linux-next/kernel/time/clocksource.c

1535 lines
44 KiB
C
Raw Normal View History

time: Add SPDX license identifiers Update the time(r) core files files with the correct SPDX license identifier based on the license text in the file itself. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This work is based on a script and data from Philippe Ombredanne, Kate Stewart and myself. The data has been created with two independent license scanners and manual inspection. The following files do not contain any direct license information and have been omitted from the big initial SPDX changes: timeconst.bc: The .bc files were not touched time.c, timer.c, timekeeping.c: Licence was deduced from EXPORT_SYMBOL_GPL As those files do not contain direct license references they fall under the project license, i.e. GPL V2 only. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: John Stultz <john.stultz@linaro.org> Acked-by: Corey Minyard <cminyard@mvista.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Russell King <rmk+kernel@armlinux.org.uk> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: David Riley <davidriley@chromium.org> Cc: Colin Cross <ccross@android.com> Cc: Mark Brown <broonie@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/20181031182252.879109557@linutronix.de
2018-10-31 19:21:09 +01:00
// SPDX-License-Identifier: GPL-2.0+
/*
* This file contains the functions which manage clocksource drivers.
*
* Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/device.h>
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
#include <linux/tick.h>
#include <linux/kthread.h>
#include <linux/prandom.h>
#include <linux/cpu.h>
#include "tick-internal.h"
#include "timekeeping_internal.h"
static void clocksource_enqueue(struct clocksource *cs);
static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
{
clocksource: Make negative motion detection more robust Guenter reported boot stalls on a emulated ARM 32-bit platform, which has a 24-bit wide clocksource. It turns out that the calculated maximal idle time, which limits idle sleeps to prevent clocksource wrap arounds, is close to the point where the negative motion detection triggers. max_idle_ns: 597268854 ns negative motion tripping point: 671088640 ns If the idle wakeup is delayed beyond that point, the clocksource advances far enough to trigger the negative motion detection. This prevents the clock to advance and in the worst case the system stalls completely if the consecutive sleeps based on the stale clock are delayed as well. Cure this by calculating a more robust cut-off value for negative motion, which covers 87.5% of the actual clocksource counter width. Compare the delta against this value to catch negative motion. This is specifically for clock sources with a small counter width as their wrap around time is close to the half counter width. For clock sources with wide counters this is not a problem because the maximum idle time is far from the half counter width due to the math overflow protection constraints. For the case at hand this results in a tripping point of 1174405120ns. Note, that this cannot prevent issues when the delay exceeds the 87.5% margin, but that's not different from the previous unchecked version which allowed arbitrary time jumps. Systems with small counter width are prone to invalid results, but this problem is unlikely to be seen on real hardware. If such a system completely stalls for more than half a second, then there are other more urgent problems than the counter wrapping around. Fixes: c163e40af9b2 ("timekeeping: Always check for negative motion") Reported-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/8734j5ul4x.ffs@tglx Closes: https://lore.kernel.org/all/387b120b-d68a-45e8-b6ab-768cd95d11c2@roeck-us.net
2024-12-03 11:16:30 +01:00
u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta);
if (likely(delta < cs->max_cycles))
return clocksource_cyc2ns(delta, cs->mult, cs->shift);
return mul_u64_u32_shr(delta, cs->mult, cs->shift);
}
/**
* clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
* @mult: pointer to mult variable
* @shift: pointer to shift variable
* @from: frequency to convert from
* @to: frequency to convert to
* @maxsec: guaranteed runtime conversion range in seconds
*
* The function evaluates the shift/mult pair for the scaled math
* operations of clocksources and clockevents.
*
* @to and @from are frequency values in HZ. For clock sources @to is
* NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
* event @to is the counter frequency and @from is NSEC_PER_SEC.
*
* The @maxsec conversion range argument controls the time frame in
* seconds which must be covered by the runtime conversion with the
* calculated mult and shift factors. This guarantees that no 64bit
* overflow happens when the input value of the conversion is
* multiplied with the calculated mult factor. Larger ranges may
* reduce the conversion accuracy by choosing smaller mult and shift
* factors.
*/
void
clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
{
u64 tmp;
u32 sft, sftacc= 32;
/*
* Calculate the shift factor which is limiting the conversion
* range:
*/
tmp = ((u64)maxsec * from) >> 32;
while (tmp) {
tmp >>=1;
sftacc--;
}
/*
* Find the conversion shift/mult pair which has the best
* accuracy and fits the maxsec conversion range:
*/
for (sft = 32; sft > 0; sft--) {
tmp = (u64) to << sft;
tmp += from / 2;
do_div(tmp, from);
if ((tmp >> sftacc) == 0)
break;
}
*mult = tmp;
*shift = sft;
}
EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
/*[Clocksource internal variables]---------
* curr_clocksource:
* currently selected clocksource.
* suspend_clocksource:
* used to calculate the suspend time.
* clocksource_list:
* linked list with the registered clocksources
* clocksource_mutex:
* protects manipulations to curr_clocksource and the clocksource_list
* override_name:
* Name of the user-specified clocksource.
*/
static struct clocksource *curr_clocksource;
static struct clocksource *suspend_clocksource;
static LIST_HEAD(clocksource_list);
static DEFINE_MUTEX(clocksource_mutex);
static char override_name[CS_NAME_LEN];
static int finished_booting;
static u64 suspend_start;
/*
* Interval: 0.5sec.
*/
#define WATCHDOG_INTERVAL (HZ >> 1)
clocksource: Skip watchdog check for large watchdog intervals There have been reports of the watchdog marking clocksources unstable on machines with 8 NUMA nodes: clocksource: timekeeping watchdog on CPU373: Marking clocksource 'tsc' as unstable because the skew is too large: clocksource: 'hpet' wd_nsec: 14523447520 clocksource: 'tsc' cs_nsec: 14524115132 The measured clocksource skew - the absolute difference between cs_nsec and wd_nsec - was 668 microseconds: cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612 The kernel used 200 microseconds for the uncertainty_margin of both the clocksource and watchdog, resulting in a threshold of 400 microseconds (the md variable). Both the cs_nsec and the wd_nsec value indicate that the readout interval was circa 14.5 seconds. The observed behaviour is that watchdog checks failed for large readout intervals on 8 NUMA node machines. This indicates that the size of the skew was directly proportinal to the length of the readout interval on those machines. The measured clocksource skew, 668 microseconds, was evaluated against a threshold (the md variable) that is suited for readout intervals of roughly WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second. The intention of 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") was to tighten the threshold for evaluating skew and set the lower bound for the uncertainty_margin of clocksources to twice WATCHDOG_MAX_SKEW. Later in c37e85c135ce ("clocksource: Loosen clocksource watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to 125 microseconds to fit the limit of NTP, which is able to use a clocksource that suffers from up to 500 microseconds of skew per second. Both the TSC and the HPET use default uncertainty_margin. When the readout interval gets stretched the default uncertainty_margin is no longer a suitable lower bound for evaluating skew - it imposes a limit that is far stricter than the skew with which NTP can deal. The root causes of the skew being directly proportinal to the length of the readout interval are: * the inaccuracy of the shift/mult pairs of clocksources and the watchdog * the conversion to nanoseconds is imprecise for large readout intervals Prevent this by skipping the current watchdog check if the readout interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin (of the TSC and HPET) corresponds to a limit on clocksource skew of 250 ppm (microseconds of skew per second). To keep the limit imposed by NTP (500 microseconds of skew per second) for all possible readout intervals, the margins would have to be scaled so that the threshold value is proportional to the length of the actual readout interval. As for why the readout interval may get stretched: Since the watchdog is executed in softirq context the expiration of the watchdog timer can get severely delayed on account of a ksoftirqd thread not getting to run in a timely manner. Surely, a system with such belated softirq execution is not working well and the scheduling issue should be looked into but the clocksource watchdog should be able to deal with it accordingly. Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Suggested-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Jiri Wiesner <jwiesner@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Feng Tang <feng.tang@intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240122172350.GA740@incl
2024-01-22 18:23:50 +01:00
#define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
clocksource: Reduce clocksource-skew threshold Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-05-27 12:01:22 -07:00
/*
* Threshold: 0.0312s, when doubled: 0.0625s.
*/
#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
/*
* Maximum permissible delay between two readouts of the watchdog
* clocksource surrounding a read of the clocksource being validated.
* This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
* a lower bound for cs->uncertainty_margin values when registering clocks.
*
* The default of 500 parts per million is based on NTP's limits.
* If a clocksource is good enough for NTP, it is good enough for us!
