License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2009-09-11 12:31:23 +02:00
|
|
|
|
|
|
|
/*
|
2023-05-31 13:58:42 +02:00
|
|
|
* Using the avg_vruntime, do the right thing and preserve lag across
|
|
|
|
* sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled.
|
2009-09-11 12:31:23 +02:00
|
|
|
*/
|
2023-05-31 13:58:42 +02:00
|
|
|
SCHED_FEAT(PLACE_LAG, true)
|
sched/fair: Implement an EEVDF-like scheduling policy
Where CFS is currently a WFQ based scheduler with only a single knob,
the weight. The addition of a second, latency oriented parameter,
makes something like WF2Q or EEVDF based a much better fit.
Specifically, EEVDF does EDF like scheduling in the left half of the
tree -- those entities that are owed service. Except because this is a
virtual time scheduler, the deadlines are in virtual time as well,
which is what allows over-subscription.
EEVDF has two parameters:
- weight, or time-slope: which is mapped to nice just as before
- request size, or slice length: which is used to compute
the virtual deadline as: vd_i = ve_i + r_i/w_i
Basically, by setting a smaller slice, the deadline will be earlier
and the task will be more eligible and ran earlier.
Tick driven preemption is driven by request/slice completion; while
wakeup preemption is driven by the deadline.
Because the tree is now effectively an interval tree, and the
selection is no longer 'leftmost', over-scheduling is less of a
problem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
2023-05-31 13:58:44 +02:00
|
|
|
SCHED_FEAT(PLACE_DEADLINE_INITIAL, true)
|
2023-08-16 15:40:59 +02:00
|
|
|
SCHED_FEAT(RUN_TO_PARITY, true)
|
2009-09-11 12:31:23 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Prefer to schedule the task we woke last (assuming it failed
|
|
|
|
* wakeup-preemption), since its likely going to consume data we
|
|
|
|
* touched, increases cache locality.
|
|
|
|
*/
|
2011-07-06 14:20:14 +02:00
|
|
|
SCHED_FEAT(NEXT_BUDDY, false)
|
2009-09-11 12:31:23 +02:00
|
|
|
|
|
|
|
/*
|
2021-03-18 13:38:50 +01:00
|
|
|
* Consider buddies to be cache hot, decreases the likeliness of a
|
2009-09-11 12:31:23 +02:00
|
|
|
* cache buddy being migrated away, increases cache locality.
|
|
|
|
*/
|
2011-07-06 14:20:14 +02:00
|
|
|
SCHED_FEAT(CACHE_HOT_BUDDY, true)
|
2009-09-11 12:31:23 +02:00
|
|
|
|
2012-10-14 14:28:50 +02:00
|
|
|
/*
|
|
|
|
* Allow wakeup-time preemption of the current task:
|
|
|
|
*/
|
|
|
|
SCHED_FEAT(WAKEUP_PREEMPTION, true)
|
|
|
|
|
2011-07-06 14:20:14 +02:00
|
|
|
SCHED_FEAT(HRTICK, false)
|
2021-02-08 08:35:54 +01:00
|
|
|
SCHED_FEAT(HRTICK_DL, false)
|
2011-07-06 14:20:14 +02:00
|
|
|
SCHED_FEAT(DOUBLE_TICK, false)
|
2009-09-11 12:31:23 +02:00
|
|
|
|
2010-10-04 17:03:22 -07:00
|
|
|
/*
|
2014-05-27 13:50:41 -04:00
|
|
|
* Decrement CPU capacity based on time not spent running tasks
|
2010-10-04 17:03:22 -07:00
|
|
|
*/
|
2014-05-27 13:50:41 -04:00
|
|
|
SCHED_FEAT(NONTASK_CAPACITY, true)
|
2011-04-05 17:23:58 +02:00
|
|
|
|
2021-09-28 14:24:27 +02:00
|
|
|
#ifdef CONFIG_PREEMPT_RT
|
|
|
|
SCHED_FEAT(TTWU_QUEUE, false)
|
|
|
|
#else
|
|
|
|
|
2011-04-05 17:23:58 +02:00
|
|
|
/*
|
|
|
|
* Queue remote wakeups on the target CPU and process them
|
|
|
|
* using the scheduler IPI. Reduces rq->lock contention/bounces.
