_BREAKPOINT_EMPTY ||
|
|
|
|
bp_type == HW_BREAKPOINT_INVALID)
|
2010-04-11 18:55:56 +02:00
|
|
|
return -EINVAL;
|
|
|
|
|
2018-03-12 14:45:42 +01:00
|
|
|
type = find_slot_idx(bp_type);
|
2010-04-13 00:32:30 +02:00
|
|
|
weight = hw_breakpoint_weight(bp);
|
|
|
|
|
2022-08-29 14:47:13 +02:00
|
|
|
/* Check if this new breakpoint can be satisfied across all CPUs. */
|
|
|
|
max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
|
|
|
|
if (max_pinned_slots > hw_breakpoint_slots_cached(type))
|
2010-01-28 17:04:43 -06:00
|
|
|
return -ENOSPC;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
return toggle_bp_slot(bp, true, type, weight);
|
2010-01-28 17:04:43 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
int reserve_bp_slot(struct perf_event *bp)
|
|
|
|
{
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
struct mutex *mtx = bp_constraints_lock(bp);
|
|
|
|
int ret = __reserve_bp_slot(bp, bp->attr.bp_type);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
bp_constraints_unlock(mtx);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-03-12 14:45:42 +01:00
|
|
|
static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
|
2010-01-28 17:04:43 -06:00
|
|
|
{
|
2010-04-11 18:55:56 +02:00
|
|
|
enum bp_type_idx type;
|
2010-04-13 00:32:30 +02:00
|
|
|
int weight;
|
2010-04-11 18:55:56 +02:00
|
|
|
|
2018-03-12 14:45:42 +01:00
|
|
|
type = find_slot_idx(bp_type);
|
2010-04-13 00:32:30 +02:00
|
|
|
weight = hw_breakpoint_weight(bp);
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
WARN_ON(toggle_bp_slot(bp, false, type, weight));
|
2010-01-28 17:04:43 -06:00
|
|
|
}
|
|
|
|
|
2009-09-09 19:22:48 +02:00
|
|
|
void release_bp_slot(struct perf_event *bp)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
struct mutex *mtx = bp_constraints_lock(bp);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
2018-03-12 14:45:42 +01:00
|
|
|
__release_bp_slot(bp, bp->attr.bp_type);
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
bp_constraints_unlock(mtx);
|
2009-06-01 23:43:33 +05:30
|
|
|
}
|
|
|
|
|
2018-06-26 04:58:58 +02:00
|
|
|
static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
|
2018-03-12 14:45:43 +01:00
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
__release_bp_slot(bp, old_type);
|
|
|
|
|
2018-06-26 04:58:58 +02:00
|
|
|
err = __reserve_bp_slot(bp, new_type);
|
2018-03-12 14:45:43 +01:00
|
|
|
if (err) {
|
|
|
|
/*
|
|
|
|
* Reserve the old_type slot back in case
|
|
|
|
* there's no space for the new type.
|
|
|
|
*
|
|
|
|
* This must succeed, because we just released
|
|
|
|
* the old_type slot in the __release_bp_slot
|
|
|
|
* call above. If not, something is broken.
|
|
|
|
*/
|
|
|
|
WARN_ON(__reserve_bp_slot(bp, old_type));
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2018-06-26 04:58:58 +02:00
|
|
|
static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
|
2018-03-12 14:45:43 +01:00
|
|
|
{
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
struct mutex *mtx = bp_constraints_lock(bp);
|
|
|
|
int ret = __modify_bp_slot(bp, old_type, new_type);
|
2018-03-12 14:45:43 +01:00
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
bp_constraints_unlock(mtx);
|
2018-03-12 14:45:43 +01:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2010-01-28 17:04:43 -06:00
|
|
|
/*
|
|
|
|
* Allow the kernel debugger to reserve breakpoint slots without
|
|
|
|
* taking a lock using the dbg_* variant of for the reserve and
|
|
|
|
* release breakpoint slots.