*
* In other words, by default, even if a clocksource is extremely
* precise (for example, with a sub-nanosecond period), the maximum
* permissible skew between the clocksource watchdog and the clocksource
* under test is not permitted to go below the 500ppm minimum defined
* by MAX_SKEW_USEC. This 500ppm minimum may be overridden using the
* CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
clocksource: Reduce clocksource-skew threshold Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-05-27 12:01:22 -07:00
*/
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
#define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
#else
#define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ)
#endif
/*
* Default for maximum permissible skew when cs->uncertainty_margin is
* not specified, and the lower bound even when cs->uncertainty_margin
* is specified. This is also the default that is used when registering
* clocks with unspecifed cs->uncertainty_margin, so this macro is used
* even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
*/
#define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
clocksource: Reduce clocksource-skew threshold Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-05-27 12:01:22 -07:00
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
static void clocksource_watchdog_work(struct work_struct *work);
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
static void clocksource_select(void);
static LIST_HEAD(watchdog_list);
static struct clocksource *watchdog;
static struct timer_list watchdog_timer;
static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
static DEFINE_SPINLOCK(watchdog_lock);
static int watchdog_running;
static atomic_t watchdog_reset_pending;
clocksource: Skip watchdog check for large watchdog intervals There have been reports of the watchdog marking clocksources unstable on machines with 8 NUMA nodes: clocksource: timekeeping watchdog on CPU373: Marking clocksource 'tsc' as unstable because the skew is too large: clocksource: 'hpet' wd_nsec: 14523447520 clocksource: 'tsc' cs_nsec: 14524115132 The measured clocksource skew - the absolute difference between cs_nsec and wd_nsec - was 668 microseconds: cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612 The kernel used 200 microseconds for the uncertainty_margin of both the clocksource and watchdog, resulting in a threshold of 400 microseconds (the md variable). Both the cs_nsec and the wd_nsec value indicate that the readout interval was circa 14.5 seconds. The observed behaviour is that watchdog checks failed for large readout intervals on 8 NUMA node machines. This indicates that the size of the skew was directly proportinal to the length of the readout interval on those machines. The measured clocksource skew, 668 microseconds, was evaluated against a threshold (the md variable) that is suited for readout intervals of roughly WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second. The intention of 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") was to tighten the threshold for evaluating skew and set the lower bound for the uncertainty_margin of clocksources to twice WATCHDOG_MAX_SKEW. Later in c37e85c135ce ("clocksource: Loosen clocksource watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to 125 microseconds to fit the limit of NTP, which is able to use a clocksource that suffers from up to 500 microseconds of skew per second. Both the TSC and the HPET use default uncertainty_margin. When the readout interval gets stretched the default uncertainty_margin is no longer a suitable lower bound for evaluating skew - it imposes a limit that is far stricter than the skew with which NTP can deal. The root causes of the skew being directly proportinal to the length of the readout interval are: * the inaccuracy of the shift/mult pairs of clocksources and the watchdog * the conversion to nanoseconds is imprecise for large readout intervals Prevent this by skipping the current watchdog check if the readout interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin (of the TSC and HPET) corresponds to a limit on clocksource skew of 250 ppm (microseconds of skew per second). To keep the limit imposed by NTP (500 microseconds of skew per second) for all possible readout intervals, the margins would have to be scaled so that the threshold value is proportional to the length of the actual readout interval. As for why the readout interval may get stretched: Since the watchdog is executed in softirq context the expiration of the watchdog timer can get severely delayed on account of a ksoftirqd thread not getting to run in a timely manner. Surely, a system with such belated softirq execution is not working well and the scheduling issue should be looked into but the clocksource watchdog should be able to deal with it accordingly. Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Suggested-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Jiri Wiesner <jwiesner@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Feng Tang <feng.tang@intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240122172350.GA740@incl
2024-01-22 18:23:50 +01:00
static int64_t watchdog_max_interval;
static inline void clocksource_watchdog_lock(unsigned long *flags)
2018-04-23 17:28:55 +02:00
{
spin_lock_irqsave(&watchdog_lock, *flags);
}
static inline void clocksource_watchdog_unlock(unsigned long *flags)
2018-04-23 17:28:55 +02:00
{
spin_unlock_irqrestore(&watchdog_lock, *flags);
}
static int clocksource_watchdog_kthread(void *data);
static void clocksource_watchdog_work(struct work_struct *work)
{
/*
* We cannot directly run clocksource_watchdog_kthread() here, because
* clocksource_select() calls timekeeping_notify() which uses
* stop_machine(). One cannot use stop_machine() from a workqueue() due
* lock inversions wrt CPU hotplug.
*
* Also, we only ever run this work once or twice during the lifetime
* of the kernel, so there is no point in creating a more permanent
* kthread for this.
*
* If kthread_run fails the next watchdog scan over the
* watchdog_list will find the unstable clock again.
*/
kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
}
static void clocksource_change_rating(struct clocksource *cs, int rating)
{
list_del(&cs->list);
cs->rating = rating;
clocksource_enqueue(cs);
}
static void __clocksource_unstable(struct clocksource *cs)
{
cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
cs->flags |= CLOCK_SOURCE_UNSTABLE;
/*
* If the clocksource is registered clocksource_watchdog_kthread() will
* re-rate and re-select.
*/
if (list_empty(&cs->list)) {
cs->rating = 0;
2018-04-23 17:28:55 +02:00
return;
}
2018-04-23 17:28:55 +02:00
if (cs->mark_unstable)
cs->mark_unstable(cs);
/* kick clocksource_watchdog_kthread() */
if (finished_booting)
schedule_work(&watchdog_work);
}
/**
* clocksource_mark_unstable - mark clocksource unstable via watchdog
* @cs: clocksource to be marked unstable
*
* This function is called by the x86 TSC code to mark clocksources as unstable;
* it defers demotion and re-selection to a kthread.
*/
void clocksource_mark_unstable(struct clocksource *cs)
{
unsigned long flags;
spin_lock_irqsave(&watchdog_lock, flags);
if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
2018-04-23 17:28:55 +02:00
if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
list_add(&cs->wd_list, &watchdog_list);
__clocksource_unstable(cs);
}
spin_unlock_irqrestore(&watchdog_lock, flags);
}
static int verify_n_cpus = 8;
module_param(verify_n_cpus, int, 0644);
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
enum wd_read_status {
WD_READ_SUCCESS,
WD_READ_UNSTABLE,
WD_READ_SKIP
};
static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
{
int64_t md = 2 * watchdog->uncertainty_margin;
clocksource: Scale the watchdog read retries automatically On a 8-socket server the TSC is wrongly marked as 'unstable' and disabled during boot time on about one out of 120 boot attempts: clocksource: timekeeping watchdog on CPU227: wd-tsc-wd excessive read-back delay of 153560ns vs. limit of 125000ns, wd-wd read-back delay only 11440ns, attempt 3, marking tsc unstable tsc: Marking TSC unstable due to clocksource watchdog TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'. sched_clock: Marking unstable (119294969739, 159204297)<-(125446229205, -5992055152) clocksource: Checking clocksource tsc synchronization from CPU 319 to CPUs 0,99,136,180,210,542,601,896. clocksource: Switched to clocksource hpet The reason is that for platform with a large number of CPUs, there are sporadic big or huge read latencies while reading the watchog/clocksource during boot or when system is under stress work load, and the frequency and maximum value of the latency goes up with the number of online CPUs. The cCurrent code already has logic to detect and filter such high latency case by reading the watchdog twice and checking the two deltas. Due to the randomness of the latency, there is a low probabilty that the first delta (latency) is big, but the second delta is small and looks valid. The watchdog code retries the readouts by default twice, which is not necessarily sufficient for systems with a large number of CPUs. There is a command line parameter 'max_cswd_read_retries' which allows to increase the number of retries, but that's not user friendly as it needs to be tweaked per system. As the number of required retries is proportional to the number of online CPUs, this parameter can be calculated at runtime. Scale and enlarge the number of retries according to the number of online CPUs and remove the command line parameter completely. [ tglx: Massaged change log and comments ] Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jin Wang <jin1.wang@intel.com> Tested-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Waiman Long <longman@redhat.com> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20240221060859.1027450-1-feng.tang@intel.com
2024-02-21 14:08:59 +08:00
unsigned int nretries, max_retries;
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
int64_t wd_delay, wd_seq_delay;
u64 wd_end, wd_end2;
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
clocksource: Scale the watchdog read retries automatically On a 8-socket server the TSC is wrongly marked as 'unstable' and disabled during boot time on about one out of 120 boot attempts: clocksource: timekeeping watchdog on CPU227: wd-tsc-wd excessive read-back delay of 153560ns vs. limit of 125000ns, wd-wd read-back delay only 11440ns, attempt 3, marking tsc unstable tsc: Marking TSC unstable due to clocksource watchdog TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'. sched_clock: Marking unstable (119294969739, 159204297)<-(125446229205, -5992055152) clocksource: Checking clocksource tsc synchronization from CPU 319 to CPUs 0,99,136,180,210,542,601,896. clocksource: Switched to clocksource hpet The reason is that for platform with a large number of CPUs, there are sporadic big or huge read latencies while reading the watchog/clocksource during boot or when system is under stress work load, and the frequency and maximum value of the latency goes up with the number of online CPUs. The cCurrent code already has logic to detect and filter such high latency case by reading the watchdog twice and checking the two deltas. Due to the randomness of the latency, there is a low probabilty that the first delta (latency) is big, but the second delta is small and looks valid. The watchdog code retries the readouts by default twice, which is not necessarily sufficient for systems with a large number of CPUs. There is a command line parameter 'max_cswd_read_retries' which allows to increase the number of retries, but that's not user friendly as it needs to be tweaked per system. As the number of required retries is proportional to the number of online CPUs, this parameter can be calculated at runtime. Scale and enlarge the number of retries according to the number of online CPUs and remove the command line parameter completely. [ tglx: Massaged change log and comments ] Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jin Wang <jin1.wang@intel.com> Tested-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Waiman Long <longman@redhat.com> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20240221060859.1027450-1-feng.tang@intel.com
2024-02-21 14:08:59 +08:00
max_retries = clocksource_get_max_watchdog_retry();
for (nretries = 0; nretries <= max_retries; nretries++) {
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
local_irq_disable();
*wdnow = watchdog->read(watchdog);
*csnow = cs->read(cs);
wd_end = watchdog->read(watchdog);
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
wd_end2 = watchdog->read(watchdog);
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
local_irq_enable();
wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
if (wd_delay <= md + cs->uncertainty_margin) {
if (nretries > 1 && nretries >= max_retries) {
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
smp_processor_id(), watchdog->name, nretries);
}
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
return WD_READ_SUCCESS;
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
}
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
/*
* Now compute delay in consecutive watchdog read to see if
* there is too much external interferences that cause
* significant delay in reading both clocksource and watchdog.
