linux-next/kernel/bpf/range_tree.c

271 lines
7.1 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
#include <linux/interval_tree_generic.h>
#include <linux/slab.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/bpf.h>
#include "range_tree.h"
/*
* struct range_tree is a data structure used to allocate contiguous memory
* ranges in bpf arena. It's a large bitmap. The contiguous sequence of bits is
* represented by struct range_node or 'rn' for short.
* rn->rn_rbnode links it into an interval tree while
* rn->rb_range_size links it into a second rbtree sorted by size of the range.
* __find_range() performs binary search and best fit algorithm to find the
* range less or equal requested size.
* range_tree_clear/set() clears or sets a range of bits in this bitmap. The
* adjacent ranges are merged or split at the same time.
*
* The split/merge logic is based/borrowed from XFS's xbitmap32 added
* in commit 6772fcc8890a ("xfs: convert xbitmap to interval tree").
*
* The implementation relies on external lock to protect rbtree-s.
* The alloc/free of range_node-s is done via bpf_mem_alloc.
*
* bpf arena is using range_tree to represent unallocated slots.
* At init time:
* range_tree_set(rt, 0, max);
* Then:
* start = range_tree_find(rt, len);
* if (start >= 0)
* range_tree_clear(rt, start, len);
* to find free range and mark slots as allocated and later:
* range_tree_set(rt, start, len);
* to mark as unallocated after use.
*/
struct range_node {
struct rb_node rn_rbnode;
struct rb_node rb_range_size;
u32 rn_start;
u32 rn_last; /* inclusive */
u32 __rn_subtree_last;
};
static struct range_node *rb_to_range_node(struct rb_node *rb)
{
return rb_entry(rb, struct range_node, rb_range_size);
}
static u32 rn_size(struct range_node *rn)
{
return rn->rn_last - rn->rn_start + 1;
}
/* Find range that fits best to requested size */
static inline struct range_node *__find_range(struct range_tree *rt, u32 len)
{
struct rb_node *rb = rt->range_size_root.rb_root.rb_node;
struct range_node *best = NULL;
while (rb) {
struct range_node *rn = rb_to_range_node(rb);
if (len <= rn_size(rn)) {
best = rn;
rb = rb->rb_right;
} else {
rb = rb->rb_left;
}
}
return best;
}
s64 range_tree_find(struct range_tree *rt, u32 len)
{
struct range_node *rn;
rn = __find_range(rt, len);
if (!rn)
return -ENOENT;
return rn->rn_start;
}
/* Insert the range into rbtree sorted by the range size */
static inline void __range_size_insert(struct range_node *rn,
struct rb_root_cached *root)
{
struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
u64 size = rn_size(rn);
bool leftmost = true;
while (*link) {
rb = *link;
if (size > rn_size(rb_to_range_node(rb))) {
link = &rb->rb_left;
} else {
link = &rb->rb_right;
leftmost = false;
}
}
rb_link_node(&rn->rb_range_size, rb, link);
rb_insert_color_cached(&rn->rb_range_size, root, leftmost);
}
#define START(node) ((node)->rn_start)
#define LAST(node) ((node)->rn_last)
INTERVAL_TREE_DEFINE(struct range_node, rn_rbnode, u32,
__rn_subtree_last, START, LAST,
static inline __maybe_unused,
__range_it)
static inline __maybe_unused void
range_it_insert(struct range_node *rn, struct range_tree *rt)
{
__range_size_insert(rn, &rt->range_size_root);
__range_it_insert(rn, &rt->it_root);
}
static inline __maybe_unused void
range_it_remove(struct range_node *rn, struct range_tree *rt)
{
rb_erase_cached(&rn->rb_range_size, &rt->range_size_root);
RB_CLEAR_NODE(&rn->rb_range_size);
__range_it_remove(rn, &rt->it_root);
}
