linux-next/scripts/Makefile.modfinal

79 lines
2.6 KiB
Makefile
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
# ===========================================================================
# Module final link
# ===========================================================================
PHONY := __modfinal
__modfinal:
kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it Detect if pahole supports split BTF generation, and generate BTF for each selected kernel module, if it does. This is exposed to Makefiles and C code as CONFIG_DEBUG_INFO_BTF_MODULES flag. Kernel module BTF has to be re-generated if either vmlinux's BTF changes or module's .ko changes. To achieve that, I needed a helper similar to if_changed, but that would allow to filter out vmlinux from the list of updated dependencies for .ko building. I've put it next to the only place that uses and needs it, but it might be a better idea to just add it along the other if_changed variants into scripts/Kbuild.include. Each kernel module's BTF deduplication is pretty fast, as it does only incremental BTF deduplication on top of already deduplicated vmlinux BTF. To show the added build time, I've first ran make only just built kernel (to establish the baseline) and then forced only BTF re-generation, without regenerating .ko files. The build was performed with -j60 parallelization on 56-core machine. The final time also includes bzImage building, so it's not a pure BTF overhead. $ time make -j60 ... make -j60 27.65s user 10.96s system 782% cpu 4.933 total $ touch ~/linux-build/default/vmlinux && time make -j60 ... make -j60 123.69s user 27.85s system 1566% cpu 9.675 total So 4.6 seconds real time, with noticeable part spent in compressed vmlinux and bzImage building. To show size savings, I've built my kernel configuration with about 700 kernel modules with full BTF per each kernel module (without deduplicating against vmlinux) and with split BTF against deduplicated vmlinux (approach in this patch). Below are top 10 modules with biggest BTF sizes. And total size of BTF data across all kernel modules. It shows that split BTF "compresses" 115MB down to 5MB total. And the biggest kernel modules get a downsize from 500-570KB down to 200-300KB. FULL BTF ======== $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 115710691 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 570570 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 520240 ./drivers/gpu/drm/radeon/radeon.ko 503849 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 491777 ./fs/xfs/xfs.ko 411544 ./drivers/net/ethernet/intel/i40e/i40e.ko 403904 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 398754 ./drivers/infiniband/core/ib_core.ko 397224 ./fs/cifs/cifs.ko 386249 ./fs/nfsd/nfsd.ko 379738 SPLIT BTF ========= $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 5194047 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 293206 ./drivers/gpu/drm/radeon/radeon.ko 282103 ./fs/xfs/xfs.ko 222150 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 198503 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 198356 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 113444 ./fs/cifs/cifs.ko 109379 ./arch/x86/kvm/kvm.ko 100225 ./drivers/gpu/drm/drm.ko 94827 ./drivers/infiniband/core/ib_core.ko 91188 Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20201110011932.3201430-4-andrii@kernel.org
2020-11-10 01:19:30 +00:00
include include/config/auto.conf
include $(srctree)/scripts/Kbuild.include
kbuild: do not create *.prelink.o for Clang LTO or IBT When CONFIG_LTO_CLANG=y, additional intermediate *.prelink.o is created for each module. Also, objtool is postponed until LLVM IR is converted to ELF. CONFIG_X86_KERNEL_IBT works in a similar way to postpone objtool until objects are merged together. This commit stops generating *.prelink.o, so the build flow will look similar with/without LTO. The following figures show how the LTO build currently works, and how this commit is changing it. Current build flow ================== [1] single-object module $(LD) $(CC) +objtool $(LD) foo.c --------------------> foo.o -----> foo.prelink.o -----> foo.ko (LLVM IR) (ELF) | (ELF) | foo.mod.o --/ (LLVM IR) [2] multi-object module $(LD) $(CC) $(AR) +objtool $(LD) foo1.c -----> foo1.o -----> foo.o -----> foo.prelink.o -----> foo.ko | (archive) (ELF) | (ELF) foo2.c -----> foo2.o --/ | (LLVM IR) foo.mod.o --/ (LLVM IR) One confusion is that foo.o in multi-object module is an archive despite of its suffix. New build flow ============== [1] single-object module Since there is only one object, there is no need to keep the LLVM IR. Use $(CC)+$(LD) to generate an ELF object in one build rule. When LTO is disabled, $(LD) is unneeded because $(CC) produces an ELF object. $(CC)+$(LD)+objtool $(LD) foo.c ----------------------------> foo.o ---------> foo.ko (ELF) | (ELF) | foo.mod.o --/ (LLVM IR) [2] multi-object module Previously, $(AR) was used to combine LLVM IR files into an archive, but there was no technical reason to do so. Use $(LD) to merge them into a single ELF object. $(LD) $(CC) +objtool $(LD) foo1.c ---------> foo1.o ---------> foo.o ---------> foo.ko | (ELF) | (ELF) foo2.c ---------> foo2.o ----/ | (LLVM IR) foo.mod.o --/ (LLVM IR) Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> Tested-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14 (x86-64) Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2022-05-27 10:01:49 +00:00
# for c_flags
include $(srctree)/scripts/Makefile.lib
# find all modules listed in modules.order
modules := $(call read-file, $(MODORDER))
__modfinal: $(modules:%.o=%.ko)
@:
# modname and part-of-module are set to make c_flags define proper module flags
modname = $(notdir $(@:.mod.o=))
part-of-module = y
quiet_cmd_cc_o_c = CC [M] $@
kbuild: Disable KCSAN for autogenerated *.mod.c intermediaries When KCSAN and CONSTRUCTORS are enabled, one can trigger the "Unpatched return thunk in use. This should not happen!" catch-all warning. Usually, when objtool runs on the .o objects, it does generate a section .return_sites which contains all offsets in the objects to the return thunks of the functions present there. Those return thunks then get patched at runtime by the alternatives. KCSAN and CONSTRUCTORS add this to the object file's .text.startup section: ------------------- Disassembly of section .text.startup: ... 0000000000000010 <_sub_I_00099_0>: 10: f3 0f 1e fa endbr64 14: e8 00 00 00 00 call 19 <_sub_I_00099_0+0x9> 15: R_X86_64_PLT32 __tsan_init-0x4 19: e9 00 00 00 00 jmp 1e <__UNIQUE_ID___addressable_cryptd_alloc_aead349+0x6> 1a: R_X86_64_PLT32 __x86_return_thunk-0x4 ------------------- which, if it is built as a module goes through the intermediary stage of creating a <module>.mod.c file which, when translated, receives a second constructor: ------------------- Disassembly of section .text.startup: 0000000000000010 <_sub_I_00099_0>: 10: f3 0f 1e fa endbr64 14: e8 00 00 00 00 call 19 <_sub_I_00099_0+0x9> 15: R_X86_64_PLT32 __tsan_init-0x4 19: e9 00 00 00 00 jmp 1e <_sub_I_00099_0+0xe> 1a: R_X86_64_PLT32 __x86_return_thunk-0x4 ... 0000000000000030 <_sub_I_00099_0>: 30: f3 0f 1e fa endbr64 34: e8 00 00 00 00 call 39 <_sub_I_00099_0+0x9> 35: R_X86_64_PLT32 __tsan_init-0x4 39: e9 00 00 00 00 jmp 3e <__ksymtab_cryptd_alloc_ahash+0x2> 3a: R_X86_64_PLT32 __x86_return_thunk-0x4 ------------------- in the .ko file. Objtool has run already so that second constructor's return thunk cannot be added to the .return_sites section and thus the return thunk remains unpatched and the warning rightfully fires. Drop KCSAN flags from the mod.c generation stage as those constructors do not contain data races one would be interested about. Debugged together with David Kaplan <David.Kaplan@amd.com> and Nikolay Borisov <nik.borisov@suse.com>. Reported-by: Paul Menzel <pmenzel@molgen.mpg.de> Closes: https://lore.kernel.org/r/0851a207-7143-417e-be31-8bf2b3afb57d@molgen.mpg.de Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Paul Menzel <pmenzel@molgen.mpg.de> # Dell XPS 13 Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Marco Elver <elver@google.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2024-03-26 20:25:48 +00:00
cmd_cc_o_c = $(CC) $(filter-out $(CC_FLAGS_CFI) $(CFLAGS_GCOV) $(CFLAGS_KCSAN), $(c_flags)) -c -o $@ $<
%.mod.o: %.mod.c FORCE
$(call if_changed_dep,cc_o_c)
quiet_cmd_ld_ko_o = LD [M] $@
cmd_ld_ko_o += \
$(LD) -r $(KBUILD_LDFLAGS) \
$(KBUILD_LDFLAGS_MODULE) $(LDFLAGS_MODULE) \
-T scripts/module.lds -o $@ $(filter %.o, $^)
kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it Detect if pahole supports split BTF generation, and generate BTF for each selected kernel module, if it does. This is exposed to Makefiles and C code as CONFIG_DEBUG_INFO_BTF_MODULES flag. Kernel module BTF has to be re-generated if either vmlinux's BTF changes or module's .ko changes. To achieve that, I needed a helper similar to if_changed, but that would allow to filter out vmlinux from the list of updated dependencies for .ko building. I've put it next to the only place that uses and needs it, but it might be a better idea to just add it along the other if_changed variants into scripts/Kbuild.include. Each kernel module's BTF deduplication is pretty fast, as it does only incremental BTF deduplication on top of already deduplicated vmlinux BTF. To show the added build time, I've first ran make only just built kernel (to establish the baseline) and then forced only BTF re-generation, without regenerating .ko files. The build was performed with -j60 parallelization on 56-core machine. The final time also includes bzImage building, so it's not a pure BTF overhead. $ time make -j60 ... make -j60 27.65s user 10.96s system 782% cpu 4.933 total $ touch ~/linux-build/default/vmlinux && time make -j60 ... make -j60 123.69s user 27.85s system 1566% cpu 9.675 total So 4.6 seconds real time, with noticeable part spent in compressed vmlinux and bzImage building. To show size savings, I've built my kernel configuration with about 700 kernel modules with full BTF per each kernel module (without deduplicating against vmlinux) and with split BTF against deduplicated vmlinux (approach in this patch). Below are top 10 modules with biggest BTF sizes. And total size of BTF data across all kernel modules. It shows that split BTF "compresses" 115MB down to 5MB total. And the biggest kernel modules get a downsize from 500-570KB down to 200-300KB. FULL BTF ======== $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 115710691 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 570570 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 520240 ./drivers/gpu/drm/radeon/radeon.ko 503849 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 491777 ./fs/xfs/xfs.ko 411544 ./drivers/net/ethernet/intel/i40e/i40e.ko 403904 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 398754 ./drivers/infiniband/core/ib_core.ko 397224 ./fs/cifs/cifs.ko 386249 ./fs/nfsd/nfsd.ko 379738 SPLIT BTF ========= $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 5194047 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 293206 ./drivers/gpu/drm/radeon/radeon.ko 282103 ./fs/xfs/xfs.ko 222150 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 198503 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 198356 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 113444 ./fs/cifs/cifs.ko 109379 ./arch/x86/kvm/kvm.ko 100225 ./drivers/gpu/drm/drm.ko 94827 ./drivers/infiniband/core/ib_core.ko 91188 Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20201110011932.3201430-4-andrii@kernel.org
2020-11-10 01:19:30 +00:00
quiet_cmd_btf_ko = BTF [M] $@
kbuild: Skip module BTF generation for out-of-tree external modules In some modes of operation, Kbuild allows to build modules without having vmlinux image around. In such case, generation of module BTF is impossible. This patch changes the behavior to emit a warning about impossibility of generating kernel module BTF, instead of breaking the build. This is especially important for out-of-tree external module builds. In vmlinux-less mode: $ make clean $ make modules_prepare $ touch drivers/acpi/button.c $ make M=drivers/acpi ... CC [M] drivers/acpi/button.o MODPOST drivers/acpi/Module.symvers LD [M] drivers/acpi/button.ko BTF [M] drivers/acpi/button.ko Skipping BTF generation for drivers/acpi/button.ko due to unavailability of vmlinux ... $ readelf -S ~/linux-build/default/drivers/acpi/button.ko | grep BTF -A1 ... empty ... Now with normal build: $ make all ... LD [M] drivers/acpi/button.ko BTF [M] drivers/acpi/button.ko ... $ readelf -S ~/linux-build/default/drivers/acpi/button.ko | grep BTF -A1 [60] .BTF PROGBITS 0000000000000000 00029310 000000000000ab3f 0000000000000000 0 0 1 Fixes: 5f9ae91f7c0d ("kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it") Reported-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Jessica Yu <jeyu@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Link: https://lore.kernel.org/bpf/20201121070829.2612884-1-andrii@kernel.org
2020-11-21 07:08:28 +00:00
cmd_btf_ko = \
