linux-next/io_uring/memmap.c

417 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/io_uring.h>
#include <linux/io_uring_types.h>
#include <asm/shmparam.h>
#include "memmap.h"
#include "kbuf.h"
#include "rsrc.h"
static void *io_mem_alloc_compound(struct page **pages, int nr_pages,
size_t size, gfp_t gfp)
{
struct page *page;
int i, order;
order = get_order(size);
if (order > MAX_PAGE_ORDER)
return ERR_PTR(-ENOMEM);
else if (order)
gfp |= __GFP_COMP;
page = alloc_pages(gfp, order);
if (!page)
return ERR_PTR(-ENOMEM);
for (i = 0; i < nr_pages; i++)
pages[i] = page + i;
return page_address(page);
}
struct page **io_pin_pages(unsigned long uaddr, unsigned long len, int *npages)
{
unsigned long start, end, nr_pages;
struct page **pages;
int ret;
if (check_add_overflow(uaddr, len, &end))
return ERR_PTR(-EOVERFLOW);
if (check_add_overflow(end, PAGE_SIZE - 1, &end))
return ERR_PTR(-EOVERFLOW);
end = end >> PAGE_SHIFT;
start = uaddr >> PAGE_SHIFT;
nr_pages = end - start;
if (WARN_ON_ONCE(!nr_pages))
return ERR_PTR(-EINVAL);
if (WARN_ON_ONCE(nr_pages > INT_MAX))
return ERR_PTR(-EOVERFLOW);
pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return ERR_PTR(-ENOMEM);
ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
pages);
/* success, mapped all pages */
if (ret == nr_pages) {
*npages = nr_pages;
return pages;
}
/* partial map, or didn't map anything */
if (ret >= 0) {
/* if we did partial map, release any pages we did get */
if (ret)
unpin_user_pages(pages, ret);
ret = -EFAULT;
}
kvfree(pages);
return ERR_PTR(ret);
}
enum {
/* memory was vmap'ed for the kernel, freeing the region vunmap's it */
IO_REGION_F_VMAP = 1,
/* memory is provided by user and pinned by the kernel */
IO_REGION_F_USER_PROVIDED = 2,
/* only the first page in the array is ref'ed */
IO_REGION_F_SINGLE_REF = 4,
};
void io_free_region(struct io_ring_ctx *ctx, struct io_mapped_region *mr)
{
if (mr->pages) {
long nr_refs = mr->nr_pages;
if (mr->flags & IO_REGION_F_SINGLE_REF)
nr_refs = 1;
if (mr->flags & IO_REGION_F_USER_PROVIDED)
unpin_user_pages(mr->pages, nr_refs);
else
release_pages(mr->pages, nr_refs);
kvfree(mr->pages);
}
if ((mr->flags & IO_REGION_F_VMAP) && mr->ptr)
vunmap(mr->ptr);
if (mr->nr_pages && ctx->user)
__io_unaccount_mem(ctx->user, mr->nr_pages);
memset(mr, 0, sizeof(*mr));
}
static int io_region_init_ptr(struct io_mapped_region *mr)
{
struct io_imu_folio_data ifd;
void *ptr;
if (io_check_coalesce_buffer(mr->pages, mr->nr_pages, &ifd)) {
if (ifd.nr_folios == 1) {
mr->ptr = page_address(mr->pages[0]);
return 0;
}
}
ptr = vmap(mr->pages, mr->nr_pages, VM_MAP, PAGE_KERNEL);
if (!ptr)
return -ENOMEM;
mr->ptr = ptr;
mr->flags |= IO_REGION_F_VMAP;
return 0;
}
static int io_region_pin_pages(struct io_ring_ctx *ctx,
struct io_mapped_region *mr,