|
|
|
|
*/
|
2011-07-06 14:20:14 +02:00
|
|
|
SCHED_FEAT(TTWU_QUEUE, true)
|
2021-09-28 14:24:27 +02:00
|
|
|
#endif
|
2011-07-15 10:35:52 +02:00
|
|
|
|
2017-03-01 11:24:35 +01:00
|
|
|
/*
|
|
|
|
* When doing wakeups, attempt to limit superfluous scans of the LLC domain.
|
|
|
|
*/
|
sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg
[Problem Statement]
select_idle_cpu() might spend too much time searching for an idle CPU,
when the system is overloaded.
The following histogram is the time spent in select_idle_cpu(),
when running 224 instances of netperf on a system with 112 CPUs
per LLC domain:
@usecs:
[0] 533 | |
[1] 5495 | |
[2, 4) 12008 | |
[4, 8) 239252 | |
[8, 16) 4041924 |@@@@@@@@@@@@@@ |
[16, 32) 12357398 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[32, 64) 14820255 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[64, 128) 13047682 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[128, 256) 8235013 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[256, 512) 4507667 |@@@@@@@@@@@@@@@ |
[512, 1K) 2600472 |@@@@@@@@@ |
[1K, 2K) 927912 |@@@ |
[2K, 4K) 218720 | |
[4K, 8K) 98161 | |
[8K, 16K) 37722 | |
[16K, 32K) 6715 | |
[32K, 64K) 477 | |
[64K, 128K) 7 | |
netperf latency usecs:
=======
case load Lat_99th std%
TCP_RR thread-224 257.39 ( 0.21)
The time spent in select_idle_cpu() is visible to netperf and might have a negative
impact.
[Symptom analysis]
The patch [1] from Mel Gorman has been applied to track the efficiency
of select_idle_sibling. Copy the indicators here:
SIS Search Efficiency(se_eff%):
A ratio expressed as a percentage of runqueues scanned versus
idle CPUs found. A 100% efficiency indicates that the target,
prev or recent CPU of a task was idle at wakeup. The lower the
efficiency, the more runqueues were scanned before an idle CPU
was found.
SIS Domain Search Efficiency(dom_eff%):
Similar, except only for the slower SIS
patch.
SIS Fast Success Rate(fast_rate%):
Percentage of SIS that used target, prev or
recent CPUs.
SIS Success rate(success_rate%):
Percentage of scans that found an idle CPU.
The test is based on Aubrey's schedtests tool, including netperf, hackbench,
schbench and tbench.
