linux-next/drivers/powercap/intel_rapl_common.c

1564 lines
42 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 309 Based on 2 normalized pattern(s): it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program this program is free software you can redistribute it and or modify it under the terms and conditions of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 11 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190530000434.249870634@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-29 16:57:24 -07:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Common code for Intel Running Average Power Limit (RAPL) support.
* Copyright (c) 2019, Intel Corporation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/cpu.h>
#include <linux/powercap.h>
#include <linux/suspend.h>
#include <linux/intel_rapl.h>
#include <linux/processor.h>
#include <linux/platform_device.h>
#include <asm/iosf_mbi.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
/* bitmasks for RAPL MSRs, used by primitive access functions */
#define ENERGY_STATUS_MASK 0xffffffff
#define POWER_LIMIT1_MASK 0x7FFF
#define POWER_LIMIT1_ENABLE BIT(15)
#define POWER_LIMIT1_CLAMP BIT(16)
#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
#define POWER_LIMIT2_ENABLE BIT_ULL(47)
#define POWER_LIMIT2_CLAMP BIT_ULL(48)
#define POWER_HIGH_LOCK BIT_ULL(63)
#define POWER_LOW_LOCK BIT(31)
#define POWER_LIMIT4_MASK 0x1FFF
#define TIME_WINDOW1_MASK (0x7FULL<<17)
#define TIME_WINDOW2_MASK (0x7FULL<<49)
#define POWER_UNIT_OFFSET 0
#define POWER_UNIT_MASK 0x0F
#define ENERGY_UNIT_OFFSET 0x08
#define ENERGY_UNIT_MASK 0x1F00
#define TIME_UNIT_OFFSET 0x10
#define TIME_UNIT_MASK 0xF0000
#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
#define PP_POLICY_MASK 0x1F
/*
* SPR has different layout for Psys Domain PowerLimit registers.
* There are 17 bits of PL1 and PL2 instead of 15 bits.
* The Enable bits and TimeWindow bits are also shifted as a result.
*/
#define PSYS_POWER_LIMIT1_MASK 0x1FFFF
#define PSYS_POWER_LIMIT1_ENABLE BIT(17)
#define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32)
#define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49)
#define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19)
#define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51)
/* Non HW constants */
#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
#define RAPL_PRIMITIVE_DUMMY BIT(2)
#define TIME_WINDOW_MAX_MSEC 40000
#define TIME_WINDOW_MIN_MSEC 250
#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
enum unit_type {
ARBITRARY_UNIT, /* no translation */
POWER_UNIT,
ENERGY_UNIT,
TIME_UNIT,
};
/* per domain data, some are optional */
#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
#define DOMAIN_STATE_INACTIVE BIT(0)
#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
static const char pl1_name[] = "long_term";
static const char pl2_name[] = "short_term";
static const char pl4_name[] = "peak_power";
#define power_zone_to_rapl_domain(_zone) \
container_of(_zone, struct rapl_domain, power_zone)
struct rapl_defaults {
u8 floor_freq_reg_addr;
int (*check_unit)(struct rapl_package *rp, int cpu);
void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
bool to_raw);
unsigned int dram_domain_energy_unit;
unsigned int psys_domain_energy_unit;
bool spr_psys_bits;
};
static struct rapl_defaults *rapl_defaults;
/* Sideband MBI registers */
#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
#define PACKAGE_PLN_INT_SAVED BIT(0)
#define MAX_PRIM_NAME (32)
/* per domain data. used to describe individual knobs such that access function
* can be consolidated into one instead of many inline functions.
*/
struct rapl_primitive_info {
const char *name;
u64 mask;
int shift;
enum rapl_domain_reg_id id;
enum unit_type unit;
u32 flag;
};
#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
.name = #p, \
.mask = m, \
.shift = s, \
.id = i, \
.unit = u, \
.flag = f \
}
static void rapl_init_domains(struct rapl_package *rp);
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
bool xlate, u64 *data);
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value);
static u64 rapl_unit_xlate(struct rapl_domain *rd,
enum unit_type type, u64 value, int to_raw);
static void package_power_limit_irq_save(struct rapl_package *rp);
static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
static const char *const rapl_domain_names[] = {
"package",
"core",
"uncore",
"dram",
2016-04-17 15:03:01 -07:00
"psys",
};
static int get_energy_counter(struct powercap_zone *power_zone,
u64 *energy_raw)
{
struct rapl_domain *rd;
u64 energy_now;
/* prevent CPU hotplug, make sure the RAPL domain does not go
* away while reading the counter.
