linux-next/io_uring/uring_cmd.c

377 lines
9.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/io_uring/cmd.h>
#include <linux/io_uring/net.h>
#include <linux/security.h>
#include <linux/nospec.h>
#include <net/sock.h>
#include <uapi/linux/io_uring.h>
#include <asm/ioctls.h>
#include "io_uring.h"
#include "alloc_cache.h"
#include "rsrc.h"
#include "uring_cmd.h"
static struct uring_cache *io_uring_async_get(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct uring_cache *cache;
cache = io_alloc_cache_get(&ctx->uring_cache);
if (cache) {
req->flags |= REQ_F_ASYNC_DATA;
req->async_data = cache;
return cache;
}
if (!io_alloc_async_data(req))
return req->async_data;
return NULL;
}
static void io_req_uring_cleanup(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_uring_cmd *ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
struct uring_cache *cache = req->async_data;
if (issue_flags & IO_URING_F_UNLOCKED)
return;
if (io_alloc_cache_put(&req->ctx->uring_cache, cache)) {
ioucmd->sqe = NULL;
req->async_data = NULL;
req->flags &= ~REQ_F_ASYNC_DATA;
}
}
bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
struct io_uring_task *tctx, bool cancel_all)
{
struct hlist_node *tmp;
struct io_kiocb *req;
bool ret = false;
lockdep_assert_held(&ctx->uring_lock);
hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
hash_node) {
struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
struct io_uring_cmd);
struct file *file = req->file;
if (!cancel_all && req->tctx != tctx)
continue;
if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
/* ->sqe isn't available if no async data */
if (!req_has_async_data(req))
cmd->sqe = NULL;
file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL |
IO_URING_F_COMPLETE_DEFER);
ret = true;
}
}
io_submit_flush_completions(ctx);
return ret;
}
static void io_uring_cmd_del_cancelable(struct io_uring_cmd *cmd,
unsigned int issue_flags)
{
struct io_kiocb *req = cmd_to_io_kiocb(cmd);
struct io_ring_ctx *ctx = req->ctx;
if (!(cmd->flags & IORING_URING_CMD_CANCELABLE))
return;
cmd->flags &= ~IORING_URING_CMD_CANCELABLE;
io_ring_submit_lock(ctx, issue_flags);
hlist_del(&req->hash_node);
io_ring_submit_unlock(ctx, issue_flags);
}
/*
* Mark this command as concelable, then io_uring_try_cancel_uring_cmd()
* will try to cancel this issued command by sending ->uring_cmd() with
* issue_flags of IO_URING_F_CANCEL.
*
* The command is guaranteed to not be done when calling ->uring_cmd()
* with IO_URING_F_CANCEL, but it is driver's responsibility to deal
* with race between io_uring canceling and normal completion.
*/
void io_uring_cmd_mark_cancelable(struct io_uring_cmd *cmd,
unsigned int issue_flags)
{
struct io_kiocb *req = cmd_to_io_kiocb(cmd);
struct io_ring_ctx *ctx = req->ctx;
if (!(cmd->flags & IORING_URING_CMD_CANCELABLE)) {
cmd->flags |= IORING_URING_CMD_CANCELABLE;
io_ring_submit_lock(ctx, issue_flags);
hlist_add_head(&req->hash_node, &ctx->cancelable_uring_cmd);
io_ring_submit_unlock(ctx, issue_flags);
}
}
EXPORT_SYMBOL_GPL(io_uring_cmd_mark_cancelable);
static void io_uring_cmd_work(struct io_kiocb *req, struct io_tw_state *ts)
{
struct io_uring_cmd *ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
unsigned int flags = IO_URING_F_COMPLETE_DEFER;
if (current->flags & (PF_EXITING | PF_KTHREAD))
flags |= IO_URING_F_TASK_DEAD;
/* task_work executor checks the deffered list completion */
ioucmd->task_work_cb(ioucmd, flags);
}
void __io_uring_cmd_do_in_task(struct io_uring_cmd *ioucmd,
void (*task_work_cb)(struct io_uring_cmd *, unsigned),
unsigned flags)
{
struct io_kiocb *req = cmd_to_io_kiocb(ioucmd);
ioucmd->task_work_cb = task_work_cb;
req->io_task_work.func = io_uring_cmd_work;
__io_req_task_work_add(req, flags);
}
EXPORT_SYMBOL_GPL(__io_uring_cmd_do_in_task);
static inline void io_req_set_cqe32_extra(struct io_kiocb *req,
u64 extra1, u64 extra2)
{
req->big_cqe.extra1 = extra1;
req->big_cqe.extra2 = extra2;
}
/*
* Called by consumers of io_uring_cmd, if they originally returned
* -EIOCBQUEUED upon receiving the command.