static inline __maybe_unused struct range_node *
range_it_iter_first(struct range_tree *rt, u32 start, u32 last)
{
return __range_it_iter_first(&rt->it_root, start, last);
}
/* Clear the range in this range tree */
int range_tree_clear(struct range_tree *rt, u32 start, u32 len)
{
u32 last = start + len - 1;
struct range_node *new_rn;
struct range_node *rn;
while ((rn = range_it_iter_first(rt, start, last))) {
if (rn->rn_start < start && rn->rn_last > last) {
u32 old_last = rn->rn_last;
/* Overlaps with the entire clearing range */
range_it_remove(rn, rt);
rn->rn_last = start - 1;
range_it_insert(rn, rt);
/* Add a range */
migrate_disable();
new_rn = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
migrate_enable();
if (!new_rn)
return -ENOMEM;
new_rn->rn_start = last + 1;
new_rn->rn_last = old_last;
range_it_insert(new_rn, rt);
} else if (rn->rn_start < start) {
/* Overlaps with the left side of the clearing range */
range_it_remove(rn, rt);
rn->rn_last = start - 1;
range_it_insert(rn, rt);
} else if (rn->rn_last > last) {
/* Overlaps with the right side of the clearing range */
range_it_remove(rn, rt);
rn->rn_start = last + 1;
range_it_insert(rn, rt);
break;
} else {
/* in the middle of the clearing range */
range_it_remove(rn, rt);
migrate_disable();
bpf_mem_free(&bpf_global_ma, rn);
migrate_enable();
}
}
return 0;
}
/* Is the whole range set ? */
int is_range_tree_set(struct range_tree *rt, u32 start, u32 len)
{
u32 last = start + len - 1;
struct range_node *left;
/* Is this whole range set ? */
left = range_it_iter_first(rt, start, last);
if (left && left->rn_start <= start && left->rn_last >= last)
return 0;
return -ESRCH;
}
/* Set the range in this range tree */
int range_tree_set(struct range_tree *rt, u32 start, u32 len)
{
u32 last = start + len - 1;
struct range_node *right;
struct range_node *left;
int err;
/* Is this whole range already set ? */
left = range_it_iter_first(rt, start, last);
if (left && left->rn_start <= start && left->rn_last >= last)
return 0;
/* Clear out everything in the range we want to set. */
err = range_tree_clear(rt, start, len);
if (err)
return err;
/* Do we have a left-adjacent range ? */
left = range_it_iter_first(rt, start - 1, start - 1);
if (left && left->rn_last + 1 != start)
return -EFAULT;
/* Do we have a right-adjacent range ? */
right = range_it_iter_first(rt, last + 1, last + 1);
if (right && right->rn_start != last + 1)
return -EFAULT;
if (left && right) {
/* Combine left and right adjacent ranges */
range_it_remove(left, rt);
range_it_remove(right, rt);
left->rn_last = right->rn_last;
range_it_insert(left, rt);
migrate_disable();
bpf_mem_free(&bpf_global_ma, right);
migrate_enable();
} else if (left) {
/* Combine with the left range */
range_it_remove(left, rt);
left->rn_last = last;
range_it_insert(left, rt);
} else if (right) {
/* Combine with the right range */
range_it_remove(right, rt);
right->rn_start = start;
range_it_insert(right, rt);
} else {
migrate_disable();
left = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
migrate_enable();
if (!left)
return -ENOMEM;
left->rn_start = start;
left->rn_last = last;
range_it_insert(left, rt);
}
return 0;
}
void range_tree_destroy(struct range_tree *rt)
{
struct range_node *rn;
while ((rn = range_it_iter_first(rt, 0, -1U))) {
range_it_remove(rn, rt);
bpf_mem_free(&bpf_global_ma, rn);
}
}
void range_tree_init(struct range_tree *rt)
{
rt->it_root = RB_ROOT_CACHED;
rt->range_size_root = RB_ROOT_CACHED;
}