License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2007-07-10 17:22:24 -07:00
|
|
|
#ifndef __LZO_H__
|
|
|
|
#define __LZO_H__
|
|
|
|
/*
|
|
|
|
* LZO Public Kernel Interface
|
|
|
|
* A mini subset of the LZO real-time data compression library
|
|
|
|
*
|
2012-08-13 17:25:44 +02:00
|
|
|
* Copyright (C) 1996-2012 Markus F.X.J. Oberhumer <markus@oberhumer.com>
|
2007-07-10 17:22:24 -07:00
|
|
|
*
|
|
|
|
* The full LZO package can be found at:
|
|
|
|
* http://www.oberhumer.com/opensource/lzo/
|
|
|
|
*
|
2012-08-13 17:25:44 +02:00
|
|
|
* Changed for Linux kernel use by:
|
2007-07-10 17:22:24 -07:00
|
|
|
* Nitin Gupta <nitingupta910@gmail.com>
|
|
|
|
* Richard Purdie <rpurdie@openedhand.com>
|
|
|
|
*/
|
|
|
|
|
2012-08-13 17:25:44 +02:00
|
|
|
#define LZO1X_1_MEM_COMPRESS (8192 * sizeof(unsigned short))
|
|
|
|
#define LZO1X_MEM_COMPRESS LZO1X_1_MEM_COMPRESS
|
2007-07-10 17:22:24 -07:00
|
|
|
|
lib/lzo: implement run-length encoding
Patch series "lib/lzo: run-length encoding support", v5.
Following on from the previous lzo-rle patchset:
https://lkml.org/lkml/2018/11/30/972
This patchset contains only the RLE patches, and should be applied on
top of the non-RLE patches ( https://lkml.org/lkml/2019/2/5/366 ).
Previously, some questions were raised around the RLE patches. I've
done some additional benchmarking to answer these questions. In short:
- RLE offers significant additional performance (data-dependent)
- I didn't measure any regressions that were clearly outside the noise
One concern with this patchset was around performance - specifically,
measuring RLE impact separately from Matt Sealey's patches (CTZ & fast
copy). I have done some additional benchmarking which I hope clarifies
the benefits of each part of the patchset.
Firstly, I've captured some memory via /dev/fmem from a Chromebook with
many tabs open which is starting to swap, and then split this into 4178
4k pages. I've excluded the all-zero pages (as zram does), and also the
no-zero pages (which won't tell us anything about RLE performance).
This should give a realistic test dataset for zram. What I found was
that the data is VERY bimodal: 44% of pages in this dataset contain 5%
or fewer zeros, and 44% contain over 90% zeros (30% if you include the
no-zero pages). This supports the idea of special-casing zeros in zram.
Next, I've benchmarked four variants of lzo on these pages (on 64-bit
Arm at max frequency): baseline LZO; baseline + Matt Sealey's patches
(aka MS); baseline + RLE only; baseline + MS + RLE. Numbers are for
weighted roundtrip throughput (the weighting reflects that zram does
more compression than decompression).
https://drive.google.com/file/d/1VLtLjRVxgUNuWFOxaGPwJYhl_hMQXpHe/view?usp=sharing
Matt's patches help in all cases for Arm (and no effect on Intel), as
expected.
RLE also behaves as expected: with few zeros present, it makes no
difference; above ~75%, it gives a good improvement (50 - 300 MB/s on
top of the benefit from Matt's patches).
Best performance is seen with both MS and RLE patches.
Finally, I have benchmarked the same dataset on an x86-64 device. Here,
the MS patches make no difference (as expected); RLE helps, similarly as
on Arm. There were no definite regressions; allowing for observational
error, 0.1% (3/4178) of cases had a regression > 1 standard deviation,
of which the largest was 4.6% (1.2 standard deviations). I think this
is probably within the noise.
https://drive.google.com/file/d/1xCUVwmiGD0heEMx5gcVEmLBI4eLaageV/view?usp=sharing
One point to note is that the graphs show RLE appears to help very
slightly with no zeros present! This is because the extra code causes
the clang optimiser to change code layout in a way that happens to have
a significant benefit. Taking baseline LZO and adding a do-nothing line
like "__builtin_prefetch(out_len);" immediately before the "goto next"
has the same effect. So this is a real, but basically spurious effect -
it's small enough not to upset the overall findings.
This patch (of 3):
When using zram, we frequently encounter long runs of zero bytes. This
adds a special case which identifies runs of zeros and encodes them
using run-length encoding.
This is faster for both compression and decompresion. For high-entropy
data which doesn't hit this case, impact is minimal.
Compression ratio is within a few percent in all cases.
This modifies the bitstream in a way which is backwards compatible
(i.e., we can decompress old bitstreams, but old versions of lzo cannot
decompress new bitstreams).
Link: http://lkml.kernel.org/r/20190205155944.16007-2-dave.rodgman@arm.com
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com>
Cc: Matt Sealey <matt.sealey@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <nitingupta910@gmail.com>
Cc: Richard Purdie <rpurdie@openedhand.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Sonny Rao <sonnyrao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-07 16:30:40 -08:00
|
|
|
#define lzo1x_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
|
2007-07-10 17:22:24 -07:00
|
|
|
|
2012-08-13 17:25:44 +02:00
|
|
|
/* This requires 'wrkmem' of size LZO1X_1_MEM_COMPRESS */
|
2007-07-10 17:22:24 -07:00
|
|
|
int lzo1x_1_compress(const unsigned char *src, size_t src_len,
|
2012-08-13 17:25:44 +02:00
|
|
|
unsigned char *dst, size_t *dst_len, void *wrkmem);
|
2007-07-10 17:22:24 -07:00
|
|
|
|
2019-03-07 16:30:44 -08:00
|
|
|
/* This requires 'wrkmem' of size LZO1X_1_MEM_COMPRESS */
|
|
|
|
int lzorle1x_1_compress(const unsigned char *src, size_t src_len,
|
|
|
|
unsigned char *dst, size_t *dst_len, void *wrkmem);
|
|
|
|
|
2007-07-10 17:22:24 -07:00
|
|
|
/* safe decompression with overrun testing */
|
|
|
|
int lzo1x_decompress_safe(const unsigned char *src, size_t src_len,
|
2012-08-13 17:25:44 +02:00
|
|
|
unsigned char *dst, size_t *dst_len);
|
2007-07-10 17:22:24 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Return values (< 0 = Error)
|
|
|
|
*/
|
|
|
|
#define LZO_E_OK 0
|
|
|
|
#define LZO_E_ERROR (-1)
|
|
|
|
#define LZO_E_OUT_OF_MEMORY (-2)
|
|
|
|
#define LZO_E_NOT_COMPRESSIBLE (-3)
|
|
|
|
#define LZO_E_INPUT_OVERRUN (-4)
|
|
|
|
#define LZO_E_OUTPUT_OVERRUN (-5)
|
|
|
|
#define LZO_E_LOOKBEHIND_OVERRUN (-6)
|
|
|
|
#define LZO_E_EOF_NOT_FOUND (-7)
|
|
|
|
#define LZO_E_INPUT_NOT_CONSUMED (-8)
|
|
|
|
#define LZO_E_NOT_YET_IMPLEMENTED (-9)
|
2012-08-13 17:25:44 +02:00
|
|
|
#define LZO_E_INVALID_ARGUMENT (-10)
|
2007-07-10 17:22:24 -07:00
|
|
|
|
|
|
|
#endif
|