|
|
|
|
*/
|
|
|
|
int dbg_reserve_bp_slot(struct perf_event *bp)
|
|
|
|
{
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (bp_constraints_is_locked(bp))
|
2010-01-28 17:04:43 -06:00
|
|
|
return -1;
|
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
/* Locks aren't held; disable lockdep assert checking. */
|
|
|
|
lockdep_off();
|
|
|
|
ret = __reserve_bp_slot(bp, bp->attr.bp_type);
|
|
|
|
lockdep_on();
|
|
|
|
|
|
|
|
return ret;
|
2010-01-28 17:04:43 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
int dbg_release_bp_slot(struct perf_event *bp)
|
|
|
|
{
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
if (bp_constraints_is_locked(bp))
|
2010-01-28 17:04:43 -06:00
|
|
|
return -1;
|
|
|
|
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
/* Locks aren't held; disable lockdep assert checking. */
|
|
|
|
lockdep_off();
|
2018-03-12 14:45:42 +01:00
|
|
|
__release_bp_slot(bp, bp->attr.bp_type);
|
perf/hw_breakpoint: Reduce contention with large number of tasks
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
2022-08-29 14:47:16 +02:00
|
|
|
lockdep_on();
|
2010-01-28 17:04:43 -06:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 09:26:21 +02:00
|
|
|
|
2018-06-26 04:58:48 +02:00
|
|
|
static int hw_breakpoint_parse(struct perf_event *bp,
|
|
|
|
const struct perf_event_attr *attr,
|
|
|
|
struct arch_hw_breakpoint *hw)
|
|
|
|
{
|
|
|
|
int err;
|
2010-04-18 18:11:53 +02:00
|
|
|
|
2018-06-26 04:58:48 +02:00
|
|
|
err = hw_breakpoint_arch_parse(bp, attr, hw);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2010-04-18 18:11:53 +02:00
|
|
|
|
2018-06-26 04:58:49 +02:00
|
|
|
if (arch_check_bp_in_kernelspace(hw)) {
|
2018-06-26 04:58:48 +02:00
|
|
|
if (attr->exclude_kernel)
|
2010-04-18 18:11:53 +02:00
|
|
|
return -EINVAL;
|
|
|
|
/*
|
|
|
|
* Don't let unprivileged users set a breakpoint in the trap
|
|
|
|
* path to avoid trap recursion attacks.
|
|
|
|
*/
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-12-05 09:44:31 +01:00
|
|
|
int register_perf_hw_breakpoint(struct perf_event *bp)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
2019-09-06 14:01:16 +08:00
|
|
|
struct arch_hw_breakpoint hw = { };
|
2018-06-26 04:58:48 +02:00
|
|
|
int err;
|
2009-06-01 23:43:33 +05:30
|
|
|
|
2018-06-26 04:58:48 +02:00
|
|
|
err = reserve_bp_slot(bp);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2009-06-01 23:43:33 +05:30
|
|
|
|
2018-06-26 04:58:48 +02:00
|
|
|
err = hw_breakpoint_parse(bp, &bp->attr, &hw);
|
|
|
|
if (err) {
|
2010-01-21 18:25:16 +05:30
|
|
|
release_bp_slot(bp);
|
2018-06-26 04:58:48 +02:00
|
|
|
return err;
|
|
|
|
}
|
2010-01-21 18:25:16 +05:30
|
|
|
|
2018-06-26 04:58:48 +02:00
|
|
|
bp->hw.info = hw;
|
|
|
|
|
|
|
|
return 0;
|
2009-09-09 19:22:48 +02:00
|
|
|
}
|
2009-06-01 23:43:33 +05:30
|
|
|
|
|
|
|
/**
|
|
|
|
* register_user_hw_breakpoint - register a hardware breakpoint for user space
|
2009-11-27 04:55:53 +01:00
|
|
|
* @attr: breakpoint attributes
|
2009-09-09 19:22:48 +02:00
|
|
|
* @triggered: callback to trigger when we hit the breakpoint
|
2021-05-27 11:19:47 +08:00
|
|
|
* @context: context data could be used in the triggered callback
|
2009-06-01 23:43:33 +05:30
|
|
|
* @tsk: pointer to 'task_struct' of the process to which the address belongs