Kbuild: add Rust support Having most of the new files in place, we now enable Rust support in the build system, including `Kconfig` entries related to Rust, the Rust configuration printer and a few other bits. Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com> Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com> Co-developed-by: Finn Behrens <me@kloenk.de> Signed-off-by: Finn Behrens <me@kloenk.de> Co-developed-by: Adam Bratschi-Kaye <ark.email@gmail.com> Signed-off-by: Adam Bratschi-Kaye <ark.email@gmail.com> Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com> Co-developed-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Co-developed-by: Sven Van Asbroeck <thesven73@gmail.com> Signed-off-by: Sven Van Asbroeck <thesven73@gmail.com> Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Co-developed-by: Boris-Chengbiao Zhou <bobo1239@web.de> Signed-off-by: Boris-Chengbiao Zhou <bobo1239@web.de> Co-developed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Co-developed-by: Douglas Su <d0u9.su@outlook.com> Signed-off-by: Douglas Su <d0u9.su@outlook.com> Co-developed-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Signed-off-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Co-developed-by: Antonio Terceiro <antonio.terceiro@linaro.org> Signed-off-by: Antonio Terceiro <antonio.terceiro@linaro.org> Co-developed-by: Daniel Xu <dxu@dxuuu.xyz> Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Co-developed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Signed-off-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Co-developed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2021-07-03 14:42:57 +00:00
if [ ! -f vmlinux ]; then \
printf "Skipping BTF generation for %s due to unavailability of vmlinux\n" $@ 1>&2; \
else \
LLVM_OBJCOPY="$(OBJCOPY)" $(PAHOLE) -J $(PAHOLE_FLAGS) --btf_base vmlinux $@; \
$(RESOLVE_BTFIDS) -b vmlinux $@; \
kbuild: Skip module BTF generation for out-of-tree external modules In some modes of operation, Kbuild allows to build modules without having vmlinux image around. In such case, generation of module BTF is impossible. This patch changes the behavior to emit a warning about impossibility of generating kernel module BTF, instead of breaking the build. This is especially important for out-of-tree external module builds. In vmlinux-less mode: $ make clean $ make modules_prepare $ touch drivers/acpi/button.c $ make M=drivers/acpi ... CC [M] drivers/acpi/button.o MODPOST drivers/acpi/Module.symvers LD [M] drivers/acpi/button.ko BTF [M] drivers/acpi/button.ko Skipping BTF generation for drivers/acpi/button.ko due to unavailability of vmlinux ... $ readelf -S ~/linux-build/default/drivers/acpi/button.ko | grep BTF -A1 ... empty ... Now with normal build: $ make all ... LD [M] drivers/acpi/button.ko BTF [M] drivers/acpi/button.ko ... $ readelf -S ~/linux-build/default/drivers/acpi/button.ko | grep BTF -A1 [60] .BTF PROGBITS 0000000000000000 00029310 000000000000ab3f 0000000000000000 0 0 1 Fixes: 5f9ae91f7c0d ("kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it") Reported-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Jessica Yu <jeyu@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Link: https://lore.kernel.org/bpf/20201121070829.2612884-1-andrii@kernel.org
2020-11-21 07:08:28 +00:00
fi;
kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it Detect if pahole supports split BTF generation, and generate BTF for each selected kernel module, if it does. This is exposed to Makefiles and C code as CONFIG_DEBUG_INFO_BTF_MODULES flag. Kernel module BTF has to be re-generated if either vmlinux's BTF changes or module's .ko changes. To achieve that, I needed a helper similar to if_changed, but that would allow to filter out vmlinux from the list of updated dependencies for .ko building. I've put it next to the only place that uses and needs it, but it might be a better idea to just add it along the other if_changed variants into scripts/Kbuild.include. Each kernel module's BTF deduplication is pretty fast, as it does only incremental BTF deduplication on top of already deduplicated vmlinux BTF. To show the added build time, I've first ran make only just built kernel (to establish the baseline) and then forced only BTF re-generation, without regenerating .ko files. The build was performed with -j60 parallelization on 56-core machine. The final time also includes bzImage building, so it's not a pure BTF overhead. $ time make -j60 ... make -j60 27.65s user 10.96s system 782% cpu 4.933 total $ touch ~/linux-build/default/vmlinux && time make -j60 ... make -j60 123.69s user 27.85s system 1566% cpu 9.675 total So 4.6 seconds real time, with noticeable part spent in compressed vmlinux and bzImage building. To show size savings, I've built my kernel configuration with about 700 kernel modules with full BTF per each kernel module (without deduplicating against vmlinux) and with split BTF against deduplicated vmlinux (approach in this patch). Below are top 10 