*/
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
*energy_raw = energy_now;
cpus_read_unlock();
return 0;
}
cpus_read_unlock();
return -EIO;
}
static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
return 0;
}
static int release_zone(struct powercap_zone *power_zone)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
struct rapl_package *rp = rd->rp;
/* package zone is the last zone of a package, we can free
* memory here since all children has been unregistered.
*/
if (rd->id == RAPL_DOMAIN_PACKAGE) {
kfree(rd);
rp->domains = NULL;
}
return 0;
}
static int find_nr_power_limit(struct rapl_domain *rd)
{
int i, nr_pl = 0;
for (i = 0; i < NR_POWER_LIMITS; i++) {
if (rd->rpl[i].name)
nr_pl++;
}
return nr_pl;
}
static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
return -EACCES;
cpus_read_lock();
rapl_write_data_raw(rd, PL1_ENABLE, mode);
if (rapl_defaults->set_floor_freq)
rapl_defaults->set_floor_freq(rd, mode);
cpus_read_unlock();
return 0;
}
static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
{
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
u64 val;
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
*mode = false;
return 0;
}
cpus_read_lock();
if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
cpus_read_unlock();
return -EIO;
}
*mode = val;
cpus_read_unlock();
return 0;
}
/* per RAPL domain ops, in the order of rapl_domain_type */
static const struct powercap_zone_ops zone_ops[] = {
/* RAPL_DOMAIN_PACKAGE */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP0 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_PP1 */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
/* RAPL_DOMAIN_DRAM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
2016-04-17 15:03:01 -07:00
/* RAPL_DOMAIN_PLATFORM */
{
.get_energy_uj = get_energy_counter,
.get_max_energy_range_uj = get_max_energy_counter,
.release = release_zone,
.set_enable = set_domain_enable,
.get_enable = get_domain_enable,
},
};
/*
* Constraint index used by powercap can be different than power limit (PL)
* index in that some PLs maybe missing due to non-existent MSRs. So we
* need to convert here by finding the valid PLs only (name populated).
*/
static int contraint_to_pl(struct rapl_domain *rd, int cid)
{
int i, j;
for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
if ((rd->rpl[i].name) && j++ == cid) {
pr_debug("%s: index %d\n", __func__, i);
return i;
}
}
pr_err("Cannot find matching power limit for constraint %d\n", cid);
return -EINVAL;
}
static int set_power_limit(struct powercap_zone *power_zone, int cid,
u64 power_limit)
{
struct rapl_domain *rd;
struct rapl_package *rp;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto set_exit;
}
rp = rd->rp;
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
dev_warn(&power_zone->dev,
"%s locked by BIOS, monitoring only\n", rd->name);
ret = -EACCES;
goto set_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
break;
case PL2_ENABLE:
rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
break;
case PL4_ENABLE:
rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
break;
default:
ret = -EINVAL;
}
if (!ret)
package_power_limit_irq_save(rp);
set_exit:
cpus_read_unlock();
return ret;
}
static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int prim;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto get_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
prim = POWER_LIMIT1;
break;
case PL2_ENABLE:
prim = POWER_LIMIT2;
break;
case PL4_ENABLE:
prim = POWER_LIMIT4;
break;
default:
cpus_read_unlock();
return -EINVAL;
}
if (rapl_read_data_raw(rd, prim, true, &val))
ret = -EIO;
else
*data = val;
get_exit:
cpus_read_unlock();
return ret;
}
static int set_time_window(struct powercap_zone *power_zone, int cid,
u64 window)
{
struct rapl_domain *rd;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto set_time_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
rapl_write_data_raw(rd, TIME_WINDOW1, window);
break;
case PL2_ENABLE:
rapl_write_data_raw(rd, TIME_WINDOW2, window);
break;
default:
ret = -EINVAL;
}
set_time_exit:
cpus_read_unlock();
return ret;
}
static int get_time_window(struct powercap_zone *power_zone, int cid,
u64 *data)
{
struct rapl_domain *rd;
u64 val;
int ret = 0;
int id;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id < 0) {
ret = id;
goto get_time_exit;
}
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
break;
case PL2_ENABLE:
ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
break;
case PL4_ENABLE:
/*
* Time window parameter is not applicable for PL4 entry
* so assigining '0' as default value.