|
|
|
|
*/
|
2009-09-09 19:22:48 +02:00
|
|
|
struct perf_event *
|
2009-11-27 04:55:53 +01:00
|
|
|
register_user_hw_breakpoint(struct perf_event_attr *attr,
|
2009-12-05 09:44:31 +01:00
|
|
|
perf_overflow_handler_t triggered,
|
2011-06-29 18:42:35 +03:00
|
|
|
void *context,
|
2009-11-27 04:55:53 +01:00
|
|
|
struct task_struct *tsk)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
2011-06-29 18:42:35 +03:00
|
|
|
return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
|
|
|
|
context);
|
2009-06-01 23:43:33 +05:30
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
|
|
|
|
|
2018-06-26 04:58:59 +02:00
|
|
|
static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
|
|
|
|
struct perf_event_attr *from)
|
|
|
|
{
|
|
|
|
to->bp_addr = from->bp_addr;
|
|
|
|
to->bp_type = from->bp_type;
|
|
|
|
to->bp_len = from->bp_len;
|
|
|
|
to->disabled = from->disabled;
|
|
|
|
}
|
|
|
|
|
perf/core: Implement fast breakpoint modification via _IOC_MODIFY_ATTRIBUTES
Problem and motivation: Once a breakpoint perf event (PERF_TYPE_BREAKPOINT)
is created, there is no flexibility to change the breakpoint type
(bp_type), breakpoint address (bp_addr), or breakpoint length (bp_len). The
only option is to close the perf event and configure a new breakpoint
event. This inflexibility has a significant performance overhead. For
example, sampling-based, lightweight performance profilers (and also
concurrency bug detection tools), monitor different addresses for a short
duration using PERF_TYPE_BREAKPOINT and change the address (bp_addr) to
another address or change the kind of breakpoint (bp_type) from "write" to
a "read" or vice-versa or change the length (bp_len) of the address being
monitored. The cost of these modifications is prohibitive since it involves
unmapping the circular buffer associated with the perf event, closing the
perf event, opening another perf event and mmaping another circular buffer.
Solution: The new ioctl flag for perf events,
PERF_EVENT_IOC_MODIFY_ATTRIBUTES, introduced in this patch takes a pointer
to a struct perf_event_attr as an argument to update an old breakpoint
event with new address, type, and size. This facility allows retaining a
previous mmaped perf events ring buffer and avoids having to close and
reopen another perf event.
This patch supports only changing PERF_TYPE_BREAKPOINT event type; future
implementations can extend this feature. The patch replicates some of its
functionality of modify_user_hw_breakpoint() in
kernel/events/hw_breakpoint.c. modify_user_hw_breakpoint cannot be called
directly since perf_event_ctx_lock() is already held in _perf_ioctl().
Evidence: Experiments show that the baseline (not able to modify an already
created breakpoint) costs an order of magnitude (~10x) more than the
suggested optimization (having the ability to dynamically modifying a
configured breakpoint via ioctl). When the breakpoints typically do not
trap, the speedup due to the suggested optimization is ~10x; even when the
breakpoints always trap, the speedup is ~4x due to the suggested
optimization.
Testing: tests posted at
https://github.com/linux-contrib/perf_event_modify_bp demonstrate the
performance significance of this patch. Tests also check the functional
correctness of the patch.