modules with biggest BTF sizes. And total size of BTF data across all kernel modules. It shows that split BTF "compresses" 115MB down to 5MB total. And the biggest kernel modules get a downsize from 500-570KB down to 200-300KB. FULL BTF ======== $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 115710691 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 570570 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 520240 ./drivers/gpu/drm/radeon/radeon.ko 503849 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 491777 ./fs/xfs/xfs.ko 411544 ./drivers/net/ethernet/intel/i40e/i40e.ko 403904 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 398754 ./drivers/infiniband/core/ib_core.ko 397224 ./fs/cifs/cifs.ko 386249 ./fs/nfsd/nfsd.ko 379738 SPLIT BTF ========= $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 5194047 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 293206 ./drivers/gpu/drm/radeon/radeon.ko 282103 ./fs/xfs/xfs.ko 222150 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 198503 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 198356 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 113444 ./fs/cifs/cifs.ko 109379 ./arch/x86/kvm/kvm.ko 100225 ./drivers/gpu/drm/drm.ko 94827 ./drivers/infiniband/core/ib_core.ko 91188 Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20201110011932.3201430-4-andrii@kernel.org
2020-11-10 01:19:30 +00:00
# Same as newer-prereqs, but allows to exclude specified extra dependencies
newer_prereqs_except = $(filter-out $(PHONY) $(1),$?)
# Same as if_changed, but allows to exclude specified extra dependencies
if_changed_except = $(if $(call newer_prereqs_except,$(2))$(cmd-check), \
$(cmd); \
printf '%s\n' 'savedcmd_$@ := $(make-cmd)' > $(dot-target).cmd, @:)
kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it Detect if pahole supports split BTF generation, and generate BTF for each selected kernel module, if it does. This is exposed to Makefiles and C code as CONFIG_DEBUG_INFO_BTF_MODULES flag. Kernel module BTF has to be re-generated if either vmlinux's BTF changes or module's .ko changes. To achieve that, I needed a helper similar to if_changed, but that would allow to filter out vmlinux from the list of updated dependencies for .ko building. I've put it next to the only place that uses and needs it, but it might be a better idea to just add it along the other if_changed variants into scripts/Kbuild.include. Each kernel module's BTF deduplication is pretty fast, as it does only incremental BTF deduplication on top of already deduplicated vmlinux BTF. To show the added build time, I've first ran make only just built kernel (to establish the baseline) and then forced only BTF re-generation, without regenerating .ko files. The build was performed with -j60 parallelization on 56-core machine. The final time also includes bzImage building, so it's not a pure BTF overhead. $ time make -j60 ... make -j60 27.65s user 10.96s system 782% cpu 4.933 total $ touch ~/linux-build/default/vmlinux && time make -j60 ... make -j60 123.69s user 27.85s system 1566% cpu 9.675 total So 4.6 seconds real time, with noticeable part spent in compressed vmlinux and bzImage building. To show size savings, I've built my kernel configuration with about 700 kernel modules with full BTF per each kernel module (without deduplicating against vmlinux) and with split BTF against deduplicated vmlinux (approach in this patch). Below are top 10 modules with biggest BTF sizes. And total size of BTF data across all kernel modules. It shows that split BTF "compresses" 115MB down to 5MB total. And the biggest kernel modules get a downsize from 500-570KB down to 200-300KB. FULL BTF ======== $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 115710691 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 570570 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 520240 ./drivers/gpu/drm/radeon/radeon.ko 503849 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 491777 ./fs/xfs/xfs.ko 411544 ./drivers/net/ethernet/intel/i40e/i40e.ko 403904 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 398754 ./drivers/infiniband/core/ib_core.ko 397224 ./fs/cifs/cifs.ko 386249 ./fs/nfsd/nfsd.ko 379738 SPLIT BTF ========= $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 5194047 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 293206 ./drivers/gpu/drm/radeon/radeon.ko 282103 ./fs/xfs/xfs.ko 222150 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 198503 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 198356 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 113444 ./fs/cifs/cifs.ko 109379 ./arch/x86/kvm/kvm.ko 100225 ./drivers/gpu/drm/drm.ko 94827 ./drivers/infiniband/core/ib_core.ko 91188 Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20201110011932.3201430-4-andrii@kernel.org