*/
val = 0;
break;
default:
cpus_read_unlock();
return -EINVAL;
}
if (!ret)
*data = val;
get_time_exit:
cpus_read_unlock();
return ret;
}
static const char *get_constraint_name(struct powercap_zone *power_zone,
int cid)
{
struct rapl_domain *rd;
int id;
rd = power_zone_to_rapl_domain(power_zone);
id = contraint_to_pl(rd, cid);
if (id >= 0)
return rd->rpl[id].name;
return NULL;
}
static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
{
struct rapl_domain *rd;
u64 val;
int prim;
int ret = 0;
cpus_read_lock();
rd = power_zone_to_rapl_domain(power_zone);
switch (rd->rpl[id].prim_id) {
case PL1_ENABLE:
prim = THERMAL_SPEC_POWER;
break;
case PL2_ENABLE:
prim = MAX_POWER;
break;
case PL4_ENABLE:
prim = MAX_POWER;
break;
default:
cpus_read_unlock();
return -EINVAL;
}
if (rapl_read_data_raw(rd, prim, true, &val))
ret = -EIO;
else
*data = val;
/* As a generalization rule, PL4 would be around two times PL2. */
if (rd->rpl[id].prim_id == PL4_ENABLE)
*data = *data * 2;
cpus_read_unlock();
return ret;
}
static const struct powercap_zone_constraint_ops constraint_ops = {
.set_power_limit_uw = set_power_limit,
.get_power_limit_uw = get_current_power_limit,
.set_time_window_us = set_time_window,
.get_time_window_us = get_time_window,
.get_max_power_uw = get_max_power,
.get_name = get_constraint_name,
};
/* called after domain detection and package level data are set */
static void rapl_init_domains(struct rapl_package *rp)
{
enum rapl_domain_type i;
enum rapl_domain_reg_id j;
struct rapl_domain *rd = rp->domains;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
unsigned int mask = rp->domain_map & (1 << i);
if (!mask)
continue;
rd->rp = rp;
if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
topology_physical_package_id(rp->lead_cpu));
} else
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
rapl_domain_names[i]);
rd->id = i;
rd->rpl[0].prim_id = PL1_ENABLE;
rd->rpl[0].name = pl1_name;
/*
* The PL2 power domain is applicable for limits two
* and limits three
*/
if (rp->priv->limits[i] >= 2) {
rd->rpl[1].prim_id = PL2_ENABLE;
rd->rpl[1].name = pl2_name;
}
/* Enable PL4 domain if the total power limits are three */
if (rp->priv->limits[i] == 3) {
rd->rpl[2].prim_id = PL4_ENABLE;
rd->rpl[2].name = pl4_name;
}
for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
rd->regs[j] = rp->priv->regs[i][j];
switch (i) {
case RAPL_DOMAIN_DRAM:
rd->domain_energy_unit =
rapl_defaults->dram_domain_energy_unit;
if (rd->domain_energy_unit)
pr_info("DRAM domain energy unit %dpj\n",
rd->domain_energy_unit);
break;
case RAPL_DOMAIN_PLATFORM:
rd->domain_energy_unit =
rapl_defaults->psys_domain_energy_unit;
if (rd->domain_energy_unit)
pr_info("Platform domain energy unit %dpj\n",
rd->domain_energy_unit);
break;
default:
break;
}
rd++;
}
}
static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
u64 value, int to_raw)
{
u64 units = 1;
struct rapl_package *rp = rd->rp;
u64 scale = 1;
switch (type) {
case POWER_UNIT:
units = rp->power_unit;
break;
case ENERGY_UNIT:
scale = ENERGY_UNIT_SCALE;
/* per domain unit takes precedence */
if (rd->domain_energy_unit)
units = rd->domain_energy_unit;
else
units = rp->energy_unit;
break;
case TIME_UNIT:
return rapl_defaults->compute_time_window(rp, value, to_raw);
case ARBITRARY_UNIT:
default:
return value;
}
if (to_raw)
return div64_u64(value, units) * scale;
value *= units;
return div64_u64(value, scale);
}
/* in the order of enum rapl_primitives */
static struct rapl_primitive_info rpi[] = {
/* name, mask, shift, msr index, unit divisor */
PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
/* non-hardware */
PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
RAPL_PRIMITIVE_DERIVED),
{NULL, 0, 0, 0},
};
static enum rapl_primitives
prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
{
if (!rapl_defaults->spr_psys_bits)
return prim;
if (rd->id != RAPL_DOMAIN_PLATFORM)
return prim;
switch (prim) {
case POWER_LIMIT1:
return PSYS_POWER_LIMIT1;
case POWER_LIMIT2:
return PSYS_POWER_LIMIT2;
case PL1_ENABLE:
return PSYS_PL1_ENABLE;
case PL2_ENABLE:
return PSYS_PL2_ENABLE;
case TIME_WINDOW1:
return PSYS_TIME_WINDOW1;
case TIME_WINDOW2:
return PSYS_TIME_WINDOW2;
default:
return prim;
}
}
/* Read primitive data based on its related struct rapl_primitive_info.