*
* If consecutive WD read-back delay > md, report
* system busy, reinit the watchdog and skip the current
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
* watchdog test.
*/
wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
if (wd_seq_delay > md)
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
goto skip_test;
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
}
pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
return WD_READ_UNSTABLE;
skip_test:
pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
smp_processor_id(), watchdog->name, wd_seq_delay);
pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
cs->name, wd_delay);
return WD_READ_SKIP;
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
}
static u64 csnow_mid;
static cpumask_t cpus_ahead;
static cpumask_t cpus_behind;
static cpumask_t cpus_chosen;
static void clocksource_verify_choose_cpus(void)
{
int cpu, i, n = verify_n_cpus;
if (n < 0) {
/* Check all of the CPUs. */
cpumask_copy(&cpus_chosen, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
return;
}
/* If no checking desired, or no other CPU to check, leave. */
cpumask_clear(&cpus_chosen);
if (n == 0 || num_online_cpus() <= 1)
return;
/* Make sure to select at least one CPU other than the current CPU. */
cpu = cpumask_first(cpu_online_mask);
if (cpu == smp_processor_id())
cpu = cpumask_next(cpu, cpu_online_mask);
if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
return;
cpumask_set_cpu(cpu, &cpus_chosen);
/* Force a sane value for the boot parameter. */
if (n > nr_cpu_ids)
n = nr_cpu_ids;
/*
* Randomly select the specified number of CPUs. If the same
* CPU is selected multiple times, that CPU is checked only once,
* and no replacement CPU is selected. This gracefully handles
* situations where verify_n_cpus is greater than the number of
* CPUs that are currently online.
*/
for (i = 1; i < n; i++) {
cpu = get_random_u32_below(nr_cpu_ids);
cpu = cpumask_next(cpu - 1, cpu_online_mask);
if (cpu >= nr_cpu_ids)
cpu = cpumask_first(cpu_online_mask);
if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
cpumask_set_cpu(cpu, &cpus_chosen);
}
/* Don't verify ourselves. */
cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
}
static void clocksource_verify_one_cpu(void *csin)
{
struct clocksource *cs = (struct clocksource *)csin;
csnow_mid = cs->read(cs);
}
clocksource: Provide kernel module to test clocksource watchdog When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. It would be good to have a way of testing the clocksource watchdog's ability to distinguish between these two causes of clock skew and instability. Therefore, provide a new clocksource-wdtest module selected by a new TEST_CLOCKSOURCE_WATCHDOG Kconfig option. This module has a single module parameter named "holdoff" that provides the number of seconds of delay before testing should start, which defaults to zero when built as a module and to 10 seconds when built directly into the kernel. Very large systems that boot slowly may need to increase the value of this module parameter. This module uses hand-crafted clocksource structures to do its testing, thus avoiding messing up timing for the rest of the kernel and for user applications. This module first verifies that the ->uncertainty_margin field of the clocksource structures are set sanely. It then tests the delay-detection capability of the clocksource watchdog, increasing the number of consecutive delays injected, first provoking console messages complaining about the delays and finally forcing a clock-skew event. Unexpected test results cause at least one WARN_ON_ONCE() console splat. If there are no splats, the test has passed. Finally, it fuzzes the value returned from a clocksource to test the clocksource watchdog's ability to detect time skew. This module checks the state of its clocksource after each test, and uses WARN_ON_ONCE() to emit a console splat if there are any failures. This should enable all types of test frameworks to detect any such failures. This facility is intended for diagnostic use only, and should be avoided on production systems. Reported-by: Chris Mason <clm@fb.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-5-paulmck@kernel.org
2021-05-27 12:01:23 -07:00
void clocksource_verify_percpu(struct clocksource *cs)
{
int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
u64 csnow_begin, csnow_end;
int cpu, testcpu;
s64 delta;
if (verify_n_cpus == 0)
return;
cpumask_clear(&cpus_ahead);
cpumask_clear(&cpus_behind);
cpus_read_lock();
preempt_disable();
clocksource_verify_choose_cpus();
if (cpumask_empty(&cpus_chosen)) {
preempt_enable();
cpus_read_unlock();
pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
return;
}
testcpu = smp_processor_id();
pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
for_each_cpu(cpu, &cpus_chosen) {
if (cpu == testcpu)
continue;
csnow_begin = cs->read(cs);
smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
csnow_end = cs->read(cs);
delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
if (delta < 0)
cpumask_set_cpu(cpu, &cpus_behind);
delta = (csnow_end - csnow_mid) & cs->mask;
if (delta < 0)
cpumask_set_cpu(cpu, &cpus_ahead);
cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
if (cs_nsec > cs_nsec_max)
cs_nsec_max = cs_nsec;
if (cs_nsec < cs_nsec_min)
cs_nsec_min = cs_nsec;
}
preempt_enable();
cpus_read_unlock();
if (!cpumask_empty(&cpus_ahead))
pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
if (!cpumask_empty(&cpus_behind))
pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
cpumask_pr_args(&cpus_behind), testcpu, cs->name);
if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
testcpu, cs_nsec_min, cs_nsec_max, cs->name);
}
clocksource: Provide kernel module to test clocksource watchdog When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. It would be good to have a way of testing the clocksource watchdog's ability to distinguish between these two causes of clock skew and instability. Therefore, provide a new clocksource-wdtest module selected by a new TEST_CLOCKSOURCE_WATCHDOG Kconfig option. This module has a single module parameter named "holdoff" that provides the number of seconds of delay before testing should start, which defaults to zero when built as a module and to 10 seconds when built directly into the kernel. Very large systems that boot slowly may need to increase the value of this module parameter. This module uses hand-crafted clocksource structures to do its testing, thus avoiding messing up timing for the rest of the kernel and for user applications. This module first verifies that the ->uncertainty_margin field of the clocksource structures are set sanely. It then tests the delay-detection capability of the clocksource watchdog, increasing the number of consecutive delays injected, first provoking console messages complaining about the delays and finally forcing a clock-skew event. Unexpected test results cause at least one WARN_ON_ONCE() console splat. If there are no splats, the test has passed. Finally, it fuzzes the value returned from a clocksource to test the clocksource watchdog's ability to detect time skew. This module checks the state of its clocksource after each test, and uses WARN_ON_ONCE() to emit a console splat if there are any failures. This should enable all types of test frameworks to detect any such failures. This facility is intended for diagnostic use only, and should be avoided on production systems. Reported-by: Chris Mason <clm@fb.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-5-paulmck@kernel.org
2021-05-27 12:01:23 -07:00
EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
clocksource: Suspend the watchdog temporarily when high read latency detected Bugs have been reported on 8 sockets x86 machines in which the TSC was wrongly disabled when the system is under heavy workload. [ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns [ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped! [ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns [ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped! [ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable [ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog [ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'. [ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998) [ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564. [ 821.067990] clocksource: Switched to clocksource hpet This can be reproduced by running memory intensive 'stream' tests, or some of the stress-ng subcases such as 'ioport'. The reason for these issues is the when system is under heavy load, the read latency of the clocksources can be very high. Even lightweight TSC reads can show high latencies, and latencies are much worse for external clocksources such as HPET or the APIC PM timer. These latencies can result in false-positive clocksource-unstable determinations. These issues were initially reported by a customer running on a production system, and this problem was reproduced on several generations of Xeon servers, especially when running the stress-ng test. These Xeon servers were not production systems, but they did have the latest steppings and firmware. Given that the clocksource watchdog is a continual diagnostic check with frequency of twice a second, there is no need to rush it when the system is under heavy load. Therefore, when high clocksource read latencies are detected, suspend the watchdog timer for 5 minutes. Signed-off-by: Feng Tang <feng.tang@intel.com> Acked-by: Waiman Long <longman@redhat.com> Cc: John Stultz <jstultz@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-20 16:25:12 +08:00
static inline void clocksource_reset_watchdog(void)
{
struct clocksource *cs;
list_for_each_entry(cs, &watchdog_list, wd_list)
cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
}
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 14:43:17 -07:00
static void clocksource_watchdog(struct timer_list *unused)
{
