linux-next/mm/memcontrol-v1.c

1327 lines
33 KiB
C
Raw Normal View History

mm: memcg: introduce memcontrol-v1.c Patch series "mm: memcg: separate legacy cgroup v1 code and put under config option", v2. Cgroups v2 have been around for a while and many users have fully adopted them, so they never use cgroups v1 features and functionality. Yet they have to "pay" for the cgroup v1 support anyway: 1) the kernel binary contains an unused cgroup v1 code, 2) some code paths have additional checks which are not needed, 3) some common structures like task_struct and mem_cgroup contain unused cgroup v1-specific members. Cgroup v1's memory controller has a number of features that are not supported by cgroup v2 and their implementation is pretty much self contained. Most notably, these features are: soft limit reclaim, oom handling in userspace, complicated event notification system, charge migration. Cgroup v1-specific code in memcontrol.c is close to 4k lines in size and it's intervened with generic and cgroup v2-specific code. It's a burden on developers and maintainers. This patchset aims to solve these problems by: 1) moving cgroup v1-specific memcg code to the new mm/memcontrol-v1.c file, 2) putting definitions shared by memcontrol.c and memcontrol-v1.c into the mm/memcontrol-v1.h header, 3) introducing the CONFIG_MEMCG_V1 config option, turned off by default, 4) making memcontrol-v1.c to compile only if CONFIG_MEMCG_V1 is set. If CONFIG_MEMCG_V1 is not set, cgroup v1 memory controller is still available for mounting, however no memory-specific control knobs are present. This patch (of 14): This patch introduces the mm/memcontrol-v1.c source file which will be used for all legacy (cgroup v1) memory cgroup code. It also introduces mm/memcontrol-v1.h to keep declarations shared between mm/memcontrol.c and mm/memcontrol-v1.c. As of now, let's compile it if CONFIG_MEMCG is set, similar to mm/memcontrol.c. Later on it can be switched to use a separate config option, so that the legacy code won't be compiled if not required. Link: https://lkml.kernel.org/r/20240625005906.106920-1-roman.gushchin@linux.dev Link: https://lkml.kernel.org/r/20240625005906.106920-2-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-25 00:58:53 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/memcontrol.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/pagewalk.h>
#include <linux/backing-dev.h>
#include <linux/swap_cgroup.h>
#include "internal.h"
#include "swap.h"
mm: memcg: introduce memcontrol-v1.c Patch series "mm: memcg: separate legacy cgroup v1 code and put under config option", v2. Cgroups v2 have been around for a while and many users have fully adopted them, so they never use cgroups v1 features and functionality. Yet they have to "pay" for the cgroup v1 support anyway: 1) the kernel binary contains an unused cgroup v1 code, 2) some code paths have additional checks which are not needed, 3) some common structures like task_struct and mem_cgroup contain unused cgroup v1-specific members. Cgroup v1's memory controller has a number of features that are not supported by cgroup v2 and their implementation is pretty much self contained. Most notably, these features are: soft limit reclaim, oom handling in userspace, complicated event notification system, charge migration. Cgroup v1-specific code in memcontrol.c is close to 4k lines in size and it's intervened with generic and cgroup v2-specific code. It's a burden on developers and maintainers. This patchset aims to solve these problems by: 1) moving cgroup v1-specific memcg code to the new mm/memcontrol-v1.c file, 2) putting definitions shared by memcontrol.c and memcontrol-v1.c into the mm/memcontrol-v1.h header, 3) introducing the CONFIG_MEMCG_V1 config option, turned off by default, 4) making memcontrol-v1.c to compile only if CONFIG_MEMCG_V1 is set. If CONFIG_MEMCG_V1 is not set, cgroup v1 memory controller is still available for mounting, however no memory-specific control knobs are present. This patch (of 14): This patch introduces the mm/memcontrol-v1.c source file which will be used for all legacy (cgroup v1) memory cgroup code. It also introduces mm/memcontrol-v1.h to keep declarations shared between mm/memcontrol.c and mm/memcontrol-v1.c. As of now, let's compile it if CONFIG_MEMCG is set, similar to mm/memcontrol.c. Later on it can be switched to use a separate config option, so that the legacy code won't be compiled if not required. Link: https://lkml.kernel.org/r/20240625005906.106920-1-roman.gushchin@linux.dev Link: https://lkml.kernel.org/r/20240625005906.106920-2-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-25 00:58:53 +00:00
#include "memcontrol-v1.h"
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation
*/
struct mem_cgroup_tree_per_node {
struct rb_root rb_root;
struct rb_node *rb_rightmost;
spinlock_t lock;
};
struct mem_cgroup_tree {
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
/*
* Maximum loops in mem_cgroup_soft_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
/* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved.