* if xlate flag is set, return translated data based on data units, i.e.
* time, energy, and power.
* RAPL MSRs are non-architectual and are laid out not consistently across
* domains. Here we use primitive info to allow writing consolidated access
* functions.
* For a given primitive, it is processed by MSR mask and shift. Unit conversion
* is pre-assigned based on RAPL unit MSRs read at init time.
* 63-------------------------- 31--------------------------- 0
* | xxxxx (mask) |
* | |<- shift ----------------|
* 63-------------------------- 31--------------------------- 0
*/
static int rapl_read_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim, bool xlate, u64 *data)
{
u64 value;
enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
struct rapl_primitive_info *rp = &rpi[prim_fixed];
struct reg_action ra;
int cpu;
if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
return -EINVAL;
ra.reg = rd->regs[rp->id];
if (!ra.reg)
return -EINVAL;
cpu = rd->rp->lead_cpu;
/* domain with 2 limits has different bit */
if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
rp->mask = POWER_HIGH_LOCK;
rp->shift = 63;
}
/* non-hardware data are collected by the polling thread */
if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
*data = rd->rdd.primitives[prim];
return 0;
}
ra.mask = rp->mask;
if (rd->rp->priv->read_raw(cpu, &ra)) {
pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
return -EIO;
}
value = ra.value >> rp->shift;
if (xlate)
*data = rapl_unit_xlate(rd, rp->unit, value, 0);
else
*data = value;
return 0;
}
/* Similar use of primitive info in the read counterpart */
static int rapl_write_data_raw(struct rapl_domain *rd,
enum rapl_primitives prim,
unsigned long long value)
{
enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
struct rapl_primitive_info *rp = &rpi[prim_fixed];
int cpu;
u64 bits;
struct reg_action ra;
int ret;
cpu = rd->rp->lead_cpu;
bits = rapl_unit_xlate(rd, rp->unit, value, 1);
bits <<= rp->shift;
bits &= rp->mask;
memset(&ra, 0, sizeof(ra));
ra.reg = rd->regs[rp->id];
ra.mask = rp->mask;
ra.value = bits;
ret = rd->rp->priv->write_raw(cpu, &ra);
return ret;
}
/*
* Raw RAPL data stored in MSRs are in certain scales. We need to
* convert them into standard units based on the units reported in
* the RAPL unit MSRs. This is specific to CPUs as the method to
* calculate units differ on different CPUs.
* We convert the units to below format based on CPUs.
* i.e.
* energy unit: picoJoules : Represented in picoJoules by default
* power unit : microWatts : Represented in milliWatts by default
* time unit : microseconds: Represented in seconds by default
*/
static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
{
struct reg_action ra;
u32 value;
ra.reg = rp->priv->reg_unit;
ra.mask = ~0;
if (rp->priv->read_raw(cpu, &ra)) {
pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
rp->priv->reg_unit, cpu);
return -ENODEV;
}
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rp->power_unit = 1000000 / (1 << value);
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rp->time_unit = 1000000 / (1 << value);
pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
return 0;
}
static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
{
struct reg_action ra;
u32 value;
ra.reg = rp->priv->reg_unit;
ra.mask = ~0;
if (rp->priv->read_raw(cpu, &ra)) {
pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
rp->priv->reg_unit, cpu);
return -ENODEV;
}
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
rp->power_unit = (1 << value) * 1000;
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
rp->time_unit = 1000000 / (1 << value);
pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
return 0;
}
static void power_limit_irq_save_cpu(void *info)
{
u32 l, h = 0;
struct rapl_package *rp = (struct rapl_package *)info;
/* save the state of PLN irq mask bit before disabling it */
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
}
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
/* REVISIT:
* When package power limit is set artificially low by RAPL, LVT
* thermal interrupt for package power limit should be ignored
* since we are not really exceeding the real limit. The intention
* is to avoid excessive interrupts while we are trying to save power.