clocksource: Skip watchdog check for large watchdog intervals There have been reports of the watchdog marking clocksources unstable on machines with 8 NUMA nodes: clocksource: timekeeping watchdog on CPU373: Marking clocksource 'tsc' as unstable because the skew is too large: clocksource: 'hpet' wd_nsec: 14523447520 clocksource: 'tsc' cs_nsec: 14524115132 The measured clocksource skew - the absolute difference between cs_nsec and wd_nsec - was 668 microseconds: cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612 The kernel used 200 microseconds for the uncertainty_margin of both the clocksource and watchdog, resulting in a threshold of 400 microseconds (the md variable). Both the cs_nsec and the wd_nsec value indicate that the readout interval was circa 14.5 seconds. The observed behaviour is that watchdog checks failed for large readout intervals on 8 NUMA node machines. This indicates that the size of the skew was directly proportinal to the length of the readout interval on those machines. The measured clocksource skew, 668 microseconds, was evaluated against a threshold (the md variable) that is suited for readout intervals of roughly WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second. The intention of 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") was to tighten the threshold for evaluating skew and set the lower bound for the uncertainty_margin of clocksources to twice WATCHDOG_MAX_SKEW. Later in c37e85c135ce ("clocksource: Loosen clocksource watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to 125 microseconds to fit the limit of NTP, which is able to use a clocksource that suffers from up to 500 microseconds of skew per second. Both the TSC and the HPET use default uncertainty_margin. When the readout interval gets stretched the default uncertainty_margin is no longer a suitable lower bound for evaluating skew - it imposes a limit that is far stricter than the skew with which NTP can deal. The root causes of the skew being directly proportinal to the length of the readout interval are: * the inaccuracy of the shift/mult pairs of clocksources and the watchdog * the conversion to nanoseconds is imprecise for large readout intervals Prevent this by skipping the current watchdog check if the readout interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin (of the TSC and HPET) corresponds to a limit on clocksource skew of 250 ppm (microseconds of skew per second). To keep the limit imposed by NTP (500 microseconds of skew per second) for all possible readout intervals, the margins would have to be scaled so that the threshold value is proportional to the length of the actual readout interval. As for why the readout interval may get stretched: Since the watchdog is executed in softirq context the expiration of the watchdog timer can get severely delayed on account of a ksoftirqd thread not getting to run in a timely manner. Surely, a system with such belated softirq execution is not working well and the scheduling issue should be looked into but the clocksource watchdog should be able to deal with it accordingly. Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Suggested-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Jiri Wiesner <jwiesner@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Feng Tang <feng.tang@intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240122172350.GA740@incl
2024-01-22 18:23:50 +01:00
int64_t wd_nsec, cs_nsec, interval;
u64 csnow, wdnow, cslast, wdlast;
int next_cpu, reset_pending;
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
struct clocksource *cs;
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
enum wd_read_status read_ret;
clocksource: Suspend the watchdog temporarily when high read latency detected Bugs have been reported on 8 sockets x86 machines in which the TSC was wrongly disabled when the system is under heavy workload. [ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns [ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped! [ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns [ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped! [ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable [ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog [ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'. [ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998) [ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564. [ 821.067990] clocksource: Switched to clocksource hpet This can be reproduced by running memory intensive 'stream' tests, or some of the stress-ng subcases such as 'ioport'. The reason for these issues is the when system is under heavy load, the read latency of the clocksources can be very high. Even lightweight TSC reads can show high latencies, and latencies are much worse for external clocksources such as HPET or the APIC PM timer. These latencies can result in false-positive clocksource-unstable determinations. These issues were initially reported by a customer running on a production system, and this problem was reproduced on several generations of Xeon servers, especially when running the stress-ng test. These Xeon servers were not production systems, but they did have the latest steppings and firmware. Given that the clocksource watchdog is a continual diagnostic check with frequency of twice a second, there is no need to rush it when the system is under heavy load. Therefore, when high clocksource read latencies are detected, suspend the watchdog timer for 5 minutes. Signed-off-by: Feng Tang <feng.tang@intel.com> Acked-by: Waiman Long <longman@redhat.com> Cc: John Stultz <jstultz@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-20 16:25:12 +08:00
unsigned long extra_wait = 0;
clocksource: Reduce clocksource-skew threshold Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-05-27 12:01:22 -07:00
u32 md;
spin_lock(&watchdog_lock);
if (!watchdog_running)
goto out;
reset_pending = atomic_read(&watchdog_reset_pending);
list_for_each_entry(cs, &watchdog_list, wd_list) {
/* Clocksource already marked unstable? */
if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
if (finished_booting)
schedule_work(&watchdog_work);
continue;
}
clocksource: Avoid accidental unstable marking of clocksources Since commit db3a34e17433 ("clocksource: Retry clock read if long delays detected") and commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), it is found that tsc clocksource fallback to hpet can sometimes happen on both Intel and AMD systems especially when they are running stressful benchmarking workloads. Of the 23 systems tested with a v5.14 kernel, 10 of them have switched to hpet clock source during the test run. The result of falling back to hpet is a drastic reduction of performance when running benchmarks. For example, the fio performance tests can drop up to 70% whereas the iperf3 performance can drop up to 80%. 4 hpet fallbacks happened during bootup. They were: [ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable [ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable [ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable [ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable Other fallbacks happen when the systems were running stressful benchmarks. For example: [ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable [46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable Commit 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold"), changed the skew margin from 100us to 50us. I think this is too small and can easily be exceeded when running some stressful workloads on a thermally stressed system. So it is switched back to 100us. Even a maximum skew margin of 100us may be too small in for some systems when booting up especially if those systems are under thermal stress. To eliminate the case that the large skew is due to the system being too busy slowing down the reading of both the watchdog and the clocksource, an extra consecutive read of watchdog clock is being done to check this. The consecutive watchdog read delay is compared against WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that the system is just too busy. A warning will be printed to the console and the clock skew check is skipped for this round. Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected") Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-11-18 14:14:36 -05:00
read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
clocksource: Suspend the watchdog temporarily when high read latency detected Bugs have been reported on 8 sockets x86 machines in which the TSC was wrongly disabled when the system is under heavy workload. [ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns [ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped! [ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns [ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped! [ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable [ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog [ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'. [ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998) [ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564. [ 821.067990] clocksource: Switched to clocksource hpet This can be reproduced by running memory intensive 'stream' tests, or some of the stress-ng subcases such as 'ioport'. The reason for these issues is the when system is under heavy load, the read latency of the clocksources can be very high. Even lightweight TSC reads can show high latencies, and latencies are much worse for external clocksources such as HPET or the APIC PM timer. These latencies can result in false-positive clocksource-unstable determinations. These issues were initially reported by a customer running on a production system, and this problem was reproduced on several generations of Xeon servers, especially when running the stress-ng test. These Xeon servers were not production systems, but they did have the latest steppings and firmware. Given that the clocksource watchdog is a continual diagnostic check with frequency of twice a second, there is no need to rush it when the system is under heavy load. Therefore, when high clocksource read latencies are detected, suspend the watchdog timer for 5 minutes. Signed-off-by: Feng Tang <feng.tang@intel.com> Acked-by: Waiman Long <longman@redhat.com> Cc: John Stultz <jstultz@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-20 16:25:12 +08:00
if (read_ret == WD_READ_UNSTABLE) {
/* Clock readout unreliable, so give it up. */
__clocksource_unstable(cs);
clocksource: Retry clock read if long delays detected When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-05-27 12:01:19 -07:00
continue;
}
clocksource: Suspend the watchdog temporarily when high read latency detected Bugs have been reported on 8 sockets x86 machines in which the TSC was wrongly disabled when the system is under heavy workload. [ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns [ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped! [ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns [ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped! [ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable [ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog [ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'. [ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998) [ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564. [ 821.067990] clocksource: Switched to clocksource hpet This can be reproduced by running memory intensive 'stream' tests, or some of the stress-ng subcases such as 'ioport'. The reason for these issues is the when system is under heavy load, the read latency of the clocksources can be very high. Even lightweight TSC reads can show high latencies, and latencies are much worse for external clocksources such as HPET or the APIC PM timer. These latencies can result in false-positive clocksource-unstable determinations. These issues were initially reported by a customer running on a production system, and this problem was reproduced on several generations of Xeon servers, especially when running the stress-ng test. These Xeon servers were not production systems, but they did have the latest steppings and firmware. Given that the clocksource watchdog is a continual diagnostic check with frequency of twice a second, there is no need to rush it when the system is under heavy load. Therefore, when high clocksource read latencies are detected, suspend the watchdog timer for 5 minutes. Signed-off-by: Feng Tang <feng.tang@intel.com> Acked-by: Waiman Long <longman@redhat.com> Cc: John Stultz <jstultz@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-20 16:25:12 +08:00
/*
* When WD_READ_SKIP is returned, it means the system is likely
* under very heavy load, where the latency of reading
* watchdog/clocksource is very big, and affect the accuracy of
* watchdog check. So give system some space and suspend the
* watchdog check for 5 minutes.