struct io_uring_region_desc *reg)
{
unsigned long size = mr->nr_pages << PAGE_SHIFT;
struct page **pages;
int nr_pages;
pages = io_pin_pages(reg->user_addr, size, &nr_pages);
if (IS_ERR(pages))
return PTR_ERR(pages);
if (WARN_ON_ONCE(nr_pages != mr->nr_pages))
return -EFAULT;
mr->pages = pages;
mr->flags |= IO_REGION_F_USER_PROVIDED;
return 0;
}
static int io_region_allocate_pages(struct io_ring_ctx *ctx,
struct io_mapped_region *mr,
struct io_uring_region_desc *reg,
unsigned long mmap_offset)
{
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN;
unsigned long size = mr->nr_pages << PAGE_SHIFT;
unsigned long nr_allocated;
struct page **pages;
void *p;
pages = kvmalloc_array(mr->nr_pages, sizeof(*pages), gfp);
if (!pages)
return -ENOMEM;
p = io_mem_alloc_compound(pages, mr->nr_pages, size, gfp);
if (!IS_ERR(p)) {
mr->flags |= IO_REGION_F_SINGLE_REF;
goto done;
}
nr_allocated = alloc_pages_bulk_array_node(gfp, NUMA_NO_NODE,
mr->nr_pages, pages);
if (nr_allocated != mr->nr_pages) {
if (nr_allocated)
release_pages(pages, nr_allocated);
kvfree(pages);
return -ENOMEM;
}
done:
reg->mmap_offset = mmap_offset;
mr->pages = pages;
return 0;
}
int io_create_region(struct io_ring_ctx *ctx, struct io_mapped_region *mr,
struct io_uring_region_desc *reg,
unsigned long mmap_offset)
{
int nr_pages, ret;
u64 end;
if (WARN_ON_ONCE(mr->pages || mr->ptr || mr->nr_pages))
return -EFAULT;
if (memchr_inv(&reg->__resv, 0, sizeof(reg->__resv)))
return -EINVAL;
if (reg->flags & ~IORING_MEM_REGION_TYPE_USER)
return -EINVAL;
/* user_addr should be set IFF it's a user memory backed region */
if ((reg->flags & IORING_MEM_REGION_TYPE_USER) != !!reg->user_addr)
return -EFAULT;
if (!reg->size || reg->mmap_offset || reg->id)
return -EINVAL;
if ((reg->size >> PAGE_SHIFT) > INT_MAX)
return -E2BIG;
if ((reg->user_addr | reg->size) & ~PAGE_MASK)
return -EINVAL;
if (check_add_overflow(reg->user_addr, reg->size, &end))
return -EOVERFLOW;
nr_pages = reg->size >> PAGE_SHIFT;
if (ctx->user) {
ret = __io_account_mem(ctx->user, nr_pages);
if (ret)
return ret;
}
mr->nr_pages = nr_pages;
if (reg->flags & IORING_MEM_REGION_TYPE_USER)
ret = io_region_pin_pages(ctx, mr, reg);
else
ret = io_region_allocate_pages(ctx, mr, reg, mmap_offset);
if (ret)
goto out_free;
ret = io_region_init_ptr(mr);
if (ret)
goto out_free;
return 0;
out_free:
io_free_region(ctx, mr);
return ret;
}
int io_create_region_mmap_safe(struct io_ring_ctx *ctx, struct io_mapped_region *mr,
struct io_uring_region_desc *reg,
unsigned long mmap_offset)
{
struct io_mapped_region tmp_mr;
int ret;
memcpy(&tmp_mr, mr, sizeof(tmp_mr));
ret = io_create_region(ctx, &tmp_mr, reg, mmap_offset);
if (ret)
return ret;
/*
* Once published mmap can find it without holding only the ->mmap_lock
* and not ->uring_lock.