Test on vanilla kernel:
schedstat_parse.py -f netperf_vanilla.log
case load se_eff% dom_eff% fast_rate% success_rate%
TCP_RR 28 threads 99.978 18.535 99.995 100.000
TCP_RR 56 threads 99.397 5.671 99.964 100.000
TCP_RR 84 threads 21.721 6.818 73.632 100.000
TCP_RR 112 threads 12.500 5.533 59.000 100.000
TCP_RR 140 threads 8.524 4.535 49.020 100.000
TCP_RR 168 threads 6.438 3.945 40.309 99.999
TCP_RR 196 threads 5.397 3.718 32.320 99.982
TCP_RR 224 threads 4.874 3.661 25.775 99.767
UDP_RR 28 threads 99.988 17.704 99.997 100.000
UDP_RR 56 threads 99.528 5.977 99.970 100.000
UDP_RR 84 threads 24.219 6.992 76.479 100.000
UDP_RR 112 threads 13.907 5.706 62.538 100.000
UDP_RR 140 threads 9.408 4.699 52.519 100.000
UDP_RR 168 threads 7.095 4.077 44.352 100.000
UDP_RR 196 threads 5.757 3.775 35.764 99.991
UDP_RR 224 threads 5.124 3.704 28.748 99.860
schedstat_parse.py -f schbench_vanilla.log
(each group has 28 tasks)
case load se_eff% dom_eff% fast_rate% success_rate%
normal 1 mthread 99.152 6.400 99.941 100.000
normal 2 mthreads 97.844 4.003 99.908 100.000
normal 3 mthreads 96.395 2.118 99.917 99.998
normal 4 mthreads 55.288 1.451 98.615 99.804
normal 5 mthreads 7.004 1.870 45.597 61.036
normal 6 mthreads 3.354 1.346 20.777 34.230
normal 7 mthreads 2.183 1.028 11.257 21.055
normal 8 mthreads 1.653 0.825 7.849 15.549
schedstat_parse.py -f hackbench_vanilla.log
(each group has 28 tasks)
case load se_eff% dom_eff% fast_rate% success_rate%
process-pipe 1 group 99.991 7.692 99.999 100.000
process-pipe 2 groups 99.934 4.615 99.997 100.000
process-pipe 3 groups 99.597 3.198 99.987 100.000
process-pipe 4 groups 98.378 2.464 99.958 100.000
process-pipe 5 groups 27.474 3.653 89.811 99.800
process-pipe 6 groups 20.201 4.098 82.763 99.570
process-pipe 7 groups 16.423 4.156 77.398 99.316
process-pipe 8 groups 13.165 3.920 72.232 98.828
process-sockets 1 group 99.977 5.882 99.999 100.000
process-sockets 2 groups 99.927 5.505 99.996 100.000
process-sockets 3 groups 99.397 3.250 99.980 100.000
process-sockets 4 groups 79.680 4.258 98.864 99.998
process-sockets 5 groups 7.673 2.503 63.659 92.115
process-sockets 6 groups 4.642 1.584 58.946 88.048
process-sockets 7 groups 3.493 1.379 49.816 81.164
process-sockets 8 groups 3.015 1.407 40.845 75.500
threads-pipe 1 group 99.997 0.000 100.000 100.000
threads-pipe 2 groups 99.894 2.932 99.997 100.000
threads-pipe 3 groups 99.611 4.117 99.983 100.000
threads-pipe 4 groups 97.703 2.624 99.937 100.000
threads-pipe 5 groups 22.919 3.623 87.150 99.764
threads-pipe 6 groups 18.016 4.038 80.491 99.557
threads-pipe 7 groups 14.663 3.991 75.239 99.247
threads-pipe 8 groups 12.242 3.808 70.651 98.644
threads-sockets 1 group 99.990 6.667 99.999 100.000
threads-sockets 2 groups 99.940 5.114 99.997 100.000
threads-sockets 3 groups 99.469 4.115 99.977 100.000
threads-sockets 4 groups 87.528 4.038 99.400 100.000
threads-sockets 5 groups 6.942 2.398 59.244 88.337
threads-sockets 6 groups 4.359 1.954 49.448 87.860
threads-sockets 7 groups 2.845 1.345 41.198 77.102
threads-sockets 8 groups 2.871 1.404 38.512 74.312
schedstat_parse.py -f tbench_vanilla.log
case load se_eff% dom_eff% fast_rate% success_rate%
loopback 28 threads 99.976 18.369 99.995 100.000
loopback 56 threads 99.222 7.799 99.934 100.000
loopback 84 threads 19.723 6.819 70.215 100.000
loopback 112 threads 11.283 5.371 55.371 99.999
loopback 140 threads 0.000 0.000 0.000 0.000
loopback 168 threads 0.000 0.000 0.000 0.000
loopback 196 threads 0.000 0.000 0.000 0.000
loopback 224 threads 0.000 0.000 0.000 0.000
According to the test above, if the system becomes busy, the
SIS Search Efficiency(se_eff%) drops significantly. Although some
benchmarks would finally find an idle CPU(success_rate% = 100%), it is
doubtful whether it is worth it to search the whole LLC domain.