* A useful feature might be routing the package_power_limit interrupt
* to userspace via eventfd. once we have a usecase, this is simple
* to do by adding an atomic notifier.
*/
static void package_power_limit_irq_save(struct rapl_package *rp)
{
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
}
/*
* Restore per package power limit interrupt enable state. Called from cpu
* hotplug code on package removal.
*/
static void package_power_limit_irq_restore(struct rapl_package *rp)
{
u32 l, h;
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
return;
/* irq enable state not saved, nothing to restore */
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
return;
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
l |= PACKAGE_THERM_INT_PLN_ENABLE;
else
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
{
int nr_powerlimit = find_nr_power_limit(rd);
/* always enable clamp such that p-state can go below OS requested
* range. power capping priority over guranteed frequency.
*/
rapl_write_data_raw(rd, PL1_CLAMP, mode);
/* some domains have pl2 */
if (nr_powerlimit > 1) {
rapl_write_data_raw(rd, PL2_ENABLE, mode);
rapl_write_data_raw(rd, PL2_CLAMP, mode);
}
}
static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
{
static u32 power_ctrl_orig_val;
u32 mdata;
if (!rapl_defaults->floor_freq_reg_addr) {
pr_err("Invalid floor frequency config register\n");
return;
}
if (!power_ctrl_orig_val)
iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
rapl_defaults->floor_freq_reg_addr,
&power_ctrl_orig_val);
mdata = power_ctrl_orig_val;
if (enable) {
mdata &= ~(0x7f << 8);
mdata |= 1 << 8;
}
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
rapl_defaults->floor_freq_reg_addr, mdata);
}
static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
bool to_raw)
{
u64 f, y; /* fraction and exp. used for time unit */
/*
* Special processing based on 2^Y*(1+F/4), refer
* to Intel Software Developer's manual Vol.3B: CH 14.9.3.
*/
if (!to_raw) {
f = (value & 0x60) >> 5;
y = value & 0x1f;
value = (1 << y) * (4 + f) * rp->time_unit / 4;
} else {
if (value < rp->time_unit)
return 0;
do_div(value, rp->time_unit);
y = ilog2(value);
f = div64_u64(4 * (value - (1 << y)), 1 << y);
value = (y & 0x1f) | ((f & 0x3) << 5);
}
return value;
}
static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
bool to_raw)
{
/*
* Atom time unit encoding is straight forward val * time_unit,
* where time_unit is default to 1 sec. Never 0.
*/
if (!to_raw)
return (value) ? value * rp->time_unit : rp->time_unit;
value = div64_u64(value, rp->time_unit);
return value;
}
static const struct rapl_defaults rapl_defaults_core = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
};
static const struct rapl_defaults rapl_defaults_hsw_server = {
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
.dram_domain_energy_unit = 15300,
};
static const struct rapl_defaults rapl_defaults_spr_server = {
.check_unit = rapl_check_unit_core,
.set_floor_freq = set_floor_freq_default,
.compute_time_window = rapl_compute_time_window_core,
.psys_domain_energy_unit = 1000000000,
.spr_psys_bits = true,
};
static const struct rapl_defaults rapl_defaults_byt = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_tng = {
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = set_floor_freq_atom,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_ann = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_cht = {
.floor_freq_reg_addr = 0,
.check_unit = rapl_check_unit_atom,
.set_floor_freq = NULL,
.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_amd = {
.check_unit = rapl_check_unit_core,
};
static const struct x86_cpu_id rapl_ids[] __initconst = {
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
{}
};
MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
/* Read once for all raw primitive data for domains */
static void rapl_update_domain_data(struct rapl_package *rp)
{
int dmn, prim;
u64 val;
for (dmn = 0; dmn < rp->nr_domains; dmn++) {
pr_debug("update %s domain %s data\n", rp->name,
rp->domains[dmn].name);