Signed-off-by: Milind Chabbi <chabbi.milind@gmail.com>
[ Using modify_user_hw_breakpoint_check function. ]
[ Reformated PERF_EVENT_IOC_*, so the values are all in one column. ]
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oleg Nesterov <onestero@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20180312134548.31532-8-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12 14:45:47 +01:00
|
|
|
int
|
2018-03-12 14:45:45 +01:00
|
|
|
modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
|
|
|
|
bool check)
|
2018-03-12 14:45:44 +01:00
|
|
|
{
|
2019-09-06 14:01:16 +08:00
|
|
|
struct arch_hw_breakpoint hw = { };
|
2018-06-26 04:58:59 +02:00
|
|
|
int err;
|
2018-03-12 14:45:44 +01:00
|
|
|
|
2018-06-26 04:58:59 +02:00
|
|
|
err = hw_breakpoint_parse(bp, attr, &hw);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2018-03-12 14:45:44 +01:00
|
|
|
|
2018-06-26 04:58:59 +02:00
|
|
|
if (check) {
|
|
|
|
struct perf_event_attr old_attr;
|
2018-03-12 14:45:45 +01:00
|
|
|
|
2018-06-26 04:58:59 +02:00
|
|
|
old_attr = bp->attr;
|
|
|
|
hw_breakpoint_copy_attr(&old_attr, attr);
|
|
|
|
if (memcmp(&old_attr, attr, sizeof(*attr)))
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2018-03-12 14:45:44 +01:00
|
|
|
|
2018-06-26 04:58:59 +02:00
|
|
|
if (bp->attr.bp_type != attr->bp_type) {
|
|
|
|
err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2018-03-12 14:45:44 +01:00
|
|
|
}
|
|
|
|
|
2018-06-26 04:58:59 +02:00
|
|
|
hw_breakpoint_copy_attr(&bp->attr, attr);
|
2018-06-26 04:58:48 +02:00
|
|
|
bp->hw.info = hw;
|
|
|
|
|
2018-03-12 14:45:44 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-06-01 23:43:33 +05:30
|
|
|
/**
|
|
|
|
* modify_user_hw_breakpoint - modify a user-space hardware breakpoint
|
2009-09-09 19:22:48 +02:00
|
|
|
* @bp: the breakpoint structure to modify
|
2009-11-27 04:55:53 +01:00
|
|
|
* @attr: new breakpoint attributes
|
2009-06-01 23:43:33 +05:30
|
|
|
*/
|
2009-12-09 09:25:48 +01:00
|
|
|
int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
perf/hw_breakpoint: Modify breakpoint even if the new attr has disabled set
We need to change the breakpoint even if the attr with new fields has
disabled set to true.
Current code prevents following user code to change the breakpoint
address:
ptrace(PTRACE_POKEUSER, child, offsetof(struct user, u_debugreg[0]), addr_1)
ptrace(PTRACE_POKEUSER, child, offsetof(struct user, u_debugreg[0]), addr_2)
ptrace(PTRACE_POKEUSER, child, offsetof(struct user, u_debugreg[7]), dr7)
The first PTRACE_POKEUSER creates the breakpoint with attr.disabled set
to true:
ptrace_set_breakpoint_addr(nr = 0)
struct perf_event *bp = t->ptrace_bps[nr];
ptrace_register_breakpoint(..., disabled = true)
ptrace_fill_bp_fields(..., disabled)
register_user_hw_breakpoint
So the second PTRACE_POKEUSER will be omitted:
ptrace_set_breakpoint_addr(nr = 0)
struct perf_event *bp = t->ptrace_bps[nr];
struct perf_event_attr attr = bp->attr;
modify_user_hw_breakpoint(bp, &attr)
if (!attr->disabled)
modify_user_hw_breakpoint_check
Reported-by: Milind Chabbi <chabbi.milind@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180827091228.2878-3-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-08-27 11:12:25 +02:00
|
|
|
int err;
|
|
|
|
|
2012-08-02 13:46:35 +05:30
|
|
|
/*
|
|
|
|
* modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
|
|
|
|
* will not be possible to raise IPIs that invoke __perf_event_disable.
|
|
|
|
* So call the function directly after making sure we are targeting the
|
|
|
|
* current task.
|
|
|
|
*/
|
|
|
|
if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
|
2016-01-11 15:00:50 +01:00
|
|
|
perf_event_disable_local(bp);
|
2012-08-02 13:46:35 +05:30
|
|
|
else
|
|
|
|
perf_event_disable(bp);
|
2009-12-09 09:25:48 +01:00
|
|
|
|
perf/hw_breakpoint: Modify breakpoint even if the new attr has disabled set
We need to change the breakpoint even if the attr with new fields has
disabled set to true.