*/
#define MOVE_ANON 0x1U
#define MOVE_FILE 0x2U
#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
spinlock_t lock; /* for from, to */
struct mm_struct *mm;
struct mem_cgroup *from;
struct mem_cgroup *to;
unsigned long flags;
unsigned long precharge;
unsigned long moved_charge;
unsigned long moved_swap;
struct task_struct *moving_task; /* a task moving charges */
wait_queue_head_t waitq; /* a waitq for other context */
} mc = {
.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz,
unsigned long new_usage_in_excess)
{
struct rb_node **p = &mctz->rb_root.rb_node;
struct rb_node *parent = NULL;
struct mem_cgroup_per_node *mz_node;
bool rightmost = true;
if (mz->on_tree)
return;
mz->usage_in_excess = new_usage_in_excess;
if (!mz->usage_in_excess)
return;
while (*p) {
parent = *p;
mz_node = rb_entry(parent, struct mem_cgroup_per_node,
tree_node);
if (mz->usage_in_excess < mz_node->usage_in_excess) {
p = &(*p)->rb_left;
rightmost = false;
} else {
p = &(*p)->rb_right;
}
}
if (rightmost)
mctz->rb_rightmost = &mz->tree_node;
rb_link_node(&mz->tree_node, parent, p);
rb_insert_color(&mz->tree_node, &mctz->rb_root);
mz->on_tree = true;
}
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz)
{
if (!mz->on_tree)
return;
if (&mz->tree_node == mctz->rb_rightmost)
mctz->rb_rightmost = rb_prev(&mz->tree_node);
rb_erase(&mz->tree_node, &mctz->rb_root);
mz->on_tree = false;
}
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz)
{
unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
__mem_cgroup_remove_exceeded(mz, mctz);
spin_unlock_irqrestore(&mctz->lock, flags);
}
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
unsigned long nr_pages = page_counter_read(&memcg->memory);
unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
unsigned long excess = 0;
if (nr_pages > soft_limit)
excess = nr_pages - soft_limit;
return excess;
}
void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
{
unsigned long excess;
struct mem_cgroup_per_node *mz;
struct mem_cgroup_tree_per_node *mctz;
if (lru_gen_enabled()) {
if (soft_limit_excess(memcg))
lru_gen_soft_reclaim(memcg, nid);
return;
}
mctz = soft_limit_tree.rb_tree_per_node[nid];
if (!mctz)
return;
/*
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
*/
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
mz = memcg->nodeinfo[nid];
excess = soft_limit_excess(memcg);
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
*/
if (excess || mz->on_tree) {
unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
*/
__mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock_irqrestore(&mctz->lock, flags);
}
}
}
void memcg1_remove_from_trees(struct mem_cgroup *memcg)
{
struct mem_cgroup_tree_per_node *mctz;
struct mem_cgroup_per_node *mz;
int nid;
for_each_node(nid) {
mz = memcg->nodeinfo[nid];
mctz = soft_limit_tree.rb_tree_per_node[nid];
if (mctz)
mem_cgroup_remove_exceeded(mz, mctz);
}
}
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
struct mem_cgroup_per_node *mz;
retry:
mz = NULL;
if (!mctz->rb_rightmost)
goto done; /* Nothing to reclaim from */
mz = rb_entry(mctz->rb_rightmost,
struct mem_cgroup_per_node, tree_node);
/*
* Remove the node now but someone else can add it back,
* we will to add it back at the end of reclaim to its correct
* position in the tree.