[Proposal]
It would be ideal to have a crystal ball to answer this question:
How many CPUs must a wakeup path walk down, before it can find an idle
CPU? Many potential metrics could be used to predict the number.
One candidate is the sum of util_avg in this LLC domain. The benefit
of choosing util_avg is that it is a metric of accumulated historic
activity, which seems to be smoother than instantaneous metrics
(such as rq->nr_running). Besides, choosing the sum of util_avg
would help predict the load of the LLC domain more precisely, because
SIS_PROP uses one CPU's idle time to estimate the total LLC domain idle
time.
In summary, the lower the util_avg is, the more select_idle_cpu()
should scan for idle CPU, and vice versa. When the sum of util_avg
in this LLC domain hits 85% or above, the scan stops. The reason to
choose 85% as the threshold is that this is the imbalance_pct(117)
when a LLC sched group is overloaded.
Introduce the quadratic function:
y = SCHED_CAPACITY_SCALE - p * x^2
and y'= y / SCHED_CAPACITY_SCALE
x is the ratio of sum_util compared to the CPU capacity:
x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
y' is the ratio of CPUs to be scanned in the LLC domain,
and the number of CPUs to scan is calculated by:
nr_scan = llc_weight * y'
Choosing quadratic function is because:
[1] Compared to the linear function, it scans more aggressively when the
sum_util is low.
[2] Compared to the exponential function, it is easier to calculate.
[3] It seems that there is no accurate mapping between the sum of util_avg
and the number of CPUs to be scanned. Use heuristic scan for now.
For a platform with 112 CPUs per LLC, the number of CPUs to scan is:
sum_util% 0 5 15 25 35 45 55 65 75 85 86 ...
scan_nr 112 111 108 102 93 81 65 47 25 1 0 ...
For a platform with 16 CPUs per LLC, the number of CPUs to scan is:
sum_util% 0 5 15 25 35 45 55 65 75 85 86 ...
scan_nr 16 15 15 14 13 11 9 6 3 0 0 ...
Furthermore, to minimize the overhead of calculating the metrics in
select_idle_cpu(), borrow the statistics from periodic load balance.
As mentioned by Abel, on a platform with 112 CPUs per LLC, the
sum_util calculated by periodic load balance after 112 ms would
decay to about 0.5 * 0.5 * 0.5 * 0.7 = 8.75%, thus bringing a delay
in reflecting the latest utilization. But it is a trade-off.
Checking the util_avg in newidle load balance would be more frequent,
but it brings overhead - multiple CPUs write/read the per-LLC shared
variable and introduces cache contention. Tim also mentioned that,
it is allowed to be non-optimal in terms of scheduling for the
short-term variations, but if there is a long-term trend in the load
behavior, the scheduler can adjust for that.
When SIS_UTIL is enabled, the select_idle_cpu() uses the nr_scan
calculated by SIS_UTIL instead of the one from SIS_PROP. As Peter and
Mel suggested, SIS_UTIL should be enabled by default.
This patch is based on the util_avg, which is very sensitive to the
CPU frequency invariance. There is an issue that, when the max frequency
has been clamp, the util_avg would decay insanely fast when
the CPU is idle. Commit addca285120b ("cpufreq: intel_pstate: Handle no_turbo
in frequency invariance") could be used to mitigate this symptom, by adjusting
the arch_max_freq_ratio when turbo is disabled. But this issue is still
not thoroughly fixed, because the current code is unaware of the user-specified
max CPU frequency.
[Test result]
netperf and tbench were launched with 25% 50% 75% 100% 125% 150%
175% 200% of CPU number respectively. Hackbench and schbench were launched
by 1, 2 ,4, 8 groups. Each test lasts for 100 seconds and repeats 3 times.
The following is the benchmark result comparison between
baseline:vanilla v5.19-rc1 and compare:patched kernel. Positive compare%
indicates better performance.