Current code prevents following user code to change the breakpoint
address:
ptrace(PTRACE_POKEUSER, child, offsetof(struct user, u_debugreg[0]), addr_1)
ptrace(PTRACE_POKEUSER, child, offsetof(struct user, u_debugreg[0]), addr_2)
ptrace(PTRACE_POKEUSER, child, offsetof(struct user, u_debugreg[7]), dr7)
The first PTRACE_POKEUSER creates the breakpoint with attr.disabled set
to true:
ptrace_set_breakpoint_addr(nr = 0)
struct perf_event *bp = t->ptrace_bps[nr];
ptrace_register_breakpoint(..., disabled = true)
ptrace_fill_bp_fields(..., disabled)
register_user_hw_breakpoint
So the second PTRACE_POKEUSER will be omitted:
ptrace_set_breakpoint_addr(nr = 0)
struct perf_event *bp = t->ptrace_bps[nr];
struct perf_event_attr attr = bp->attr;
modify_user_hw_breakpoint(bp, &attr)
if (!attr->disabled)
modify_user_hw_breakpoint_check
Reported-by: Milind Chabbi <chabbi.milind@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180827091228.2878-3-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-08-27 11:12:25 +02:00
|
|
|
err = modify_user_hw_breakpoint_check(bp, attr, false);
|
2009-12-09 09:25:48 +01:00
|
|
|
|
2018-08-27 11:12:27 +02:00
|
|
|
if (!bp->attr.disabled)
|
2018-03-12 14:45:43 +01:00
|
|
|
perf_event_enable(bp);
|
2018-08-27 11:12:26 +02:00
|
|
|
|
2018-08-27 11:12:27 +02:00
|
|
|
return err;
|
2009-06-01 23:43:33 +05:30
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
|
|
|
|
|
|
|
|
/**
|
2009-09-09 19:22:48 +02:00
|
|
|
* unregister_hw_breakpoint - unregister a user-space hardware breakpoint
|
2009-06-01 23:43:33 +05:30
|
|
|
* @bp: the breakpoint structure to unregister
|
|
|
|
*/
|
2009-09-09 19:22:48 +02:00
|
|
|
void unregister_hw_breakpoint(struct perf_event *bp)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
2009-09-09 19:22:48 +02:00
|
|
|
if (!bp)
|
|
|
|
return;
|
|
|
|
perf_event_release_kernel(bp);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
|
|
|
|
|
2009-06-01 23:43:33 +05:30
|
|
|
/**
|
2009-09-09 19:22:48 +02:00
|
|
|
* register_wide_hw_breakpoint - register a wide breakpoint in the kernel
|
2009-11-27 04:55:54 +01:00
|
|
|
* @attr: breakpoint attributes
|
2009-09-09 19:22:48 +02:00
|
|
|
* @triggered: callback to trigger when we hit the breakpoint
|
2021-05-27 11:19:47 +08:00
|
|
|
* @context: context data could be used in the triggered callback
|
2009-06-01 23:43:33 +05:30
|
|
|
*
|
2009-09-09 19:22:48 +02:00
|
|
|
* @return a set of per_cpu pointers to perf events
|
2009-06-01 23:43:33 +05:30
|
|
|
*/
|
2010-02-17 10:50:50 +09:00
|
|
|
struct perf_event * __percpu *
|
2009-11-27 04:55:54 +01:00
|
|
|
register_wide_hw_breakpoint(struct perf_event_attr *attr,
|
2011-06-29 18:42:35 +03:00
|
|
|
perf_overflow_handler_t triggered,
|
|
|
|
void *context)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
2013-06-20 17:50:18 +02:00
|
|
|
struct perf_event * __percpu *cpu_events, *bp;
|
|
|
|
long err = 0;
|
2009-09-09 19:22:48 +02:00
|
|
|
int cpu;
|
|
|
|
|
|
|
|
cpu_events = alloc_percpu(typeof(*cpu_events));