*/
if (read_ret == WD_READ_SKIP) {
/*
* As the watchdog timer will be suspended, and
* cs->last could keep unchanged for 5 minutes, reset
* the counters.
*/
clocksource_reset_watchdog();
extra_wait = HZ * 300;
break;
}
/* Clocksource initialized ? */
if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
atomic_read(&watchdog_reset_pending)) {
cs->flags |= CLOCK_SOURCE_WATCHDOG;
cs->wd_last = wdnow;
cs->cs_last = csnow;
continue;
}
wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
wdlast = cs->wd_last; /* save these in case we print them */
cslast = cs->cs_last;
cs->cs_last = csnow;
cs->wd_last = wdnow;
if (atomic_read(&watchdog_reset_pending))
continue;
clocksource: Skip watchdog check for large watchdog intervals There have been reports of the watchdog marking clocksources unstable on machines with 8 NUMA nodes: clocksource: timekeeping watchdog on CPU373: Marking clocksource 'tsc' as unstable because the skew is too large: clocksource: 'hpet' wd_nsec: 14523447520 clocksource: 'tsc' cs_nsec: 14524115132 The measured clocksource skew - the absolute difference between cs_nsec and wd_nsec - was 668 microseconds: cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612 The kernel used 200 microseconds for the uncertainty_margin of both the clocksource and watchdog, resulting in a threshold of 400 microseconds (the md variable). Both the cs_nsec and the wd_nsec value indicate that the readout interval was circa 14.5 seconds. The observed behaviour is that watchdog checks failed for large readout intervals on 8 NUMA node machines. This indicates that the size of the skew was directly proportinal to the length of the readout interval on those machines. The measured clocksource skew, 668 microseconds, was evaluated against a threshold (the md variable) that is suited for readout intervals of roughly WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second. The intention of 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") was to tighten the threshold for evaluating skew and set the lower bound for the uncertainty_margin of clocksources to twice WATCHDOG_MAX_SKEW. Later in c37e85c135ce ("clocksource: Loosen clocksource watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to 125 microseconds to fit the limit of NTP, which is able to use a clocksource that suffers from up to 500 microseconds of skew per second. Both the TSC and the HPET use default uncertainty_margin. When the readout interval gets stretched the default uncertainty_margin is no longer a suitable lower bound for evaluating skew - it imposes a limit that is far stricter than the skew with which NTP can deal. The root causes of the skew being directly proportinal to the length of the readout interval are: * the inaccuracy of the shift/mult pairs of clocksources and the watchdog * the conversion to nanoseconds is imprecise for large readout intervals Prevent this by skipping the current watchdog check if the readout interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin (of the TSC and HPET) corresponds to a limit on clocksource skew of 250 ppm (microseconds of skew per second). To keep the limit imposed by NTP (500 microseconds of skew per second) for all possible readout intervals, the margins would have to be scaled so that the threshold value is proportional to the length of the actual readout interval. As for why the readout interval may get stretched: Since the watchdog is executed in softirq context the expiration of the watchdog timer can get severely delayed on account of a ksoftirqd thread not getting to run in a timely manner. Surely, a system with such belated softirq execution is not working well and the scheduling issue should be looked into but the clocksource watchdog should be able to deal with it accordingly. Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold") Suggested-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Jiri Wiesner <jwiesner@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Feng Tang <feng.tang@intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240122172350.GA740@incl
2024-01-22 18:23:50 +01:00
/*
* The processing of timer softirqs can get delayed (usually
* on account of ksoftirqd not getting to run in a timely
* manner), which causes the watchdog interval to stretch.
* Skew detection may fail for longer watchdog intervals
* on account of fixed margins being used.
* Some clocksources, e.g. acpi_pm, cannot tolerate
* watchdog intervals longer than a few seconds.
*/
interval = max(cs_nsec, wd_nsec);
if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
if (system_state > SYSTEM_SCHEDULING &&
interval > 2 * watchdog_max_interval) {
watchdog_max_interval = interval;
pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
cs_nsec, wd_nsec);
}
watchdog_timer.expires = jiffies;
continue;
}
/* Check the deviation from the watchdog clocksource. */
clocksource: Reduce clocksource-skew threshold Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-05-27 12:01:22 -07:00
md = cs->uncertainty_margin + watchdog->uncertainty_margin;
if (abs(cs_nsec - wd_nsec) > md) {
s64 cs_wd_msec;
s64 wd_msec;
u32 wd_rem;
pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
smp_processor_id(), cs->name);
pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
cs->name, cs_nsec, csnow, cslast, cs->mask);
cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
if (curr_clocksource == cs)
pr_warn(" '%s' is current clocksource.\n", cs->name);
else if (curr_clocksource)
pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
else
pr_warn(" No current clocksource.\n");
__clocksource_unstable(cs);
continue;
}
if (cs == curr_clocksource && cs->tick_stable)
cs->tick_stable(cs);
if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
(cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
(watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
/* Mark it valid for high-res. */
cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
/*
* clocksource_done_booting() will sort it if
* finished_booting is not set yet.
*/
if (!finished_booting)
continue;
/*
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
* If this is not the current clocksource let
* the watchdog thread reselect it. Due to the
* change to high res this clocksource might
* be preferred now. If it is the current
* clocksource let the tick code know about
* that change.
*/
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
if (cs != curr_clocksource) {
cs->flags |= CLOCK_SOURCE_RESELECT;
schedule_work(&watchdog_work);
} else {
tick_clock_notify();
}
}
}
/*
* We only clear the watchdog_reset_pending, when we did a
* full cycle through all clocksources.
*/
if (reset_pending)
atomic_dec(&watchdog_reset_pending);
/*
* Cycle through CPUs to check if the CPUs stay synchronized
* to each other.
*/
next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
if (next_cpu >= nr_cpu_ids)
next_cpu = cpumask_first(cpu_online_mask);
clocksource: Prevent double add_timer_on() for watchdog_timer Kernel crashes inside QEMU/KVM are observed: kernel BUG at kernel/time/timer.c:1154! BUG_ON(timer_pending(timer) || !timer->function) in add_timer_on(). At the same time another cpu got: general protection fault: 0000 [#1] SMP PTI of poinson pointer 0xdead000000000200 in: __hlist_del at include/linux/list.h:681 (inlined by) detach_timer at kernel/time/timer.c:818 (inlined by) expire_timers at kernel/time/timer.c:1355 (inlined by) __run_timers at kernel/time/timer.c:1686 (inlined by) run_timer_softirq at kernel/time/timer.c:1699 Unfortunately kernel logs are badly scrambled, stacktraces are lost. Printing the timer->function before the BUG_ON() pointed to clocksource_watchdog(). The execution of clocksource_watchdog() can race with a sequence of clocksource_stop_watchdog() .. clocksource_start_watchdog(): expire_timers() detach_timer(timer, true); timer->entry.pprev = NULL; raw_spin_unlock_irq(&base->lock); call_timer_fn clocksource_watchdog() clocksource_watchdog_kthread() or clocksource_unbind() spin_lock_irqsave(&watchdog_lock, flags); clocksource_stop_watchdog(); del_timer(&watchdog_timer); watchdog_running = 0; spin_unlock_irqrestore(&watchdog_lock, flags); spin_lock_irqsave(&watchdog_lock, flags); clocksource_start_watchdog(); add_timer_on(&watchdog_timer, ...); watchdog_running = 1; spin_unlock_irqrestore(&watchdog_lock, flags); spin_lock(&watchdog_lock); add_timer_on(&watchdog_timer, ...); BUG_ON(timer_pending(timer) || !timer->function); timer_pending() -> true BUG() I.e. inside clocksource_watchdog() watchdog_timer could be already armed. Check timer_pending() before calling add_timer_on(). This is sufficient as all operations are synchronized by watchdog_lock. Fixes: 75c5158f70c0 ("timekeeping: Update clocksource with stop_machine") Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/158048693917.4378.13823603769948933793.stgit@buzz
2020-01-31 19:08:59 +03:00
/*
* Arm timer if not already pending: could race with concurrent
* pair clocksource_stop_watchdog() clocksource_start_watchdog().