Each netperf test is a:
netperf -4 -H 127.0.1 -t TCP/UDP_RR -c -C -l 100
netperf.throughput
=======
case load baseline(std%) compare%( std%)
TCP_RR 28 threads 1.00 ( 0.34) -0.16 ( 0.40)
TCP_RR 56 threads 1.00 ( 0.19) -0.02 ( 0.20)
TCP_RR 84 threads 1.00 ( 0.39) -0.47 ( 0.40)
TCP_RR 112 threads 1.00 ( 0.21) -0.66 ( 0.22)
TCP_RR 140 threads 1.00 ( 0.19) -0.69 ( 0.19)
TCP_RR 168 threads 1.00 ( 0.18) -0.48 ( 0.18)
TCP_RR 196 threads 1.00 ( 0.16) +194.70 ( 16.43)
TCP_RR 224 threads 1.00 ( 0.16) +197.30 ( 7.85)
UDP_RR 28 threads 1.00 ( 0.37) +0.35 ( 0.33)
UDP_RR 56 threads 1.00 ( 11.18) -0.32 ( 0.21)
UDP_RR 84 threads 1.00 ( 1.46) -0.98 ( 0.32)
UDP_RR 112 threads 1.00 ( 28.85) -2.48 ( 19.61)
UDP_RR 140 threads 1.00 ( 0.70) -0.71 ( 14.04)
UDP_RR 168 threads 1.00 ( 14.33) -0.26 ( 11.16)
UDP_RR 196 threads 1.00 ( 12.92) +186.92 ( 20.93)
UDP_RR 224 threads 1.00 ( 11.74) +196.79 ( 18.62)
Take the 224 threads as an example, the SIS search metrics changes are
illustrated below:
vanilla patched
4544492 +237.5% 15338634 sched_debug.cpu.sis_domain_search.avg
38539 +39686.8% 15333634 sched_debug.cpu.sis_failed.avg
128300000 -87.9% 15551326 sched_debug.cpu.sis_scanned.avg
5842896 +162.7% 15347978 sched_debug.cpu.sis_search.avg
There is -87.9% less CPU scans after patched, which indicates lower overhead.
Besides, with this patch applied, there is -13% less rq lock contention
in perf-profile.calltrace.cycles-pp._raw_spin_lock.raw_spin_rq_lock_nested
.try_to_wake_up.default_wake_function.woken_wake_function.
This might help explain the performance improvement - Because this patch allows
the waking task to remain on the previous CPU, rather than grabbing other CPUs'
lock.
Each hackbench test is a:
hackbench -g $job --process/threads --pipe/sockets -l 1000000 -s 100
hackbench.throughput
=========
case load baseline(std%) compare%( std%)
process-pipe 1 group 1.00 ( 1.29) +0.57 ( 0.47)
process-pipe 2 groups 1.00 ( 0.27) +0.77 ( 0.81)
process-pipe 4 groups 1.00 ( 0.26) +1.17 ( 0.02)
process-pipe 8 groups 1.00 ( 0.15) -4.79 ( 0.02)
process-sockets 1 group 1.00 ( 0.63) -0.92 ( 0.13)
process-sockets 2 groups 1.00 ( 0.03) -0.83 ( 0.14)
process-sockets 4 groups 1.00 ( 0.40) +5.20 ( 0.26)
process-sockets 8 groups 1.00 ( 0.04) +3.52 ( 0.03)
threads-pipe 1 group 1.00 ( 1.28) +0.07 ( 0.14)
threads-pipe 2 groups 1.00 ( 0.22) -0.49 ( 0.74)
threads-pipe 4 groups 1.00 ( 0.05) +1.88 ( 0.13)
threads-pipe 8 groups 1.00 ( 0.09) -4.90 ( 0.06)
threads-sockets 1 group 1.00 ( 0.25) -0.70 ( 0.53)
threads-sockets 2 groups 1.00 ( 0.10) -0.63 ( 0.26)
threads-sockets 4 groups 1.00 ( 0.19) +11.92 ( 0.24)
threads-sockets 8 groups 1.00 ( 0.08) +4.31 ( 0.11)
Each tbench test is a:
tbench -t 100 $job 127.0.0.1
tbench.throughput
======
case load baseline(std%) compare%( std%)
loopback 28 threads 1.00 ( 0.06) -0.14 ( 0.09)
loopback 56 threads 1.00 ( 0.03) -0.04 ( 0.17)
loopback 84 threads 1.00 ( 0.05) +0.36 ( 0.13)
loopback 112 threads 1.00 ( 0.03) +0.51 ( 0.03)
loopback 140 threads 1.00 ( 0.02) -1.67 ( 0.19)
loopback 168 threads 1.00 ( 0.38) +1.27 ( 0.27)
loopback 196 threads 1.00 ( 0.11) +1.34 ( 0.17)
loopback 224 threads 1.00 ( 0.11) +1.67 ( 0.22)
Each schbench test is a:
schbench -m $job -t 28 -r 100 -s 30000 -c 30000
schbench.latency_90%_us
========
case load baseline(std%) compare%( std%)
normal 1 mthread 1.00 ( 31.22) -7.36 ( 20.25)*
normal 2 mthreads 1.00 ( 2.45) -0.48 ( 1.79)
normal 4 mthreads 1.00 ( 1.69) +0.45 ( 0.64)
normal 8 mthreads 1.00 ( 5.47) +9.81 ( 14.28)
*Consider the Standard Deviation, this -7.36% regression might not be valid.
Also, a OLTP workload with a commercial RDBMS has been tested, and there
is no significant change.
There were concerns that unbalanced tasks among CPUs would cause problems.
For example, suppose the LLC domain is composed of 8 CPUs, and 7 tasks are
bound to CPU0~CPU6, while CPU7 is idle:
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
util_avg 1024 1024 1024 1024 1024 1024 1024 0
Since the util_avg ratio is 87.5%( = 7/8 ), which is higher than 85%,
select_idle_cpu() will not scan, thus CPU7 is undetected during scan.
But according to Mel, it is unlikely the CPU7 will be idle all the time
because CPU7 could pull some tasks via CPU_NEWLY_IDLE.
lkp(kernel test robot) has reported a regression on stress-ng.sock on a
very busy system. According to the sched_debug statistics, it might be caused
by SIS_UTIL terminates the scan and chooses a previous CPU earlier, and this
might introduce more context switch, especially involuntary preemption, which
impacts a busy stress-ng. This regression has shown that, not all benchmarks
in every scenario benefit from idle CPU scan limit, and it needs further
investigation.
Besides, there is slight regression in hackbench's 16 groups case when the
LLC domain has 16 CPUs. Prateek mentioned that we should scan aggressively
in an LLC domain with 16 CPUs. Because the cost to search for an idle one
among 16 CPUs is negligible. The current patch aims to propose a generic
solution and only considers the util_avg. Something like the below could
be applied on top of the current patch to fulfill the requirement:
if (llc_weight <= 16)
nr_scan = nr_scan * 32 / llc_weight;
For LLC domain with 16 CPUs, the nr_scan will be expanded to 2 times large.
The smaller the CPU number this LLC domain has, the larger nr_scan will be
expanded. This needs further investigation.
There is also ongoing work[2] from Abel to filter out the busy CPUs during
wakeup, to further speed up the idle CPU scan. And it could be a following-up
optimization on top of this change.
Suggested-by: Tim Chen <tim.c.chen@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Tested-by: Mohini Narkhede <mohini.narkhede@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220612163428.849378-1-yu.c.chen@intel.com
2022-06-13 00:34:28 +08:00
|
|
|
SCHED_FEAT(SIS_UTIL, true)
|
2017-03-01 11:24:35 +01:00
|
|
|
|
2016-10-03 16:53:49 +02:00
|
|
|
/*
|
|
|
|
* Issue a WARN when we do multiple update_rq_clock() calls
|
|
|
|
* in a single rq->lock section. Default disabled because the
|
|
|
|
* annotations are not complete.
|
|
|
|
*/
|
|
|
|
SCHED_FEAT(WARN_DOUBLE_CLOCK, false)
|
|
|
|
|
sched/rt: Use IPI to trigger RT task push migration instead of pulling
When debugging the latencies on a 40 core box, where we hit 300 to
500 microsecond latencies, I found there was a huge contention on the
runqueue locks.