*/
__mem_cgroup_remove_exceeded(mz, mctz);
if (!soft_limit_excess(mz->memcg) ||
!css_tryget(&mz->memcg->css))
goto retry;
done:
return mz;
}
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
struct mem_cgroup_per_node *mz;
spin_lock_irq(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock_irq(&mctz->lock);
return mz;
}
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
pg_data_t *pgdat,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
struct mem_cgroup *victim = NULL;
int total = 0;
int loop = 0;
unsigned long excess;
unsigned long nr_scanned;
struct mem_cgroup_reclaim_cookie reclaim = {
.pgdat = pgdat,
};
excess = soft_limit_excess(root_memcg);
while (1) {
victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
if (!victim) {
loop++;
if (loop >= 2) {
/*
* If we have not been able to reclaim
* anything, it might because there are
* no reclaimable pages under this hierarchy
*/
if (!total)
break;
/*
* We want to do more targeted reclaim.
* excess >> 2 is not to excessive so as to
* reclaim too much, nor too less that we keep
* coming back to reclaim from this cgroup
*/
if (total >= (excess >> 2) ||
(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
break;
}
continue;
}
total += mem_cgroup_shrink_node(victim, gfp_mask, false,
pgdat, &nr_scanned);
*total_scanned += nr_scanned;
if (!soft_limit_excess(root_memcg))
break;
}
mem_cgroup_iter_break(root_memcg, victim);
return total;
}
unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
unsigned long nr_reclaimed = 0;
struct mem_cgroup_per_node *mz, *next_mz = NULL;
unsigned long reclaimed;
int loop = 0;
struct mem_cgroup_tree_per_node *mctz;
unsigned long excess;
if (lru_gen_enabled())
return 0;
if (order > 0)
return 0;
mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
/*
* Do not even bother to check the largest node if the root
* is empty. Do it lockless to prevent lock bouncing. Races
* are acceptable as soft limit is best effort anyway.
*/
if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
return 0;
/*
* This loop can run a while, specially if mem_cgroup's continuously
* keep exceeding their soft limit and putting the system under
* pressure
*/
do {
if (next_mz)
mz = next_mz;
else
mz = mem_cgroup_largest_soft_limit_node(mctz);
if (!mz)
break;
reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
gfp_mask, total_scanned);
nr_reclaimed += reclaimed;
spin_lock_irq(&mctz->lock);
/*
* If we failed to reclaim anything from this memory cgroup
* it is time to move on to the next cgroup
*/
next_mz = NULL;
if (!reclaimed)
next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
excess = soft_limit_excess(mz->memcg);
/*
* One school of thought says that we should not add
* back the node to the tree if reclaim returns 0.
* But our reclaim could return 0, simply because due
* to priority we are exposing a smaller subset of
* memory to reclaim from. Consider this as a longer
* term TODO.
*/
/* If excess == 0, no tree ops */
__mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock_irq(&mctz->lock);
css_put(&mz->memcg->css);
loop++;
/*
* Could not reclaim anything and there are no more
* mem cgroups to try or we seem to be looping without
* reclaiming anything.
*/
if (!nr_reclaimed &&
(next_mz == NULL ||
loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
break;
} while (!nr_reclaimed);
if (next_mz)
css_put(&next_mz->memcg->css);
return nr_reclaimed;
}
/*
* A routine for checking "mem" is under move_account() or not.
*
* Checking a cgroup is mc.from or mc.to or under hierarchy of
* moving cgroups. This is for waiting at high-memory pressure
* caused by "move".
*/
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
{
struct mem_cgroup *from;
struct mem_cgroup *to;
bool ret = false;
/*
* Unlike task_move routines, we access mc.to, mc.from not under
* mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
*/
spin_lock(&mc.lock);
from = mc.from;
to = mc.to;
if (!from)
goto unlock;
ret = mem_cgroup_is_descendant(from, memcg) ||
mem_cgroup_is_descendant(to, memcg);
unlock:
spin_unlock(&mc.lock);
return ret;
}
bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
{
if (mc.moving_task && current != mc.moving_task) {
if (mem_cgroup_under_move(memcg)) {
DEFINE_WAIT(wait);
prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
/* moving charge context might have finished. */
if (mc.moving_task)
schedule();
finish_wait(&mc.waitq, &wait);
return true;
}
}
return false;
}
/**
* folio_memcg_lock - Bind a folio to its memcg.
* @folio: The folio.
*
* This function prevents unlocked LRU folios from being moved to
* another cgroup.
*
* It ensures lifetime of the bound memcg. The caller is responsible
* for the lifetime of the folio.