/* exclude non-raw primitives */
for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
if (!rapl_read_data_raw(&rp->domains[dmn], prim,
rpi[prim].unit, &val))
rp->domains[dmn].rdd.primitives[prim] = val;
}
}
}
static int rapl_package_register_powercap(struct rapl_package *rp)
{
struct rapl_domain *rd;
struct powercap_zone *power_zone = NULL;
int nr_pl, ret;
/* Update the domain data of the new package */
rapl_update_domain_data(rp);
/* first we register package domain as the parent zone */
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
if (rd->id == RAPL_DOMAIN_PACKAGE) {
nr_pl = find_nr_power_limit(rd);
pr_debug("register package domain %s\n", rp->name);
power_zone = powercap_register_zone(&rd->power_zone,
rp->priv->control_type, rp->name,
NULL, &zone_ops[rd->id], nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register power zone %s\n",
rp->name);
return PTR_ERR(power_zone);
}
/* track parent zone in per package/socket data */
rp->power_zone = power_zone;
/* done, only one package domain per socket */
break;
}
}
if (!power_zone) {
pr_err("no package domain found, unknown topology!\n");
return -ENODEV;
}
/* now register domains as children of the socket/package */
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
struct powercap_zone *parent = rp->power_zone;
if (rd->id == RAPL_DOMAIN_PACKAGE)
continue;
if (rd->id == RAPL_DOMAIN_PLATFORM)
parent = NULL;
/* number of power limits per domain varies */
nr_pl = find_nr_power_limit(rd);
power_zone = powercap_register_zone(&rd->power_zone,
rp->priv->control_type,
rd->name, parent,
&zone_ops[rd->id], nr_pl,
&constraint_ops);
if (IS_ERR(power_zone)) {
pr_debug("failed to register power_zone, %s:%s\n",
rp->name, rd->name);
ret = PTR_ERR(power_zone);
goto err_cleanup;
}
}
return 0;
err_cleanup:
/*
* Clean up previously initialized domains within the package if we
* failed after the first domain setup.
*/
while (--rd >= rp->domains) {
pr_debug("unregister %s domain %s\n", rp->name, rd->name);
powercap_unregister_zone(rp->priv->control_type,
&rd->power_zone);
}
return ret;
}
static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
{
struct reg_action ra;
switch (domain) {
case RAPL_DOMAIN_PACKAGE:
case RAPL_DOMAIN_PP0:
case RAPL_DOMAIN_PP1:
case RAPL_DOMAIN_DRAM:
case RAPL_DOMAIN_PLATFORM:
ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
break;
default:
pr_err("invalid domain id %d\n", domain);
return -EINVAL;
}
/* make sure domain counters are available and contains non-zero
* values, otherwise skip it.
*/
ra.mask = ENERGY_STATUS_MASK;
if (rp->priv->read_raw(cpu, &ra) || !ra.value)
return -ENODEV;
return 0;
}
/*
* Check if power limits are available. Two cases when they are not available:
* 1. Locked by BIOS, in this case we still provide read-only access so that
* users can see what limit is set by the BIOS.
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
* exist at all. In this case, we do not show the constraints in powercap.
*
* Called after domains are detected and initialized.
*/
static void rapl_detect_powerlimit(struct rapl_domain *rd)
{
u64 val64;
int i;
/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
if (val64) {
pr_info("RAPL %s domain %s locked by BIOS\n",
rd->rp->name, rd->name);
rd->state |= DOMAIN_STATE_BIOS_LOCKED;
}
}
/* check if power limit MSR exists, otherwise domain is monitoring only */
for (i = 0; i < NR_POWER_LIMITS; i++) {
int prim = rd->rpl[i].prim_id;
if (rapl_read_data_raw(rd, prim, false, &val64))
rd->rpl[i].name = NULL;
}
}
/* Detect active and valid domains for the given CPU, caller must
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
*/
static int rapl_detect_domains(struct rapl_package *rp, int cpu)
{
struct rapl_domain *rd;
int i;
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
/* use physical package id to read counters */
if (!rapl_check_domain(cpu, i, rp)) {
rp->domain_map |= 1 << i;
pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
}
}
rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
if (!rp->nr_domains) {