Investigating it further, running ftrace, I found that it was due to
the pulling of RT tasks.
The test that was run was the following:
cyclictest --numa -p95 -m -d0 -i100
This created a thread on each CPU, that would set its wakeup in iterations
of 100 microseconds. The -d0 means that all the threads had the same
interval (100us). Each thread sleeps for 100us and wakes up and measures
its latencies.
cyclictest is maintained at:
git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git
What happened was another RT task would be scheduled on one of the CPUs
that was running our test, when the other CPU tests went to sleep and
scheduled idle. This caused the "pull" operation to execute on all
these CPUs. Each one of these saw the RT task that was overloaded on
the CPU of the test that was still running, and each one tried
to grab that task in a thundering herd way.
To grab the task, each thread would do a double rq lock grab, grabbing
its own lock as well as the rq of the overloaded CPU. As the sched
domains on this box was rather flat for its size, I saw up to 12 CPUs
block on this lock at once. This caused a ripple affect with the
rq locks especially since the taking was done via a double rq lock, which
means that several of the CPUs had their own rq locks held while trying
to take this rq lock. As these locks were blocked, any wakeups or load
balanceing on these CPUs would also block on these locks, and the wait
time escalated.
I've tried various methods to lessen the load, but things like an
atomic counter to only let one CPU grab the task wont work, because
the task may have a limited affinity, and we may pick the wrong
CPU to take that lock and do the pull, to only find out that the
CPU we picked isn't in the task's affinity.
Instead of doing the PULL, I now have the CPUs that want the pull to
send over an IPI to the overloaded CPU, and let that CPU pick what
CPU to push the task to. No more need to grab the rq lock, and the
push/pull algorithm still works fine.
With this patch, the latency dropped to just 150us over a 20 hour run.
Without the patch, the huge latencies would trigger in seconds.
I've created a new sched feature called RT_PUSH_IPI, which is enabled
by default.
When RT_PUSH_IPI is not enabled, the old method of grabbing the rq locks
and having the pulling CPU do the work is implemented. When RT_PUSH_IPI
is enabled, the IPI is sent to the overloaded CPU to do a push.
To enabled or disable this at run time:
# mount -t debugfs nodev /sys/kernel/debug
# echo RT_PUSH_IPI > /sys/kernel/debug/sched_features
or
# echo NO_RT_PUSH_IPI > /sys/kernel/debug/sched_features
Update: This original patch would send an IPI to all CPUs in the RT overload
list. But that could theoretically cause the reverse issue. That is, there
could be lots of overloaded RT queues and one CPU lowers its priority. It would
then send an IPI to all the overloaded RT queues and they could then all try
to grab the rq lock of the CPU lowering its priority, and then we have the
same problem.
The latest design sends out only one IPI to the first overloaded CPU. It tries to
push any tasks that it can, and then looks for the next overloaded CPU that can
push to the source CPU. The IPIs stop when all overloaded CPUs that have pushable
tasks that have priorities greater than the source CPU are covered. In case the
source CPU lowers its priority again, a flag is set to tell the IPI traversal to
restart with the first RT overloaded CPU after the source CPU.