*/
void folio_memcg_lock(struct folio *folio)
{
struct mem_cgroup *memcg;
unsigned long flags;
/*
* The RCU lock is held throughout the transaction. The fast
* path can get away without acquiring the memcg->move_lock
* because page moving starts with an RCU grace period.
*/
rcu_read_lock();
if (mem_cgroup_disabled())
return;
again:
memcg = folio_memcg(folio);
if (unlikely(!memcg))
return;
#ifdef CONFIG_PROVE_LOCKING
local_irq_save(flags);
might_lock(&memcg->move_lock);
local_irq_restore(flags);
#endif
if (atomic_read(&memcg->moving_account) <= 0)
return;
spin_lock_irqsave(&memcg->move_lock, flags);
if (memcg != folio_memcg(folio)) {
spin_unlock_irqrestore(&memcg->move_lock, flags);
goto again;
}
/*
* When charge migration first begins, we can have multiple
* critical sections holding the fast-path RCU lock and one
* holding the slowpath move_lock. Track the task who has the
* move_lock for folio_memcg_unlock().
*/
memcg->move_lock_task = current;
memcg->move_lock_flags = flags;
}
static void __folio_memcg_unlock(struct mem_cgroup *memcg)
{
if (memcg && memcg->move_lock_task == current) {
unsigned long flags = memcg->move_lock_flags;
memcg->move_lock_task = NULL;
memcg->move_lock_flags = 0;
spin_unlock_irqrestore(&memcg->move_lock, flags);
}
rcu_read_unlock();
}
/**
* folio_memcg_unlock - Release the binding between a folio and its memcg.
* @folio: The folio.
*
* This releases the binding created by folio_memcg_lock(). This does
* not change the accounting of this folio to its memcg, but it does
* permit others to change it.
*/
void folio_memcg_unlock(struct folio *folio)
{
__folio_memcg_unlock(folio_memcg(folio));
}
#ifdef CONFIG_SWAP
/**
* mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
* @entry: swap entry to be moved
* @from: mem_cgroup which the entry is moved from
* @to: mem_cgroup which the entry is moved to
*
* It succeeds only when the swap_cgroup's record for this entry is the same
* as the mem_cgroup's id of @from.
*
* Returns 0 on success, -EINVAL on failure.
*
* The caller must have charged to @to, IOW, called page_counter_charge() about
* both res and memsw, and called css_get().
*/
static int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to)
{
unsigned short old_id, new_id;
old_id = mem_cgroup_id(from);
new_id = mem_cgroup_id(to);
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
mod_memcg_state(from, MEMCG_SWAP, -1);
mod_memcg_state(to, MEMCG_SWAP, 1);
return 0;
}
return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to)
{
return -EINVAL;
}
#endif
u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return mem_cgroup_from_css(css)->move_charge_at_immigrate;
}
#ifdef CONFIG_MMU
int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
"Please report your usecase to linux-mm@kvack.org if you "
"depend on this functionality.\n");
if (val & ~MOVE_MASK)
return -EINVAL;
/*
* No kind of locking is needed in here, because ->can_attach() will
* check this value once in the beginning of the process, and then carry
* on with stale data. This means that changes to this value will only
* affect task migrations starting after the change.
*/
memcg->move_charge_at_immigrate = val;
return 0;
}
#else
int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
return -ENOSYS;
}
#endif
#ifdef CONFIG_MMU
/* Handlers for move charge at task migration. */
static int mem_cgroup_do_precharge(unsigned long count)
{
int ret;
/* Try a single bulk charge without reclaim first, kswapd may wake */
ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
if (!ret) {
mc.precharge += count;
return ret;
}
/* Try charges one by one with reclaim, but do not retry */
while (count--) {
ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
if (ret)
return ret;
mc.precharge++;
cond_resched();
}
return 0;
}
union mc_target {
struct folio *folio;
swp_entry_t ent;
};
enum mc_target_type {
MC_TARGET_NONE = 0,
MC_TARGET_PAGE,
MC_TARGET_SWAP,
MC_TARGET_DEVICE,
};
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent)
{
struct page *page = vm_normal_page(vma, addr, ptent);
if (!page)
return NULL;
if (PageAnon(page)) {
if (!(mc.flags & MOVE_ANON))
return NULL;
} else {
if (!(mc.flags & MOVE_FILE))
return NULL;
}
get_page(page);
return page;
}
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
pte_t ptent, swp_entry_t *entry)
{
struct page *page = NULL;
swp_entry_t ent = pte_to_swp_entry(ptent);
if (!(mc.flags & MOVE_ANON))
return NULL;
/*
* Handle device private pages that are not accessible by the CPU, but
* stored as special swap entries in the page table.