*/
void io_uring_cmd_done(struct io_uring_cmd *ioucmd, ssize_t ret, ssize_t res2,
unsigned issue_flags)
{
struct io_kiocb *req = cmd_to_io_kiocb(ioucmd);
io_uring_cmd_del_cancelable(ioucmd, issue_flags);
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
if (req->ctx->flags & IORING_SETUP_CQE32)
io_req_set_cqe32_extra(req, res2, 0);
io_req_uring_cleanup(req, issue_flags);
if (req->ctx->flags & IORING_SETUP_IOPOLL) {
/* order with io_iopoll_req_issued() checking ->iopoll_complete */
smp_store_release(&req->iopoll_completed, 1);
} else if (issue_flags & IO_URING_F_COMPLETE_DEFER) {
if (WARN_ON_ONCE(issue_flags & IO_URING_F_UNLOCKED))
return;
io_req_complete_defer(req);
} else {
req->io_task_work.func = io_req_task_complete;
io_req_task_work_add(req);
}
}
EXPORT_SYMBOL_GPL(io_uring_cmd_done);
static int io_uring_cmd_prep_setup(struct io_kiocb *req,
const struct io_uring_sqe *sqe)
{
struct io_uring_cmd *ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
struct uring_cache *cache;
cache = io_uring_async_get(req);
if (unlikely(!cache))
return -ENOMEM;
if (!(req->flags & REQ_F_FORCE_ASYNC)) {
/* defer memcpy until we need it */
ioucmd->sqe = sqe;
return 0;
}
memcpy(req->async_data, sqe, uring_sqe_size(req->ctx));
ioucmd->sqe = req->async_data;
return 0;
}
int io_uring_cmd_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_uring_cmd *ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
if (sqe->__pad1)
return -EINVAL;
ioucmd->flags = READ_ONCE(sqe->uring_cmd_flags);
if (ioucmd->flags & ~IORING_URING_CMD_MASK)
return -EINVAL;
if (ioucmd->flags & IORING_URING_CMD_FIXED) {
struct io_ring_ctx *ctx = req->ctx;
struct io_rsrc_node *node;
u16 index = READ_ONCE(sqe->buf_index);
node = io_rsrc_node_lookup(&ctx->buf_table, index);
if (unlikely(!node))
return -EFAULT;
/*
* Pi node upfront, prior to io_uring_cmd_import_fixed()
* being called. This prevents destruction of the mapped buffer
* we'll need at actual import time.
*/
io_req_assign_buf_node(req, node);
}
ioucmd->cmd_op = READ_ONCE(sqe->cmd_op);
return io_uring_cmd_prep_setup(req, sqe);
}
int io_uring_cmd(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_uring_cmd *ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
struct io_ring_ctx *ctx = req->ctx;
struct file *file = req->file;
int ret;
if (!file->f_op->uring_cmd)
return -EOPNOTSUPP;
ret = security_uring_cmd(ioucmd);
if (ret)
return ret;
if (ctx->flags & IORING_SETUP_SQE128)
issue_flags |= IO_URING_F_SQE128;
if (ctx->flags & IORING_SETUP_CQE32)
issue_flags |= IO_URING_F_CQE32;
if (ctx->compat)
issue_flags |= IO_URING_F_COMPAT;
if (ctx->flags & IORING_SETUP_IOPOLL) {
if (!file->f_op->uring_cmd_iopoll)
return -EOPNOTSUPP;
issue_flags |= IO_URING_F_IOPOLL;
req->iopoll_completed = 0;
}
ret = file->f_op->uring_cmd(ioucmd, issue_flags);
if (ret == -EAGAIN) {
struct uring_cache *cache = req->async_data;
if (ioucmd->sqe != (void *) cache)
memcpy(cache, ioucmd->sqe, uring_sqe_size(req->ctx));
return -EAGAIN;
} else if (ret == -EIOCBQUEUED) {
return -EIOCBQUEUED;
}
if (ret < 0)
req_set_fail(req);
io_req_uring_cleanup(req, issue_flags);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_uring_cmd_import_fixed(u64 ubuf, unsigned long len, int rw,
struct iov_iter *iter, void *ioucmd)
{
struct io_kiocb *req = cmd_to_io_kiocb(ioucmd);
struct io_rsrc_node *node = req->buf_node;
/* Must have had rsrc_node assigned at prep time */
io_uring/rsrc: get rid of per-ring io_rsrc_node list Work in progress, but get rid of the per-ring serialization of resource nodes, like registered buffers and files. Main issue here is that one node can otherwise hold up a bunch of other nodes from getting freed, which is especially a problem for file resource nodes and networked workloads where some descriptors may not see activity in a long time. As an example, instantiate an io_uring ring fd and create a sparse registered file table. Even 2 will do. Then create a socket and register it as fixed file 0, F0. The number of open files in the app is now 5, with 0/1/2 being the usual stdin/out/err, 3 being the ring fd, and 4 being the socket. Register this socket (eg "the listener") in slot 0 of the registered file table. Now add an operation on the socket that uses slot 0. Finally, loop N times, where each loop creates a new socket, registers said socket as a file, then unregisters the socket, and finally closes the socket. This is roughly similar to what a basic accept loop would look like. At the end of this loop, it's not unreasonable to expect that there would