Parts-suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joern Engel <joern@purestorage.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150318144946.2f3cc982@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-18 14:49:46 -04:00
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
|
|
/*
|
|
|
|
* In order to avoid a thundering herd attack of CPUs that are
|
|
|
|
* lowering their priorities at the same time, and there being
|
|
|
|
* a single CPU that has an RT task that can migrate and is waiting
|
|
|
|
* to run, where the other CPUs will try to take that CPUs
|
|
|
|
* rq lock and possibly create a large contention, sending an
|
|
|
|
* IPI to that CPU and let that CPU push the RT task to where
|
|
|
|
* it should go may be a better scenario.
|
|
|
|
*/
|
|
|
|
SCHED_FEAT(RT_PUSH_IPI, true)
|
|
|
|
#endif
|
|
|
|
|
2020-09-21 16:39:49 +02:00
|
|
|
SCHED_FEAT(RT_RUNTIME_SHARE, false)
|
2012-04-17 13:38:40 +02:00
|
|
|
SCHED_FEAT(LB_MIN, false)
|
2015-09-11 16:10:59 +02:00
|
|
|
SCHED_FEAT(ATTACH_AGE_LOAD, true)
|
|
|
|
|
2017-09-27 11:35:30 +02:00
|
|
|
SCHED_FEAT(WA_IDLE, true)
|
2017-10-06 09:23:24 +02:00
|
|
|
SCHED_FEAT(WA_WEIGHT, true)
|
|
|
|
SCHED_FEAT(WA_BIAS, true)
|
sched/fair: Add util_est on top of PELT
The util_avg signal computed by PELT is too variable for some use-cases.
For example, a big task waking up after a long sleep period will have its
utilization almost completely decayed. This introduces some latency before
schedutil will be able to pick the best frequency to run a task.
The same issue can affect task placement. Indeed, since the task
utilization is already decayed at wakeup, when the task is enqueued in a
CPU, this can result in a CPU running a big task as being temporarily
represented as being almost empty. This leads to a race condition where
other tasks can be potentially allocated on a CPU which just started to run
a big task which slept for a relatively long period.
Moreover, the PELT utilization of a task can be updated every [ms], thus
making it a continuously changing value for certain longer running
tasks. This means that the instantaneous PELT utilization of a RUNNING
task is not really meaningful to properly support scheduler decisions.
For all these reasons, a more stable signal can do a better job of
representing the expected/estimated utilization of a task/cfs_rq.
Such a signal can be easily created on top of PELT by still using it as
an estimator which produces values to be aggregated on meaningful
events.
This patch adds a simple implementation of util_est, a new signal built on
top of PELT's util_avg where:
util_est(task) = max(task::util_avg, f(task::util_avg@dequeue))
This allows to remember how big a task has been reported by PELT in its
previous activations via f(task::util_avg@dequeue), which is the new
_task_util_est(struct task_struct*) function added by this patch.
If a task should change its behavior and it runs longer in a new
activation, after a certain time its util_est will just track the
original PELT signal (i.e. task::util_avg).
The estimated utilization of cfs_rq is defined only for root ones.
That's because the only sensible consumer of this signal are the
scheduler and schedutil when looking for the overall CPU utilization
due to FAIR tasks.
For this reason, the estimated utilization of a root cfs_rq is simply
defined as:
util_est(cfs_rq) = max(cfs_rq::util_avg, cfs_rq::util_est::enqueued)
where:
cfs_rq::util_est::enqueued = sum(_task_util_est(task))
for each RUNNABLE task on that root cfs_rq
It's worth noting that the estimated utilization is tracked only for
objects of interests, specifically:
- Tasks: to better support tasks placement decisions
- root cfs_rqs: to better support both tasks placement decisions as
well as frequencies selection
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@android.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/20180309095245.11071-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-09 09:52:42 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* UtilEstimation. Use estimated CPU utilization.
|
|
|
|
*/
|
2018-03-09 09:52:45 +00:00
|
|
|
SCHED_FEAT(UTIL_EST, true)
|
2021-03-25 13:44:46 +01:00
|
|
|
|
2021-04-16 14:29:36 -07:00
|
|
|
SCHED_FEAT(LATENCY_WARN, false)
|
|
|
|
|
2023-07-12 09:33:57 -04:00
|
|
|
SCHED_FEAT(HZ_BW, true)
|