*/
if (is_device_private_entry(ent)) {
page = pfn_swap_entry_to_page(ent);
if (!get_page_unless_zero(page))
return NULL;
return page;
}
if (non_swap_entry(ent))
return NULL;
/*
* Because swap_cache_get_folio() updates some statistics counter,
* we call find_get_page() with swapper_space directly.
*/
page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
entry->val = ent.val;
return page;
}
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
pte_t ptent, swp_entry_t *entry)
{
return NULL;
}
#endif
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent)
{
unsigned long index;
struct folio *folio;
if (!vma->vm_file) /* anonymous vma */
return NULL;
if (!(mc.flags & MOVE_FILE))
return NULL;
/* folio is moved even if it's not RSS of this task(page-faulted). */
/* shmem/tmpfs may report page out on swap: account for that too. */
index = linear_page_index(vma, addr);
folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
if (IS_ERR(folio))
return NULL;
return folio_file_page(folio, index);
}
/**
* mem_cgroup_move_account - move account of the folio
* @folio: The folio.
* @compound: charge the page as compound or small page
* @from: mem_cgroup which the folio is moved from.
* @to: mem_cgroup which the folio is moved to. @from != @to.
*
* The folio must be locked and not on the LRU.
*
* This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
* from old cgroup.
*/
static int mem_cgroup_move_account(struct folio *folio,
bool compound,
struct mem_cgroup *from,
struct mem_cgroup *to)
{
struct lruvec *from_vec, *to_vec;
struct pglist_data *pgdat;
unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
int nid, ret;
VM_BUG_ON(from == to);
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
VM_BUG_ON(compound && !folio_test_large(folio));
ret = -EINVAL;
if (folio_memcg(folio) != from)
goto out;
pgdat = folio_pgdat(folio);
from_vec = mem_cgroup_lruvec(from, pgdat);
to_vec = mem_cgroup_lruvec(to, pgdat);
folio_memcg_lock(folio);
if (folio_test_anon(folio)) {
if (folio_mapped(folio)) {
__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
if (folio_test_pmd_mappable(folio)) {
__mod_lruvec_state(from_vec, NR_ANON_THPS,
-nr_pages);
__mod_lruvec_state(to_vec, NR_ANON_THPS,
nr_pages);
}
}
} else {
__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
if (folio_test_swapbacked(folio)) {
__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
}
if (folio_mapped(folio)) {
__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
}
if (folio_test_dirty(folio)) {
struct address_space *mapping = folio_mapping(folio);
if (mapping_can_writeback(mapping)) {
__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
-nr_pages);
__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
nr_pages);
}
}
}
#ifdef CONFIG_SWAP
if (folio_test_swapcache(folio)) {
__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
}
#endif
if (folio_test_writeback(folio)) {
__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
}
/*
* All state has been migrated, let's switch to the new memcg.
*
* It is safe to change page's memcg here because the page
* is referenced, charged, isolated, and locked: we can't race
* with (un)charging, migration, LRU putback, or anything else
* that would rely on a stable page's memory cgroup.
*
* Note that folio_memcg_lock is a memcg lock, not a page lock,
* to save space. As soon as we switch page's memory cgroup to a
* new memcg that isn't locked, the above state can change
* concurrently again. Make sure we're truly done with it.
*/
smp_mb();
css_get(&to->css);
css_put(&from->css);
folio->memcg_data = (unsigned long)to;
__folio_memcg_unlock(from);
ret = 0;
nid = folio_nid(folio);
local_irq_disable();
mem_cgroup_charge_statistics(to, nr_pages);
memcg_check_events(to, nid);
mem_cgroup_charge_statistics(from, -nr_pages);
memcg_check_events(from, nid);
local_irq_enable();
out:
return ret;
}
/**
* get_mctgt_type - get target type of moving charge
* @vma: the vma the pte to be checked belongs
* @addr: the address corresponding to the pte to be checked
* @ptent: the pte to be checked
* @target: the pointer the target page or swap ent will be stored(can be NULL)
*
* Context: Called with pte lock held.