2020-11-10 01:19:30 +00:00
# Re-generate module BTFs if either module's .ko or vmlinux changed
%.ko: %.o %.mod.o scripts/module.lds $(and $(CONFIG_DEBUG_INFO_BTF_MODULES),$(KBUILD_BUILTIN),vmlinux) FORCE
kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it Detect if pahole supports split BTF generation, and generate BTF for each selected kernel module, if it does. This is exposed to Makefiles and C code as CONFIG_DEBUG_INFO_BTF_MODULES flag. Kernel module BTF has to be re-generated if either vmlinux's BTF changes or module's .ko changes. To achieve that, I needed a helper similar to if_changed, but that would allow to filter out vmlinux from the list of updated dependencies for .ko building. I've put it next to the only place that uses and needs it, but it might be a better idea to just add it along the other if_changed variants into scripts/Kbuild.include. Each kernel module's BTF deduplication is pretty fast, as it does only incremental BTF deduplication on top of already deduplicated vmlinux BTF. To show the added build time, I've first ran make only just built kernel (to establish the baseline) and then forced only BTF re-generation, without regenerating .ko files. The build was performed with -j60 parallelization on 56-core machine. The final time also includes bzImage building, so it's not a pure BTF overhead. $ time make -j60 ... make -j60 27.65s user 10.96s system 782% cpu 4.933 total $ touch ~/linux-build/default/vmlinux && time make -j60 ... make -j60 123.69s user 27.85s system 1566% cpu 9.675 total So 4.6 seconds real time, with noticeable part spent in compressed vmlinux and bzImage building. To show size savings, I've built my kernel configuration with about 700 kernel modules with full BTF per each kernel module (without deduplicating against vmlinux) and with split BTF against deduplicated vmlinux (approach in this patch). Below are top 10 modules with biggest BTF sizes. And total size of BTF data across all kernel modules. It shows that split BTF "compresses" 115MB down to 5MB total. And the biggest kernel modules get a downsize from 500-570KB down to 200-300KB. FULL BTF ======== $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 115710691 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 570570 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 520240 ./drivers/gpu/drm/radeon/radeon.ko 503849 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 491777 ./fs/xfs/xfs.ko 411544 ./drivers/net/ethernet/intel/i40e/i40e.ko 403904 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 398754 ./drivers/infiniband/core/ib_core.ko 397224 ./fs/cifs/cifs.ko 386249 ./fs/nfsd/nfsd.ko 379738 SPLIT BTF ========= $ for f in $(find . -name '*.ko'); do size -A -d $f | grep BTF | awk '{print $2}'; done | awk '{ s += $1 } END { print s }' 5194047 $ for f in $(find . -name '*.ko'); do printf "%s %d\n" $f $(size -A -d $f | grep BTF | awk '{print $2}'); done | sort -nr -k2 | head -n10 ./drivers/gpu/drm/i915/i915.ko 293206 ./drivers/gpu/drm/radeon/radeon.ko 282103 ./fs/xfs/xfs.ko 222150 ./drivers/net/ethernet/mellanox/mlx5/core/mlx5_core.ko 198503 ./drivers/infiniband/hw/mlx5/mlx5_ib.ko 198356 ./drivers/net/ethernet/broadcom/bnx2x/bnx2x.ko 113444 ./fs/cifs/cifs.ko 109379 ./arch/x86/kvm/kvm.ko 100225 ./drivers/gpu/drm/drm.ko 94827 ./drivers/infiniband/core/ib_core.ko 91188 Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20201110011932.3201430-4-andrii@kernel.org
2020-11-10 01:19:30 +00:00
+$(call if_changed_except,ld_ko_o,vmlinux)
ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+$(if $(newer-prereqs),$(call cmd,btf_ko))
endif
targets += $(modules:%.o=%.ko) $(modules:%.o=%.mod.o)
# Add FORCE to the prequisites of a target to force it to be always rebuilt.
# ---------------------------------------------------------------------------
PHONY += FORCE
FORCE:
# Read all saved command lines and dependencies for the $(targets) we
# may be building above, using $(if_changed{,_dep}). As an
# optimization, we don't need to read them if the target does not
# exist, we will rebuild anyway in that case.
existing-targets := $(wildcard $(sort $(targets)))
-include $(foreach f,$(existing-targets),$(dir $(f)).$(notdir $(f)).cmd)
.PHONY: $(PHONY)