still be 5 open files. Each socket created and registered in the loop is also unregistered and closed. But since the listener socket registered first still has references to its resource node due to still being active, each subsequent socket unregistration is stuck behind it for reclaim. Hence 5 + N files are still open at that point, where N is awaiting the final put held up by the listener socket. Rewrite the io_rsrc_node handling to NOT rely on serialization. Struct io_kiocb now gets explicit resource nodes assigned, with each holding a reference to the parent node. A parent node is either of type FILE or BUFFER, which are the two types of nodes that exist. A request can have two nodes assigned, if it's using both registered files and buffers. Since request issue and task_work completion is both under the ring private lock, no atomics are needed to handle these references. It's a simple unlocked inc/dec. As before, the registered buffer or file table each hold a reference as well to the registered nodes. Final put of the node will remove the node and free the underlying resource, eg unmap the buffer or put the file. Outside of removing the stall in resource reclaim described above, it has the following advantages: 1) It's a lot simpler than the previous scheme, and easier to follow. No need to specific quiesce handling anymore. 2) There are no resource node allocations in the fast path, all of that happens at resource registration time. 3) The structs related to resource handling can all get simplified quite a bit, like io_rsrc_node and io_rsrc_data. io_rsrc_put can go away completely. 4) Handling of resource tags is much simpler, and doesn't require persistent storage as it can simply get assigned up front at registration time. Just copy them in one-by-one at registration time and assign to the resource node. The only real downside is that a request is now explicitly limited to pinning 2 resources, one file and one buffer, where before just assigning a resource node to a request would pin all of them. The upside is that it's easier to follow now, as an individual resource is explicitly referenced and assigned to the request. With this in place, the above mentioned example will be using exactly 5 files at the end of the loop, not N. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-26 01:27:39 +00:00
if (node)
return io_import_fixed(rw, iter, node->buf, ubuf, len);
return -EFAULT;
}
EXPORT_SYMBOL_GPL(io_uring_cmd_import_fixed);
void io_uring_cmd_issue_blocking(struct io_uring_cmd *ioucmd)
{
struct io_kiocb *req = cmd_to_io_kiocb(ioucmd);
io_req_queue_iowq(req);
}
static inline int io_uring_cmd_getsockopt(struct socket *sock,
struct io_uring_cmd *cmd,
unsigned int issue_flags)
{
bool compat = !!(issue_flags & IO_URING_F_COMPAT);
int optlen, optname, level, err;
void __user *optval;
level = READ_ONCE(cmd->sqe->level);
if (level != SOL_SOCKET)
return -EOPNOTSUPP;
optval = u64_to_user_ptr(READ_ONCE(cmd->sqe->optval));
optname = READ_ONCE(cmd->sqe->optname);
optlen = READ_ONCE(cmd->sqe->optlen);
err = do_sock_getsockopt(sock, compat, level, optname,
USER_SOCKPTR(optval),
KERNEL_SOCKPTR(&optlen));
if (err)
return err;
/* On success, return optlen */
return optlen;
}
static inline int io_uring_cmd_setsockopt(struct socket *sock,
struct io_uring_cmd *cmd,
unsigned int issue_flags)
{
bool compat = !!(issue_flags & IO_URING_F_COMPAT);
int optname, optlen, level;
void __user *optval;
sockptr_t optval_s;
optval = u64_to_user_ptr(READ_ONCE(cmd->sqe->optval));
optname = READ_ONCE(cmd->sqe->optname);
optlen = READ_ONCE(cmd->sqe->optlen);
level = READ_ONCE(cmd->sqe->level);
optval_s = USER_SOCKPTR(optval);
return do_sock_setsockopt(sock, compat, level, optname, optval_s,
optlen);
}
#if defined(CONFIG_NET)
int io_uring_cmd_sock(struct io_uring_cmd *cmd, unsigned int issue_flags)
{
struct socket *sock = cmd->file->private_data;
struct sock *sk = sock->sk;
struct proto *prot = READ_ONCE(sk->sk_prot);
int ret, arg = 0;
if (!prot || !prot->ioctl)
return -EOPNOTSUPP;
switch (cmd->sqe->cmd_op) {
case SOCKET_URING_OP_SIOCINQ:
ret = prot->ioctl(sk, SIOCINQ, &arg);
if (ret)
return ret;
return arg;
case SOCKET_URING_OP_SIOCOUTQ:
ret = prot->ioctl(sk, SIOCOUTQ, &arg);
if (ret)
return ret;
return arg;
case SOCKET_URING_OP_GETSOCKOPT:
return io_uring_cmd_getsockopt(sock, cmd, issue_flags);
case SOCKET_URING_OP_SETSOCKOPT:
return io_uring_cmd_setsockopt(sock, cmd, issue_flags);
default:
return -EOPNOTSUPP;
}
}
EXPORT_SYMBOL_GPL(io_uring_cmd_sock);
#endif