pr_debug("no valid rapl domains found in %s\n", rp->name);
return -ENODEV;
}
pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
GFP_KERNEL);
if (!rp->domains)
return -ENOMEM;
rapl_init_domains(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
rapl_detect_powerlimit(rd);
return 0;
}
/* called from CPU hotplug notifier, hotplug lock held */
void rapl_remove_package(struct rapl_package *rp)
{
struct rapl_domain *rd, *rd_package = NULL;
package_power_limit_irq_restore(rp);
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
rapl_write_data_raw(rd, PL1_ENABLE, 0);
rapl_write_data_raw(rd, PL1_CLAMP, 0);
if (find_nr_power_limit(rd) > 1) {
rapl_write_data_raw(rd, PL2_ENABLE, 0);
rapl_write_data_raw(rd, PL2_CLAMP, 0);
rapl_write_data_raw(rd, PL4_ENABLE, 0);
}
if (rd->id == RAPL_DOMAIN_PACKAGE) {
rd_package = rd;
continue;
}
pr_debug("remove package, undo power limit on %s: %s\n",
rp->name, rd->name);
powercap_unregister_zone(rp->priv->control_type,
&rd->power_zone);
}
/* do parent zone last */
powercap_unregister_zone(rp->priv->control_type,
&rd_package->power_zone);
list_del(&rp->plist);
kfree(rp);
}
EXPORT_SYMBOL_GPL(rapl_remove_package);
/* caller to ensure CPU hotplug lock is held */
struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
{
int id = topology_logical_die_id(cpu);
struct rapl_package *rp;
list_for_each_entry(rp, &rapl_packages, plist) {
if (rp->id == id
&& rp->priv->control_type == priv->control_type)
return rp;
}
return NULL;
}
EXPORT_SYMBOL_GPL(rapl_find_package_domain);
/* called from CPU hotplug notifier, hotplug lock held */
struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
{
int id = topology_logical_die_id(cpu);
struct rapl_package *rp;
int ret;
powercap: intel_rapl: add NULL pointer check to rapl_mmio_cpu_online() RAPL MMIO support depends on the RAPL common driver. During CPU initialization rapl_mmio_cpu_online() is called via CPU hotplug to initialize the MMIO RAPL for the new CPU, but if that CPU is not present in the common RAPL driver's support list, rapl_defaults is NULL and the kernel crashes on an attempt to dereference it: [ 4.188566] BUG: kernel NULL pointer dereference, address: 0000000000000020 ...snip... [ 4.189555] RIP: 0010:rapl_add_package+0x223/0x574 [ 4.189555] Code: b5 a0 31 c0 49 8b 4d 78 48 01 d9 48 8b 0c c1 49 89 4c c6 10 48 ff c0 48 83 f8 05 75 e7 49 83 ff 03 75 15 48 8b 05 09 bc 18 01 <8b> 70 20 41 89 b6 0c 05 00 00 85 f6 75 1a 49 81 c6 18 9 [ 4.189555] RSP: 0000:ffffb3adc00b3d90 EFLAGS: 00010246 [ 4.189555] RAX: 0000000000000000 RBX: 0000000000000098 RCX: 0000000000000000 [ 4.267161] usb 1-1: New USB device found, idVendor=2109, idProduct=2812, bcdDevice= b.e0 [ 4.189555] RDX: 0000000000001000 RSI: 0000000000000000 RDI: ffff9340caafd000 [ 4.189555] RBP: ffffb3adc00b3df8 R08: ffffffffa0246e28 R09: ffff9340caafc000 [ 4.189555] R10: 000000000000024a R11: ffffffff9ff1f6f2 R12: 00000000ffffffed [ 4.189555] R13: ffff9340caa94800 R14: ffff9340caafc518 R15: 0000000000000003 [ 4.189555] FS: 0000000000000000(0000) GS:ffff9340ce200000(0000) knlGS:0000000000000000 [ 4.189555] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4.189555] CR2: 0000000000000020 CR3: 0000000302c14001 CR4: 00000000003606f0 [ 4.189555] Call Trace: [ 4.189555] ? __switch_to_asm+0x40/0x70 [ 4.189555] rapl_mmio_cpu_online+0x47/0x64 [ 4.189555] ? rapl_mmio_write_raw+0x33/0x33 [ 4.281059] usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=0 [ 4.189555] cpuhp_invoke_callback+0x29f/0x66f [ 4.189555] ? __schedule+0x46d/0x6a0 [ 4.189555] cpuhp_thread_fun+0xb9/0x11c [ 4.189555] smpboot_thread_fn+0x17d/0x22f [ 4.297006] usb 1-1: Product: USB2.0 Hub [ 4.189555] ? cpu_report_death+0x43/0x43 [ 4.189555] kthread+0x137/0x13f [ 4.189555] ? cpu_report_death+0x43/0x43 [ 4.189555] ? kthread_blkcg+0x2e/0x2e [ 4.312951] usb 1-1: Manufacturer: VIA Labs, Inc. [ 4.189555] ret_from_fork+0x1f/0x40 [ 4.189555] Modules linked in: [ 4.189555] CR2: 0000000000000020 [ 4.189555] ---[ end trace 01bb812aabc791f4 ]--- To avoid that problem, check rapl_defaults NULL upfront and return an error code if it is NULL. [Note that it does not make sense to even try to allocate memory in that case, because it is not going to be used anyway.] Fixes: 555c45fe0d04 ("int340X/processor_thermal_device: add support for MMIO RAPL") Cc: 5.3+ <stable@vger.kernel.org> # 5.3+ Signed-off-by: Harry Pan <harry.pan@intel.com> [ rjw: Subject & changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-12-30 22:36:56 +08:00