|
|
|
|
if (!cpu_events)
|
2024-09-24 11:07:13 +02:00
|
|
|
return ERR_PTR_PCPU(-ENOMEM);
|
2009-06-01 23:43:33 +05:30
|
|
|
|
2021-08-03 16:15:54 +02:00
|
|
|
cpus_read_lock();
|
2009-12-30 14:22:22 +08:00
|
|
|
for_each_online_cpu(cpu) {
|
2011-06-29 18:42:35 +03:00
|
|
|
bp = perf_event_create_kernel_counter(attr, cpu, NULL,
|
|
|
|
triggered, context);
|
2009-11-26 05:35:42 +01:00
|
|
|
if (IS_ERR(bp)) {
|
2009-09-09 19:22:48 +02:00
|
|
|
err = PTR_ERR(bp);
|
2013-06-20 17:50:18 +02:00
|
|
|
break;
|
2009-09-09 19:22:48 +02:00
|
|
|
}
|
|
|
|
|
2013-06-20 17:50:18 +02:00
|
|
|
per_cpu(*cpu_events, cpu) = bp;
|
2009-09-09 19:22:48 +02:00
|
|
|
}
|
2021-08-03 16:15:54 +02:00
|
|
|
cpus_read_unlock();
|
2009-12-30 14:22:22 +08:00
|
|
|
|
2013-06-20 17:50:18 +02:00
|
|
|
if (likely(!err))
|
|
|
|
return cpu_events;
|
|
|
|
|
|
|
|
unregister_wide_hw_breakpoint(cpu_events);
|
2024-09-24 11:07:13 +02:00
|
|
|
return ERR_PTR_PCPU(err);
|
2009-06-01 23:43:33 +05:30
|
|
|
}
|
2009-11-10 10:17:07 +01:00
|
|
|
EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
|
2009-06-01 23:43:33 +05:30
|
|
|
|
|
|
|
/**
|
2009-09-09 19:22:48 +02:00
|
|
|
* unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
|
|
|
|
* @cpu_events: the per cpu set of events to unregister
|
2009-06-01 23:43:33 +05:30
|
|
|
*/
|
2010-02-17 10:50:50 +09:00
|
|
|
void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
2009-09-09 19:22:48 +02:00
|
|
|
int cpu;
|
2009-06-01 23:43:33 +05:30
|
|
|
|
2013-06-20 17:50:18 +02:00
|
|
|
for_each_possible_cpu(cpu)
|
|
|
|
unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
|
|
|
|
|
2009-09-09 19:22:48 +02:00
|
|
|
free_percpu(cpu_events);
|
2009-06-01 23:43:33 +05:30
|
|
|
}
|
2009-11-10 10:17:07 +01:00
|
|
|
EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
|
2009-06-01 23:43:33 +05:30
|
|
|
|
2022-08-29 14:47:07 +02:00
|
|
|
/**
|
|
|
|
* hw_breakpoint_is_used - check if breakpoints are currently used
|
|
|
|
*
|
|
|
|
* Returns: true if breakpoints are used, false otherwise.
|
|
|
|
*/
|
|
|
|
bool hw_breakpoint_is_used(void)
|
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
|
|
|
|
if (!constraints_initialized)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
for (int type = 0; type < TYPE_MAX; ++type) {
|
|
|
|
struct bp_cpuinfo *info = get_bp_info(cpu, type);
|
|
|
|
|
|
|
|
if (info->cpu_pinned)
|
|
|
|
return true;
|
|
|
|
|
2022-08-29 14:47:11 +02:00
|
|
|
for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
|
2022-08-29 14:47:17 +02:00
|
|
|
if (atomic_read(&info->tsk_pinned.count[slot]))
|
2022-08-29 14:47:07 +02:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:18 +02:00
|
|
|
for (int type = 0; type < TYPE_MAX; ++type) {
|
|
|
|
for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
|
|
|
|
/*
|
|
|
|
* Warn, because if there are CPU pinned counters,
|
|
|
|
* should never get here; bp_cpuinfo::cpu_pinned should
|
|
|
|
* be consistent with the global cpu_pinned histogram.