* Return:
* * MC_TARGET_NONE - If the pte is not a target for move charge.
* * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
* move charge. If @target is not NULL, the folio is stored in target->folio
* with extra refcnt taken (Caller should release it).
* * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
* target for charge migration. If @target is not NULL, the entry is
* stored in target->ent.
* * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
* thus not on the lru. For now such page is charged like a regular page
* would be as it is just special memory taking the place of a regular page.
* See Documentations/vm/hmm.txt and include/linux/hmm.h
*/
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, union mc_target *target)
{
struct page *page = NULL;
struct folio *folio;
enum mc_target_type ret = MC_TARGET_NONE;
swp_entry_t ent = { .val = 0 };
if (pte_present(ptent))
page = mc_handle_present_pte(vma, addr, ptent);
else if (pte_none_mostly(ptent))
/*
* PTE markers should be treated as a none pte here, separated
* from other swap handling below.
*/
page = mc_handle_file_pte(vma, addr, ptent);
else if (is_swap_pte(ptent))
page = mc_handle_swap_pte(vma, ptent, &ent);
if (page)
folio = page_folio(page);
if (target && page) {
if (!folio_trylock(folio)) {
folio_put(folio);
return ret;
}
/*
* page_mapped() must be stable during the move. This
* pte is locked, so if it's present, the page cannot
* become unmapped. If it isn't, we have only partial
* control over the mapped state: the page lock will
* prevent new faults against pagecache and swapcache,
* so an unmapped page cannot become mapped. However,
* if the page is already mapped elsewhere, it can
* unmap, and there is nothing we can do about it.
* Alas, skip moving the page in this case.
*/
if (!pte_present(ptent) && page_mapped(page)) {
folio_unlock(folio);
folio_put(folio);
return ret;
}
}
if (!page && !ent.val)
return ret;
if (page) {
/*
* Do only loose check w/o serialization.
* mem_cgroup_move_account() checks the page is valid or
* not under LRU exclusion.
*/
if (folio_memcg(folio) == mc.from) {
ret = MC_TARGET_PAGE;
if (folio_is_device_private(folio) ||
folio_is_device_coherent(folio))
ret = MC_TARGET_DEVICE;
if (target)
target->folio = folio;
}
if (!ret || !target) {
if (target)
folio_unlock(folio);
folio_put(folio);
}
}
/*
* There is a swap entry and a page doesn't exist or isn't charged.
* But we cannot move a tail-page in a THP.
*/
if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
ret = MC_TARGET_SWAP;
if (target)
target->ent = ent;
}
return ret;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* We don't consider PMD mapped swapping or file mapped pages because THP does
* not support them for now.
* Caller should make sure that pmd_trans_huge(pmd) is true.
*/
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, union mc_target *target)
{
struct page *page = NULL;
struct folio *folio;
enum mc_target_type ret = MC_TARGET_NONE;
if (unlikely(is_swap_pmd(pmd))) {
VM_BUG_ON(thp_migration_supported() &&
!is_pmd_migration_entry(pmd));
return ret;
}
page = pmd_page(pmd);
VM_BUG_ON_PAGE(!page || !PageHead(page), page);
folio = page_folio(page);
if (!(mc.flags & MOVE_ANON))
return ret;
if (folio_memcg(folio) == mc.from) {
ret = MC_TARGET_PAGE;
if (target) {
folio_get(folio);
if (!folio_trylock(folio)) {
folio_put(folio);
return MC_TARGET_NONE;
}
target->folio = folio;
}
}
return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, union mc_target *target)
{
return MC_TARGET_NONE;
}
#endif
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
pte_t *pte;
spinlock_t *ptl;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
/*
* Note their can not be MC_TARGET_DEVICE for now as we do not
* support transparent huge page with MEMORY_DEVICE_PRIVATE but
* this might change.