*/
if (!timer_pending(&watchdog_timer)) {
clocksource: Suspend the watchdog temporarily when high read latency detected Bugs have been reported on 8 sockets x86 machines in which the TSC was wrongly disabled when the system is under heavy workload. [ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns [ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped! [ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns [ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped! [ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable [ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog [ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'. [ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998) [ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564. [ 821.067990] clocksource: Switched to clocksource hpet This can be reproduced by running memory intensive 'stream' tests, or some of the stress-ng subcases such as 'ioport'. The reason for these issues is the when system is under heavy load, the read latency of the clocksources can be very high. Even lightweight TSC reads can show high latencies, and latencies are much worse for external clocksources such as HPET or the APIC PM timer. These latencies can result in false-positive clocksource-unstable determinations. These issues were initially reported by a customer running on a production system, and this problem was reproduced on several generations of Xeon servers, especially when running the stress-ng test. These Xeon servers were not production systems, but they did have the latest steppings and firmware. Given that the clocksource watchdog is a continual diagnostic check with frequency of twice a second, there is no need to rush it when the system is under heavy load. Therefore, when high clocksource read latencies are detected, suspend the watchdog timer for 5 minutes. Signed-off-by: Feng Tang <feng.tang@intel.com> Acked-by: Waiman Long <longman@redhat.com> Cc: John Stultz <jstultz@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-20 16:25:12 +08:00
watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
clocksource: Prevent double add_timer_on() for watchdog_timer Kernel crashes inside QEMU/KVM are observed: kernel BUG at kernel/time/timer.c:1154! BUG_ON(timer_pending(timer) || !timer->function) in add_timer_on(). At the same time another cpu got: general protection fault: 0000 [#1] SMP PTI of poinson pointer 0xdead000000000200 in: __hlist_del at include/linux/list.h:681 (inlined by) detach_timer at kernel/time/timer.c:818 (inlined by) expire_timers at kernel/time/timer.c:1355 (inlined by) __run_timers at kernel/time/timer.c:1686 (inlined by) run_timer_softirq at kernel/time/timer.c:1699 Unfortunately kernel logs are badly scrambled, stacktraces are lost. Printing the timer->function before the BUG_ON() pointed to clocksource_watchdog(). The execution of clocksource_watchdog() can race with a sequence of clocksource_stop_watchdog() .. clocksource_start_watchdog(): expire_timers() detach_timer(timer, true); timer->entry.pprev = NULL; raw_spin_unlock_irq(&base->lock); call_timer_fn clocksource_watchdog() clocksource_watchdog_kthread() or clocksource_unbind() spin_lock_irqsave(&watchdog_lock, flags); clocksource_stop_watchdog(); del_timer(&watchdog_timer); watchdog_running = 0; spin_unlock_irqrestore(&watchdog_lock, flags); spin_lock_irqsave(&watchdog_lock, flags); clocksource_start_watchdog(); add_timer_on(&watchdog_timer, ...); watchdog_running = 1; spin_unlock_irqrestore(&watchdog_lock, flags); spin_lock(&watchdog_lock); add_timer_on(&watchdog_timer, ...); BUG_ON(timer_pending(timer) || !timer->function); timer_pending() -> true BUG() I.e. inside clocksource_watchdog() watchdog_timer could be already armed. Check timer_pending() before calling add_timer_on(). This is sufficient as all operations are synchronized by watchdog_lock. Fixes: 75c5158f70c0 ("timekeeping: Update clocksource with stop_machine") Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/158048693917.4378.13823603769948933793.stgit@buzz
2020-01-31 19:08:59 +03:00
add_timer_on(&watchdog_timer, next_cpu);
}
out:
spin_unlock(&watchdog_lock);
}
static inline void clocksource_start_watchdog(void)
{
if (watchdog_running || !watchdog || list_empty(&watchdog_list))
return;
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 14:43:17 -07:00
timer_setup(&watchdog_timer, clocksource_watchdog, 0);
watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
watchdog_running = 1;
}
static inline void clocksource_stop_watchdog(void)
{
if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
return;
del_timer(&watchdog_timer);
watchdog_running = 0;
}
static void clocksource_resume_watchdog(void)
{
atomic_inc(&watchdog_reset_pending);
}
static void clocksource_enqueue_watchdog(struct clocksource *cs)
{
INIT_LIST_HEAD(&cs->wd_list);
if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
/* cs is a clocksource to be watched. */
list_add(&cs->wd_list, &watchdog_list);
cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
} else {
/* cs is a watchdog. */
if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
}
}
static void clocksource_select_watchdog(bool fallback)
{
struct clocksource *cs, *old_wd;
unsigned long flags;
spin_lock_irqsave(&watchdog_lock, flags);
/* save current watchdog */
old_wd = watchdog;
if (fallback)
watchdog = NULL;
list_for_each_entry(cs, &clocksource_list, list) {
/* cs is a clocksource to be watched. */
if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
continue;
/* Skip current if we were requested for a fallback. */
if (fallback && cs == old_wd)
continue;
/* Pick the best watchdog. */
if (!watchdog || cs->rating > watchdog->rating)
watchdog = cs;
}
/* If we failed to find a fallback restore the old one. */
if (!watchdog)
watchdog = old_wd;
/* If we changed the watchdog we need to reset cycles. */
if (watchdog != old_wd)
clocksource_reset_watchdog();
/* Check if the watchdog timer needs to be started. */
clocksource_start_watchdog();
spin_unlock_irqrestore(&watchdog_lock, flags);
}
static void clocksource_dequeue_watchdog(struct clocksource *cs)
{
if (cs != watchdog) {
if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
/* cs is a watched clocksource. */
list_del_init(&cs->wd_list);
/* Check if the watchdog timer needs to be stopped. */
clocksource_stop_watchdog();
}
}
}
static int __clocksource_watchdog_kthread(void)
{
struct clocksource *cs, *tmp;
unsigned long flags;
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
int select = 0;
/* Do any required per-CPU skew verification. */
if (curr_clocksource &&
curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
clocksource_verify_percpu(curr_clocksource);
spin_lock_irqsave(&watchdog_lock, flags);
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
list_del_init(&cs->wd_list);
clocksource_change_rating(cs, 0);
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
select = 1;
}
if (cs->flags & CLOCK_SOURCE_RESELECT) {
cs->flags &= ~CLOCK_SOURCE_RESELECT;
select = 1;
}
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
}
/* Check if the watchdog timer needs to be stopped. */
clocksource_stop_watchdog();
spin_unlock_irqrestore(&watchdog_lock, flags);
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
return select;
}
static int clocksource_watchdog_kthread(void *data)
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
{
mutex_lock(&clocksource_mutex);
if (__clocksource_watchdog_kthread())
clocksource: Reselect clocksource when watchdog validated high-res capability Up to commit 5d33b883a (clocksource: Always verify highres capability) we had no sanity check when selecting a clocksource, which prevented that a non highres capable clocksource is used when the system already switched to highres/nohz mode. The new sanity check works as Alex and Tim found out. It prevents the TSC from being used. This happens because on x86 the boot process looks like this: tsc_start_freqency_validation(TSC); clocksource_register(HPET); clocksource_done_booting(); clocksource_select() Selects HPET which is valid for high-res switch_to_highres(); clocksource_register(TSC); TSC is not selected, because it is not yet flagged as VALID_HIGH_RES clocksource_watchdog() Validates TSC for highres, but that does not make TSC the current clocksource. Before the sanity check was added, we installed TSC unvalidated which worked most of the time. If the TSC was really detected as unstable, then the unstable logic removed it and installed HPET again. The sanity check is correct and needed. So the watchdog needs to kick a reselection of the clocksource, when it qualifies TSC as a valid high res clocksource. To solve this, we mark the clocksource which got the flag CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog thread evaluates the flag and invokes clocksource_select() when set. To avoid that the clocksource_done_booting() code, which is about to install the first real clocksource anyway, needs to go through clocksource_select and tick_oneshot_notify() pointlessly, split out the clocksource_watchdog_kthread() list walk code and invoke the select/notify only when called from clocksource_watchdog_kthread(). So clocksource_done_booting() can utilize the same splitout code without the select/notify invocation and the clocksource_mutex unlock/relock dance. Reported-and-tested-by: Alex Shi <alex.shi@intel.com> Cc: Hans Peter Anvin <hpa@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@kernel.org> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-04 22:46:45 +02:00
clocksource_select();
mutex_unlock(&clocksource_mutex);
return 0;
}
static bool clocksource_is_watchdog(struct clocksource *cs)
{
return cs == watchdog;
}
#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
static void clocksource_enqueue_watchdog(struct clocksource *cs)
{
if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
}
static void clocksource_select_watchdog(bool fallback) { }
static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
static inline void clocksource_resume_watchdog(void) { }
static inline int __clocksource_watchdog_kthread(void) { return 0; }
static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
void clocksource_mark_unstable(struct clocksource *cs) { }
static inline void clocksource_watchdog_lock(unsigned long *flags) { }
static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
2018-04-23 17:28:55 +02:00
#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
static bool clocksource_is_suspend(struct clocksource *cs)
{
return cs == suspend_clocksource;
}
static void __clocksource_suspend_select(struct clocksource *cs)
{
/*
* Skip the clocksource which will be stopped in suspend state.