|
|
|
|
*/
|
|
|
|
if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
|
|
|
|
return true;
|
2022-08-29 14:47:19 +02:00
|
|
|
|
|
|
|
if (atomic_read(&tsk_pinned_all[type].count[slot]))
|
|
|
|
return true;
|
2022-08-29 14:47:18 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-08-29 14:47:07 +02:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-06-01 23:43:33 +05:30
|
|
|
static struct notifier_block hw_breakpoint_exceptions_nb = {
|
|
|
|
.notifier_call = hw_breakpoint_exceptions_notify,
|
|
|
|
/* we need to be notified first */
|
|
|
|
.priority = 0x7fffffff
|
|
|
|
};
|
|
|
|
|
2010-06-11 13:35:08 +02:00
|
|
|
static void bp_perf_event_destroy(struct perf_event *event)
|
|
|
|
{
|
|
|
|
release_bp_slot(event);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hw_breakpoint_event_init(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (bp->attr.type != PERF_TYPE_BREAKPOINT)
|
|
|
|
return -ENOENT;
|
|
|
|
|
2012-02-09 23:20:59 +01:00
|
|
|
/*
|
|
|
|
* no branch sampling for breakpoint events
|
|
|
|
*/
|
|
|
|
if (has_branch_stack(bp))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2010-06-11 13:35:08 +02:00
|
|
|
err = register_perf_hw_breakpoint(bp);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
bp->destroy = bp_perf_event_destroy;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
perf: Rework the PMU methods
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-16 14:37:10 +02:00
|
|
|
static int hw_breakpoint_add(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
if (!(flags & PERF_EF_START))
|
|
|
|
bp->hw.state = PERF_HES_STOPPED;
|
|
|
|
|
2013-05-01 17:25:44 +02:00
|
|
|
if (is_sampling_event(bp)) {
|
|
|
|
bp->hw.last_period = bp->hw.sample_period;
|
|
|
|
perf_swevent_set_period(bp);
|
|
|
|
}
|
|
|
|
|
perf: Rework the PMU methods
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-16 14:37:10 +02:00
|
|
|
return arch_install_hw_breakpoint(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_breakpoint_del(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
arch_uninstall_hw_breakpoint(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_breakpoint_start(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
bp->hw.state = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_breakpoint_stop(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
bp->hw.state = PERF_HES_STOPPED;
|
|
|
|
}
|
|
|
|
|
2010-06-11 13:35:08 +02:00
|
|
|
static struct pmu perf_breakpoint = {
|
2010-09-07 17:34:50 +02:00
|
|
|
.task_ctx_nr = perf_sw_context, /* could eventually get its own */
|
|
|
|
|
2010-06-11 13:35:08 +02:00
|
|
|
.event_init = hw_breakpoint_event_init,
|
perf: Rework the PMU methods
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-16 14:37:10 +02:00
|
|
|
.add = hw_breakpoint_add,
|
|
|
|
.del = hw_breakpoint_del,
|
|
|
|
.start = hw_breakpoint_start,
|
|
|
|
.stop = hw_breakpoint_stop,
|
2010-06-11 13:35:08 +02:00
|
|
|
.read = hw_breakpoint_pmu_read,
|
|
|
|
};
|
|
|
|
|
2010-11-04 17:33:01 -05:00
|
|
|
int __init init_hw_breakpoint(void)
|
2009-06-01 23:43:33 +05:30
|
|
|
{
|
2022-08-29 14:47:11 +02:00
|
|
|
int ret;
|
2010-04-23 05:59:55 +02:00
|
|
|
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
|
|
|
|
if (ret)
|
2022-08-29 14:47:11 +02:00
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = init_breakpoint_slots();
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
perf/hw_breakpoint: Optimize list of per-task breakpoints
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
2022-08-29 14:47:09 +02:00
|
|
|
|
2022-08-29 14:47:10 +02:00
|
|
|
constraints_initialized = true;
|
2010-04-23 05:59:55 +02:00
|
|
|
|
2010-11-17 23:17:36 +01:00
|
|
|
perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
|
2010-06-11 13:35:08 +02:00
|
|
|
|
2009-06-01 23:43:33 +05:30
|
|
|
return register_die_notifier(&hw_breakpoint_exceptions_nb);
|
|
|
|
}
|