*/
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
mc.precharge += HPAGE_PMD_NR;
spin_unlock(ptl);
return 0;
}
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
if (!pte)
return 0;
for (; addr != end; pte++, addr += PAGE_SIZE)
if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
mc.precharge++; /* increment precharge temporarily */
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static const struct mm_walk_ops precharge_walk_ops = {
.pmd_entry = mem_cgroup_count_precharge_pte_range,
.walk_lock = PGWALK_RDLOCK,
};
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
unsigned long precharge;
mmap_read_lock(mm);
walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
mmap_read_unlock(mm);
precharge = mc.precharge;
mc.precharge = 0;
return precharge;
}
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
unsigned long precharge = mem_cgroup_count_precharge(mm);
VM_BUG_ON(mc.moving_task);
mc.moving_task = current;
return mem_cgroup_do_precharge(precharge);
}
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
{
struct mem_cgroup *from = mc.from;
struct mem_cgroup *to = mc.to;
/* we must uncharge all the leftover precharges from mc.to */
if (mc.precharge) {
mem_cgroup_cancel_charge(mc.to, mc.precharge);
mc.precharge = 0;
}
/*
* we didn't uncharge from mc.from at mem_cgroup_move_account(), so
* we must uncharge here.
*/
if (mc.moved_charge) {
mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
mc.moved_charge = 0;
}
/* we must fixup refcnts and charges */
if (mc.moved_swap) {
/* uncharge swap account from the old cgroup */
if (!mem_cgroup_is_root(mc.from))
page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
mem_cgroup_id_put_many(mc.from, mc.moved_swap);
/*
* we charged both to->memory and to->memsw, so we
* should uncharge to->memory.
*/
if (!mem_cgroup_is_root(mc.to))
page_counter_uncharge(&mc.to->memory, mc.moved_swap);
mc.moved_swap = 0;
}
memcg_oom_recover(from);
memcg_oom_recover(to);
wake_up_all(&mc.waitq);
}
static void mem_cgroup_clear_mc(void)
{
struct mm_struct *mm = mc.mm;
/*
* we must clear moving_task before waking up waiters at the end of
* task migration.
*/
mc.moving_task = NULL;
__mem_cgroup_clear_mc();
spin_lock(&mc.lock);
mc.from = NULL;
mc.to = NULL;
mc.mm = NULL;
spin_unlock(&mc.lock);
mmput(mm);
}
int memcg1_can_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
struct mem_cgroup *from;
struct task_struct *leader, *p;
struct mm_struct *mm;
unsigned long move_flags;
int ret = 0;
/* charge immigration isn't supported on the default hierarchy */
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
return 0;
/*
* Multi-process migrations only happen on the default hierarchy
* where charge immigration is not used. Perform charge
* immigration if @tset contains a leader and whine if there are
* multiple.
*/
p = NULL;
cgroup_taskset_for_each_leader(leader, css, tset) {
WARN_ON_ONCE(p);
p = leader;
memcg = mem_cgroup_from_css(css);
}
if (!p)
return 0;
/*
* We are now committed to this value whatever it is. Changes in this
* tunable will only affect upcoming migrations, not the current one.
* So we need to save it, and keep it going.
*/
move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
if (!move_flags)
return 0;
from = mem_cgroup_from_task(p);
VM_BUG_ON(from == memcg);
mm = get_task_mm(p);
if (!mm)
return 0;
/* We move charges only when we move a owner of the mm */
if (mm->owner == p) {
VM_BUG_ON(mc.from);
VM_BUG_ON(mc.to);
VM_BUG_ON(mc.precharge);
VM_BUG_ON(mc.moved_charge);
VM_BUG_ON(mc.moved_swap);
spin_lock(&mc.lock);
mc.mm = mm;
mc.from = from;
mc.to = memcg;
mc.flags = move_flags;
spin_unlock(&mc.lock);
/* We set mc.moving_task later */
ret = mem_cgroup_precharge_mc(mm);
if (ret)
mem_cgroup_clear_mc();
} else {
mmput(mm);
}
return ret;
}
void memcg1_cancel_attach(struct cgroup_taskset *tset)
{
if (mc.to)
mem_cgroup_clear_mc();
}
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
int ret = 0;
struct vm_area_struct *vma = walk->vma;
pte_t *pte;
spinlock_t *ptl;