*/
if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
return;
/*
* The nonstop clocksource can be selected as the suspend clocksource to
* calculate the suspend time, so it should not supply suspend/resume
* interfaces to suspend the nonstop clocksource when system suspends.
*/
if (cs->suspend || cs->resume) {
pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
cs->name);
}
/* Pick the best rating. */
if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
suspend_clocksource = cs;
}
/**
* clocksource_suspend_select - Select the best clocksource for suspend timing
* @fallback: if select a fallback clocksource
*/
static void clocksource_suspend_select(bool fallback)
{
struct clocksource *cs, *old_suspend;
old_suspend = suspend_clocksource;
if (fallback)
suspend_clocksource = NULL;
list_for_each_entry(cs, &clocksource_list, list) {
/* Skip current if we were requested for a fallback. */
if (fallback && cs == old_suspend)
continue;
__clocksource_suspend_select(cs);
}
}
/**
* clocksource_start_suspend_timing - Start measuring the suspend timing
* @cs: current clocksource from timekeeping
* @start_cycles: current cycles from timekeeping
*
* This function will save the start cycle values of suspend timer to calculate
* the suspend time when resuming system.
*
* This function is called late in the suspend process from timekeeping_suspend(),
* that means processes are frozen, non-boot cpus and interrupts are disabled
* now. It is therefore possible to start the suspend timer without taking the
* clocksource mutex.
*/
void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
{
if (!suspend_clocksource)
return;
/*
* If current clocksource is the suspend timer, we should use the
* tkr_mono.cycle_last value as suspend_start to avoid same reading
* from suspend timer.
*/
if (clocksource_is_suspend(cs)) {
suspend_start = start_cycles;
return;
}
if (suspend_clocksource->enable &&
suspend_clocksource->enable(suspend_clocksource)) {
pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
return;
}
suspend_start = suspend_clocksource->read(suspend_clocksource);
}
/**
* clocksource_stop_suspend_timing - Stop measuring the suspend timing
* @cs: current clocksource from timekeeping
* @cycle_now: current cycles from timekeeping
*
* This function will calculate the suspend time from suspend timer.
*
* Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
*
* This function is called early in the resume process from timekeeping_resume(),
* that means there is only one cpu, no processes are running and the interrupts
* are disabled. It is therefore possible to stop the suspend timer without
* taking the clocksource mutex.
*/
u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
{
u64 now, nsec = 0;
if (!suspend_clocksource)
return 0;
/*
* If current clocksource is the suspend timer, we should use the
* tkr_mono.cycle_last value from timekeeping as current cycle to
* avoid same reading from suspend timer.
*/
if (clocksource_is_suspend(cs))
now = cycle_now;
else
now = suspend_clocksource->read(suspend_clocksource);
if (now > suspend_start)
nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
/*
* Disable the suspend timer to save power if current clocksource is
* not the suspend timer.
*/
if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
suspend_clocksource->disable(suspend_clocksource);
return nsec;
}
/**
* clocksource_suspend - suspend the clocksource(s)
*/
void clocksource_suspend(void)
{
struct clocksource *cs;
list_for_each_entry_reverse(cs, &clocksource_list, list)
if (cs->suspend)
cs->suspend(cs);
}
/**
* clocksource_resume - resume the clocksource(s)
*/
void clocksource_resume(void)
{
struct clocksource *cs;
list_for_each_entry(cs, &clocksource_list, list)
if (cs->resume)
cs->resume(cs);
clocksource_resume_watchdog();
}
/**
* clocksource_touch_watchdog - Update watchdog
*
* Update the watchdog after exception contexts such as kgdb so as not
clocksource: Prevent potential kgdb dead lock commit 0f8e8ef7 (clocksource: Simplify clocksource watchdog resume logic) introduced a potential kgdb dead lock. When the kernel is stopped by kgdb inside code which holds watchdog_lock then kgdb dead locks in clocksource_resume_watchdog(). clocksource_resume_watchdog() is called from kbdg via clocksource_touch_watchdog() to avoid that the clock source watchdog marks TSC unstable after the kernel has been stopped. Solve this by replacing spin_lock with a spin_trylock and just return in case the lock is held. Not resetting the watchdog might result in TSC becoming marked unstable, but that's an acceptable penalty for using kgdb. The timekeeping is anyway easily screwed up by kgdb when the system uses either jiffies or a clock source which wraps in short intervals (e.g. pm_timer wraps about every 4.6s), so we really do not have to worry about that occasional TSC marked unstable side effect. The second caller of clocksource_resume_watchdog() is clocksource_resume(). The trylock is safe here as well because the system is UP at this point, interrupts are disabled and nothing else can hold watchdog_lock(). Reported-by: Jason Wessel <jason.wessel@windriver.com> LKML-Reference: <1264480000-6997-4-git-send-email-jason.wessel@windriver.com> Cc: kgdb-bugreport@lists.sourceforge.net Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: John Stultz <johnstul@us.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2010-01-26 12:51:10 +01:00
* to incorrectly trip the watchdog. This might fail when the kernel
* was stopped in code which holds watchdog_lock.
*/
void clocksource_touch_watchdog(void)
{
clocksource_resume_watchdog();
}
/**
* clocksource_max_adjustment- Returns max adjustment amount
* @cs: Pointer to clocksource
*
*/
static u32 clocksource_max_adjustment(struct clocksource *cs)
{
u64 ret;
/*
* We won't try to correct for more than 11% adjustments (110,000 ppm),
*/
ret = (u64)cs->mult * 11;
do_div(ret,100);
return (u32)ret;
}
/**
* clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
* @mult: cycle to nanosecond multiplier
* @shift: cycle to nanosecond divisor (power of two)
* @maxadj: maximum adjustment value to mult (~11%)
* @mask: bitmask for two's complement subtraction of non 64 bit counters
* @max_cyc: maximum cycle value before potential overflow (does not include
* any safety margin)
*
* NOTE: This function includes a safety margin of 50%, in other words, we
* return half the number of nanoseconds the hardware counter can technically
* cover. This is done so that we can potentially detect problems caused by
* delayed timers or bad hardware, which might result in time intervals that
* are larger than what the math used can handle without overflows.
*/
u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
{
u64 max_nsecs, max_cycles;
/*
* Calculate the maximum number of cycles that we can pass to the
* cyc2ns() function without overflowing a 64-bit result.
*/
max_cycles = ULLONG_MAX;
do_div(max_cycles, mult+maxadj);
/*
* The actual maximum number of cycles we can defer the clocksource is
* determined by the minimum of max_cycles and mask.
* Note: Here we subtract the maxadj to make sure we don't sleep for
* too long if there's a large negative adjustment.