*/
guard(mutex)(&ctx->mmap_lock);
memcpy(mr, &tmp_mr, sizeof(tmp_mr));
return 0;
}
static struct io_mapped_region *io_mmap_get_region(struct io_ring_ctx *ctx,
loff_t pgoff)
{
loff_t offset = pgoff << PAGE_SHIFT;
unsigned int bgid;
switch (offset & IORING_OFF_MMAP_MASK) {
case IORING_OFF_SQ_RING:
case IORING_OFF_CQ_RING:
return &ctx->ring_region;
case IORING_OFF_SQES:
return &ctx->sq_region;
case IORING_OFF_PBUF_RING:
bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
return io_pbuf_get_region(ctx, bgid);
case IORING_MAP_OFF_PARAM_REGION:
return &ctx->param_region;
}
return NULL;
}
static void *io_region_validate_mmap(struct io_ring_ctx *ctx,
struct io_mapped_region *mr)
{
lockdep_assert_held(&ctx->mmap_lock);
if (!io_region_is_set(mr))
return ERR_PTR(-EINVAL);
if (mr->flags & IO_REGION_F_USER_PROVIDED)
return ERR_PTR(-EINVAL);
return io_region_get_ptr(mr);
}
static void *io_uring_validate_mmap_request(struct file *file, loff_t pgoff,
size_t sz)
{
struct io_ring_ctx *ctx = file->private_data;
struct io_mapped_region *region;
region = io_mmap_get_region(ctx, pgoff);
if (!region)
return ERR_PTR(-EINVAL);
return io_region_validate_mmap(ctx, region);
}
#ifdef CONFIG_MMU
static int io_region_mmap(struct io_ring_ctx *ctx,
struct io_mapped_region *mr,
struct vm_area_struct *vma,
unsigned max_pages)
{
unsigned long nr_pages = min(mr->nr_pages, max_pages);
vm_flags_set(vma, VM_DONTEXPAND);
return vm_insert_pages(vma, vma->vm_start, mr->pages, &nr_pages);
}
__cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
struct io_ring_ctx *ctx = file->private_data;
size_t sz = vma->vm_end - vma->vm_start;
long offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned int page_limit = UINT_MAX;
struct io_mapped_region *region;
void *ptr;
guard(mutex)(&ctx->mmap_lock);
io_uring/register: add IORING_REGISTER_RESIZE_RINGS Once a ring has been created, the size of the CQ and SQ rings are fixed. Usually this isn't a problem on the SQ ring side, as it merely controls the available number of requests that can be submitted in a single system call, and there's rarely a need to change that. For the CQ ring, it's a different story. For most efficient use of io_uring, it's important that the CQ ring never overflows. This means that applications must size it for the worst case scenario, which can be wasteful. Add IORING_REGISTER_RESIZE_RINGS, which allows an application to resize the existing rings. It takes a struct io_uring_params argument, the same one which is used to setup the ring initially, and resizes rings according to the sizes given. Certain properties are always inherited from the original ring setup, like SQE128/CQE32 and other setup options. The implementation only allows flag associated with how the CQ ring is sized and clamped. Existing unconsumed SQE and CQE entries are copied as part of the process. If either the SQ or CQ resized destination ring cannot hold the entries already present in the source rings, then the operation is failed with -EOVERFLOW. Any register op holds ->uring_lock, which prevents new submissions, and the internal mapping holds the completion lock as well across moving CQ ring state. To prevent races between mmap and ring resizing, add a mutex that's solely used to serialize ring resize and mmap. mmap_sem can't be used here, as as fork'ed process may be doing mmaps on the ring as well. The ctx->resize_lock is held across mmap operations, and the resize will grab it before swapping out the already mapped new data. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-21 19:34:10 +00:00
ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
switch (offset & IORING_OFF_MMAP_MASK) {
case IORING_OFF_SQ_RING:
case IORING_OFF_CQ_RING:
page_limit = (sz + PAGE_SIZE - 1) >> PAGE_SHIFT;
break;
}
region = io_mmap_get_region(ctx, vma->vm_pgoff);
return io_region_mmap(ctx, region, vma, page_limit);
}
unsigned long io_uring_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