enum mc_target_type target_type;
union mc_target target;
struct folio *folio;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
if (mc.precharge < HPAGE_PMD_NR) {
spin_unlock(ptl);
return 0;
}
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
if (target_type == MC_TARGET_PAGE) {
folio = target.folio;
if (folio_isolate_lru(folio)) {
if (!mem_cgroup_move_account(folio, true,
mc.from, mc.to)) {
mc.precharge -= HPAGE_PMD_NR;
mc.moved_charge += HPAGE_PMD_NR;
}
folio_putback_lru(folio);
}
folio_unlock(folio);
folio_put(folio);
} else if (target_type == MC_TARGET_DEVICE) {
folio = target.folio;
if (!mem_cgroup_move_account(folio, true,
mc.from, mc.to)) {
mc.precharge -= HPAGE_PMD_NR;
mc.moved_charge += HPAGE_PMD_NR;
}
folio_unlock(folio);
folio_put(folio);
}
spin_unlock(ptl);
return 0;
}
retry:
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
if (!pte)
return 0;
for (; addr != end; addr += PAGE_SIZE) {
pte_t ptent = ptep_get(pte++);
bool device = false;
swp_entry_t ent;
if (!mc.precharge)
break;
switch (get_mctgt_type(vma, addr, ptent, &target)) {
case MC_TARGET_DEVICE:
device = true;
fallthrough;
case MC_TARGET_PAGE:
folio = target.folio;
/*
* We can have a part of the split pmd here. Moving it
* can be done but it would be too convoluted so simply
* ignore such a partial THP and keep it in original
* memcg. There should be somebody mapping the head.
*/
if (folio_test_large(folio))
goto put;
if (!device && !folio_isolate_lru(folio))
goto put;
if (!mem_cgroup_move_account(folio, false,
mc.from, mc.to)) {
mc.precharge--;
/* we uncharge from mc.from later. */
mc.moved_charge++;
}
if (!device)
folio_putback_lru(folio);
put: /* get_mctgt_type() gets & locks the page */
folio_unlock(folio);
folio_put(folio);
break;
case MC_TARGET_SWAP:
ent = target.ent;
if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
mc.precharge--;
mem_cgroup_id_get_many(mc.to, 1);
/* we fixup other refcnts and charges later. */
mc.moved_swap++;
}
break;
default:
break;
}
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
if (addr != end) {
/*
* We have consumed all precharges we got in can_attach().
* We try charge one by one, but don't do any additional
* charges to mc.to if we have failed in charge once in attach()
* phase.
*/
ret = mem_cgroup_do_precharge(1);
if (!ret)
goto retry;
}
return ret;
}
static const struct mm_walk_ops charge_walk_ops = {
.pmd_entry = mem_cgroup_move_charge_pte_range,
.walk_lock = PGWALK_RDLOCK,
};
static void mem_cgroup_move_charge(void)
{
lru_add_drain_all();
/*
* Signal folio_memcg_lock() to take the memcg's move_lock
* while we're moving its pages to another memcg. Then wait
* for already started RCU-only updates to finish.
*/
atomic_inc(&mc.from->moving_account);
synchronize_rcu();
retry:
if (unlikely(!mmap_read_trylock(mc.mm))) {
/*
* Someone who are holding the mmap_lock might be waiting in
* waitq. So we cancel all extra charges, wake up all waiters,
* and retry. Because we cancel precharges, we might not be able
* to move enough charges, but moving charge is a best-effort
* feature anyway, so it wouldn't be a big problem.
*/
__mem_cgroup_clear_mc();
cond_resched();
goto retry;
}
/*
* When we have consumed all precharges and failed in doing
* additional charge, the page walk just aborts.
*/
walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
mmap_read_unlock(mc.mm);
atomic_dec(&mc.from->moving_account);
}
void memcg1_move_task(void)
{
if (mc.to) {
mem_cgroup_move_charge();
mem_cgroup_clear_mc();
}
}
#else /* !CONFIG_MMU */
int memcg1_can_attach(struct cgroup_taskset *tset)
{
return 0;
}
void memcg1_cancel_attach(struct cgroup_taskset *tset)
{
}
void memcg1_move_task(void)
{
}
#endif
static int __init memcg1_init(void)
{
int node;
for_each_node(node) {
struct mem_cgroup_tree_per_node *rtpn;
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
rtpn->rb_root = RB_ROOT;
rtpn->rb_rightmost = NULL;
spin_lock_init(&rtpn->lock);
soft_limit_tree.rb_tree_per_node[node] = rtpn;
}
return 0;
}
subsys_initcall(memcg1_init);