if (!rapl_defaults)
return ERR_PTR(-ENODEV);
rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
if (!rp)
return ERR_PTR(-ENOMEM);
/* add the new package to the list */
rp->id = id;
rp->lead_cpu = cpu;
rp->priv = priv;
if (topology_max_die_per_package() > 1)
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
"package-%d-die-%d",
topology_physical_package_id(cpu), topology_die_id(cpu));
else
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
topology_physical_package_id(cpu));
/* check if the package contains valid domains */
if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
ret = -ENODEV;
goto err_free_package;
}
ret = rapl_package_register_powercap(rp);
if (!ret) {
INIT_LIST_HEAD(&rp->plist);
list_add(&rp->plist, &rapl_packages);
return rp;
}
err_free_package:
kfree(rp->domains);
kfree(rp);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(rapl_add_package);
static void power_limit_state_save(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int nr_pl, ret, i;
cpus_read_lock();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
nr_pl = find_nr_power_limit(rd);
for (i = 0; i < nr_pl; i++) {
switch (rd->rpl[i].prim_id) {
case PL1_ENABLE:
ret = rapl_read_data_raw(rd,
POWER_LIMIT1, true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
break;
case PL2_ENABLE:
ret = rapl_read_data_raw(rd,
POWER_LIMIT2, true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
break;
case PL4_ENABLE:
ret = rapl_read_data_raw(rd,
POWER_LIMIT4, true,
&rd->rpl[i].last_power_limit);
if (ret)
rd->rpl[i].last_power_limit = 0;
break;
}
}
}
cpus_read_unlock();
}
static void power_limit_state_restore(void)
{
struct rapl_package *rp;
struct rapl_domain *rd;
int nr_pl, i;
cpus_read_lock();
list_for_each_entry(rp, &rapl_packages, plist) {
if (!rp->power_zone)
continue;
rd = power_zone_to_rapl_domain(rp->power_zone);
nr_pl = find_nr_power_limit(rd);
for (i = 0; i < nr_pl; i++) {
switch (rd->rpl[i].prim_id) {
case PL1_ENABLE:
if (rd->rpl[i].last_power_limit)
rapl_write_data_raw(rd, POWER_LIMIT1,
rd->rpl[i].last_power_limit);
break;
case PL2_ENABLE:
if (rd->rpl[i].last_power_limit)
rapl_write_data_raw(rd, POWER_LIMIT2,
rd->rpl[i].last_power_limit);
break;
case PL4_ENABLE:
if (rd->rpl[i].last_power_limit)
rapl_write_data_raw(rd, POWER_LIMIT4,
rd->rpl[i].last_power_limit);
break;
}
}
}
cpus_read_unlock();
}
static int rapl_pm_callback(struct notifier_block *nb,
unsigned long mode, void *_unused)
{
switch (mode) {
case PM_SUSPEND_PREPARE:
power_limit_state_save();
break;
case PM_POST_SUSPEND:
power_limit_state_restore();
break;
}
return NOTIFY_OK;
}
static struct notifier_block rapl_pm_notifier = {
.notifier_call = rapl_pm_callback,
};
static struct platform_device *rapl_msr_platdev;
static int __init rapl_init(void)
{
const struct x86_cpu_id *id;
int ret;
id = x86_match_cpu(rapl_ids);
if (!id) {
pr_err("driver does not support CPU family %d model %d\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
return -ENODEV;
}
rapl_defaults = (struct rapl_defaults *)id->driver_data;
ret = register_pm_notifier(&rapl_pm_notifier);
if (ret)
return ret;
rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
if (!rapl_msr_platdev) {
ret = -ENOMEM;
goto end;
}
ret = platform_device_add(rapl_msr_platdev);
if (ret)
platform_device_put(rapl_msr_platdev);
end:
if (ret)
unregister_pm_notifier(&rapl_pm_notifier);
return ret;
}
static void __exit rapl_exit(void)
{
platform_device_unregister(rapl_msr_platdev);
unregister_pm_notifier(&rapl_pm_notifier);
}
fs_initcall(rapl_init);
module_exit(rapl_exit);
MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
MODULE_LICENSE("GPL v2");