io_uring/register: add IORING_REGISTER_RESIZE_RINGS Once a ring has been created, the size of the CQ and SQ rings are fixed. Usually this isn't a problem on the SQ ring side, as it merely controls the available number of requests that can be submitted in a single system call, and there's rarely a need to change that. For the CQ ring, it's a different story. For most efficient use of io_uring, it's important that the CQ ring never overflows. This means that applications must size it for the worst case scenario, which can be wasteful. Add IORING_REGISTER_RESIZE_RINGS, which allows an application to resize the existing rings. It takes a struct io_uring_params argument, the same one which is used to setup the ring initially, and resizes rings according to the sizes given. Certain properties are always inherited from the original ring setup, like SQE128/CQE32 and other setup options. The implementation only allows flag associated with how the CQ ring is sized and clamped. Existing unconsumed SQE and CQE entries are copied as part of the process. If either the SQ or CQ resized destination ring cannot hold the entries already present in the source rings, then the operation is failed with -EOVERFLOW. Any register op holds ->uring_lock, which prevents new submissions, and the internal mapping holds the completion lock as well across moving CQ ring state. To prevent races between mmap and ring resizing, add a mutex that's solely used to serialize ring resize and mmap. mmap_sem can't be used here, as as fork'ed process may be doing mmaps on the ring as well. The ctx->resize_lock is held across mmap operations, and the resize will grab it before swapping out the already mapped new data. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-21 19:34:10 +00:00
struct io_ring_ctx *ctx = filp->private_data;
void *ptr;
/*
* Do not allow to map to user-provided address to avoid breaking the
* aliasing rules. Userspace is not able to guess the offset address of
* kernel kmalloc()ed memory area.
*/
if (addr)
return -EINVAL;
guard(mutex)(&ctx->mmap_lock);
io_uring/register: add IORING_REGISTER_RESIZE_RINGS Once a ring has been created, the size of the CQ and SQ rings are fixed. Usually this isn't a problem on the SQ ring side, as it merely controls the available number of requests that can be submitted in a single system call, and there's rarely a need to change that. For the CQ ring, it's a different story. For most efficient use of io_uring, it's important that the CQ ring never overflows. This means that applications must size it for the worst case scenario, which can be wasteful. Add IORING_REGISTER_RESIZE_RINGS, which allows an application to resize the existing rings. It takes a struct io_uring_params argument, the same one which is used to setup the ring initially, and resizes rings according to the sizes given. Certain properties are always inherited from the original ring setup, like SQE128/CQE32 and other setup options. The implementation only allows flag associated with how the CQ ring is sized and clamped. Existing unconsumed SQE and CQE entries are copied as part of the process. If either the SQ or CQ resized destination ring cannot hold the entries already present in the source rings, then the operation is failed with -EOVERFLOW. Any register op holds ->uring_lock, which prevents new submissions, and the internal mapping holds the completion lock as well across moving CQ ring state. To prevent races between mmap and ring resizing, add a mutex that's solely used to serialize ring resize and mmap. mmap_sem can't be used here, as as fork'ed process may be doing mmaps on the ring as well. The ctx->resize_lock is held across mmap operations, and the resize will grab it before swapping out the already mapped new data. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-21 19:34:10 +00:00
ptr = io_uring_validate_mmap_request(filp, pgoff, len);
if (IS_ERR(ptr))
return -ENOMEM;
/*
* Some architectures have strong cache aliasing requirements.
* For such architectures we need a coherent mapping which aliases
* kernel memory *and* userspace memory. To achieve that:
* - use a NULL file pointer to reference physical memory, and
* - use the kernel virtual address of the shared io_uring context
* (instead of the userspace-provided address, which has to be 0UL
* anyway).
* - use the same pgoff which the get_unmapped_area() uses to
* calculate the page colouring.
* For architectures without such aliasing requirements, the
* architecture will return any suitable mapping because addr is 0.
*/
filp = NULL;
flags |= MAP_SHARED;
pgoff = 0; /* has been translated to ptr above */
#ifdef SHM_COLOUR
addr = (uintptr_t) ptr;
pgoff = addr >> PAGE_SHIFT;
#else
addr = 0UL;
#endif
The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB nvA4E0DcPrUAFy144FNM0NTCb7u9vAw= =V3R/ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ...
2024-05-19 16:21:03 +00:00
return mm_get_unmapped_area(current->mm, filp, addr, len, pgoff, flags);
}
#else /* !CONFIG_MMU */
int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
{
return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
}
unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
{
return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
}
unsigned long io_uring_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
io_uring/register: add IORING_REGISTER_RESIZE_RINGS Once a ring has been created, the size of the CQ and SQ rings are fixed. Usually this isn't a problem on the SQ ring side, as it merely controls the available number of requests that can be submitted in a single system call, and there's rarely a need to change that. For the CQ ring, it's a different story. For most efficient use of io_uring, it's important that the CQ ring never overflows. This means that applications must size it for the worst case scenario, which can be wasteful. Add IORING_REGISTER_RESIZE_RINGS, which allows an application to resize the existing rings. It takes a struct io_uring_params argument, the same one which is used to setup the ring initially, and resizes rings according to the sizes given. Certain properties are always inherited from the original ring setup, like SQE128/CQE32 and other setup options. The implementation only allows flag associated with how the CQ ring is sized and clamped. Existing unconsumed SQE and CQE entries are copied as part of the process. If either the SQ or CQ resized destination ring cannot hold the entries already present in the source rings, then the operation is failed with -EOVERFLOW. Any register op holds ->uring_lock, which prevents new submissions, and the internal mapping holds the completion lock as well across moving CQ ring state. To prevent races between mmap and ring resizing, add a mutex that's solely used to serialize ring resize and mmap. mmap_sem can't be used here, as as fork'ed process may be doing mmaps on the ring as well. The ctx->resize_lock is held across mmap operations, and the resize will grab it before swapping out the already mapped new data. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-21 19:34:10 +00:00
struct io_ring_ctx *ctx = file->private_data;
void *ptr;
guard(mutex)(&ctx->mmap_lock);
io_uring/register: add IORING_REGISTER_RESIZE_RINGS Once a ring has been created, the size of the CQ and SQ rings are fixed. Usually this isn't a problem on the SQ ring side, as it merely controls the available number of requests that can be submitted in a single system call, and there's rarely a need to change that. For the CQ ring, it's a different story. For most efficient use of io_uring, it's important that the CQ ring never overflows. This means that applications must size it for the worst case scenario, which can be wasteful. Add IORING_REGISTER_RESIZE_RINGS, which allows an application to resize the existing rings. It takes a struct io_uring_params argument, the same one which is used to setup the ring initially, and resizes rings according to the sizes given. Certain properties are always inherited from the original ring setup, like SQE128/CQE32 and other setup options. The implementation only allows flag associated with how the CQ ring is sized and clamped. Existing unconsumed SQE and CQE entries are copied as part of the process. If either the SQ or CQ resized destination ring cannot hold the entries already present in the source rings, then the operation is failed with -EOVERFLOW. Any register op holds ->uring_lock, which prevents new submissions, and the internal mapping holds the completion lock as well across moving CQ ring state. To prevent races between mmap and ring resizing, add a mutex that's solely used to serialize ring resize and mmap. mmap_sem can't be used here, as as fork'ed process may be doing mmaps on the ring as well. The ctx->resize_lock is held across mmap operations, and the resize will grab it before swapping out the already mapped new data. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-21 19:34:10 +00:00
ptr = io_uring_validate_mmap_request(file, pgoff, len);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
return (unsigned long) ptr;
}
#endif /* !CONFIG_MMU */