*/
max_cycles = min(max_cycles, mask);
max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
/* return the max_cycles value as well if requested */
if (max_cyc)
*max_cyc = max_cycles;
/* Return 50% of the actual maximum, so we can detect bad values */
max_nsecs >>= 1;
return max_nsecs;
}
/**
* clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
* @cs: Pointer to clocksource to be updated
*
*/
static inline void clocksource_update_max_deferment(struct clocksource *cs)
{
cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
cs->maxadj, cs->mask,
&cs->max_cycles);
clocksource: Make negative motion detection more robust Guenter reported boot stalls on a emulated ARM 32-bit platform, which has a 24-bit wide clocksource. It turns out that the calculated maximal idle time, which limits idle sleeps to prevent clocksource wrap arounds, is close to the point where the negative motion detection triggers. max_idle_ns: 597268854 ns negative motion tripping point: 671088640 ns If the idle wakeup is delayed beyond that point, the clocksource advances far enough to trigger the negative motion detection. This prevents the clock to advance and in the worst case the system stalls completely if the consecutive sleeps based on the stale clock are delayed as well. Cure this by calculating a more robust cut-off value for negative motion, which covers 87.5% of the actual clocksource counter width. Compare the delta against this value to catch negative motion. This is specifically for clock sources with a small counter width as their wrap around time is close to the half counter width. For clock sources with wide counters this is not a problem because the maximum idle time is far from the half counter width due to the math overflow protection constraints. For the case at hand this results in a tripping point of 1174405120ns. Note, that this cannot prevent issues when the delay exceeds the 87.5% margin, but that's not different from the previous unchecked version which allowed arbitrary time jumps. Systems with small counter width are prone to invalid results, but this problem is unlikely to be seen on real hardware. If such a system completely stalls for more than half a second, then there are other more urgent problems than the counter wrapping around. Fixes: c163e40af9b2 ("timekeeping: Always check for negative motion") Reported-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/all/8734j5ul4x.ffs@tglx Closes: https://lore.kernel.org/all/387b120b-d68a-45e8-b6ab-768cd95d11c2@roeck-us.net
2024-12-03 11:16:30 +01:00
/*
* Threshold for detecting negative motion in clocksource_delta().
*
* Allow for 0.875 of the counter width so that overly long idle
* sleeps, which go slightly over mask/2, do not trigger the
* negative motion detection.
*/
cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3);
}
static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
{
struct clocksource *cs;
if (!finished_booting || list_empty(&clocksource_list))
return NULL;
/*
* We pick the clocksource with the highest rating. If oneshot
* mode is active, we pick the highres valid clocksource with
* the best rating.
*/
list_for_each_entry(cs, &clocksource_list, list) {
if (skipcur && cs == curr_clocksource)
continue;
if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
continue;
return cs;
}
return NULL;
}
static void __clocksource_select(bool skipcur)
{
bool oneshot = tick_oneshot_mode_active();
struct clocksource *best, *cs;
/* Find the best suitable clocksource */
best = clocksource_find_best(oneshot, skipcur);
if (!best)
return;
if (!strlen(override_name))
goto found;
/* Check for the override clocksource. */
list_for_each_entry(cs, &clocksource_list, list) {
if (skipcur && cs == curr_clocksource)
continue;
if (strcmp(cs->name, override_name) != 0)
continue;
/*
* Check to make sure we don't switch to a non-highres
* capable clocksource if the tick code is in oneshot
* mode (highres or nohz)
*/
if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
/* Override clocksource cannot be used. */
if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
cs->name);
override_name[0] = 0;
} else {
/*
* The override cannot be currently verified.
* Deferring to let the watchdog check.
*/
pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
cs->name);
}
} else
/* Override clocksource can be used. */
best = cs;
break;
}
found:
if (curr_clocksource != best && !timekeeping_notify(best)) {
pr_info("Switched to clocksource %s\n", best->name);
curr_clocksource = best;
}
}
/**
* clocksource_select - Select the best clocksource available
*
* Private function. Must hold clocksource_mutex when called.
*
* Select the clocksource with the best rating, or the clocksource,
* which is selected by userspace override.
*/
static void clocksource_select(void)
{
__clocksource_select(false);
}
static void clocksource_select_fallback(void)
{
__clocksource_select(true);
}
/*
* clocksource_done_booting - Called near the end of core bootup
*
* Hack to avoid lots of clocksource churn at boot time.
* We use fs_initcall because we want this to start before
* device_initcall but after subsys_initcall.
*/
static int __init clocksource_done_booting(void)
{
mutex_lock(&clocksource_mutex);
curr_clocksource = clocksource_default_clock();
finished_booting = 1;
/*
* Run the watchdog first to eliminate unstable clock sources
*/
__clocksource_watchdog_kthread();
clocksource_select();
mutex_unlock(&clocksource_mutex);
return 0;
}
fs_initcall(clocksource_done_booting);
/*
* Enqueue the clocksource sorted by rating
*/
static void clocksource_enqueue(struct clocksource *cs)
{
struct list_head *entry = &clocksource_list;
struct clocksource *tmp;
list_for_each_entry(tmp, &clocksource_list, list) {
/* Keep track of the place, where to insert */
if (tmp->rating < cs->rating)
break;
entry = &tmp->list;
}
list_add(&cs->list, entry);
}
/**
* __clocksource_update_freq_scale - Used update clocksource with new freq
* @cs: clocksource to be registered
* @scale: Scale factor multiplied against freq to get clocksource hz
* @freq: clocksource frequency (cycles per second) divided by scale
*
* This should only be called from the clocksource->enable() method.
*
* This *SHOULD NOT* be called directly! Please use the
* __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
* functions.
*/
void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
{
u64 sec;
/*
* Default clocksources are *special* and self-define their mult/shift.
* But, you're not special, so you should specify a freq value.
*/
if (freq) {
/*
* Calc the maximum number of seconds which we can run before
* wrapping around. For clocksources which have a mask > 32-bit
* we need to limit the max sleep time to have a good
* conversion precision. 10 minutes is still a reasonable
* amount. That results in a shift value of 24 for a
* clocksource with mask >= 40-bit and f >= 4GHz. That maps to
* ~ 0.06ppm granularity for NTP.
*/
sec = cs->mask;
do_div(sec, freq);
do_div(sec, scale);
if (!sec)
sec = 1;
else if (sec > 600 && cs->mask > UINT_MAX)
sec = 600;
clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
NSEC_PER_SEC / scale, sec * scale);
}
clocksource: Reduce clocksource-skew threshold Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-05-27 12:01:22 -07:00
/*
* If the uncertainty margin is not specified, calculate it. If
* both scale and freq are non-zero, calculate the clock period, but
* bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
* However, if either of scale or freq is zero, be very conservative
* and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
* for the uncertainty margin. Allow stupidly small uncertainty
* margins to be specified by the caller for testing purposes,
* but warn to discourage production use of this capability.
*
* Bottom line: The sum of the uncertainty margins of the
* watchdog clocksource and the clocksource under test will be at
* least 500ppm by default. For more information, please see the
* comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
clocksource: Reduce clocksource-skew threshold Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-05-27 12:01:22 -07:00
*/
if (scale && freq && !cs->uncertainty_margin) {
cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
} else if (!cs->uncertainty_margin) {
cs->uncertainty_margin = WATCHDOG_THRESHOLD;
}
WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
/*
* Ensure clocksources that have large 'mult' values don't overflow
* when adjusted.
*/
cs->maxadj = clocksource_max_adjustment(cs);
while (freq && ((cs->mult + cs->maxadj < cs->mult)
|| (cs->mult - cs->maxadj > cs->mult))) {
cs->mult >>= 1;
cs->shift--;
cs->maxadj = clocksource_max_adjustment(cs);
}
/*
* Only warn for *special* clocksources that self-define
* their mult/shift values and don't specify a freq.
*/
WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
cs->name);
clocksource_update_max_deferment(cs);
pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
}
EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
/**
* __clocksource_register_scale - Used to install new clocksources
* @cs: clocksource to be registered
* @scale: Scale factor multiplied against freq to get clocksource hz
* @freq: clocksource frequency (cycles per second) divided by scale
*
* Returns -EBUSY if registration fails, zero otherwise.
*
* This *SHOULD NOT* be called directly! Please use the
* clocksource_register_hz() or clocksource_register_khz helper functions.
*/
int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
{
2018-04-23 17:28:55 +02:00
unsigned long flags;
clocksource_arch_init(cs);
if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
cs->id = CSID_GENERIC;
if (cs->vdso_clock_mode < 0 ||
cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
cs->name, cs->vdso_clock_mode);
cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
}
/* Initialize mult/shift and max_idle_ns */
__clocksource_update_freq_scale(cs, scale, freq);
/* Add clocksource to the clocksource list */
mutex_lock(&clocksource_mutex);
2018-04-23 17:28:55 +02:00
clocksource_watchdog_lock(&flags);
clocksource_enqueue(cs);
clocksource_enqueue_watchdog(cs);
2018-04-23 17:28:55 +02:00
clocksource_watchdog_unlock(&flags);
clocksource_select();
clocksource_select_watchdog(false);
__clocksource_suspend_select(cs);
mutex_unlock(&clocksource_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(__clocksource_register_scale);
/*
* Unbind clocksource @cs. Called with clocksource_mutex held
*/
static int clocksource_unbind(struct clocksource *cs)
{
2018-04-23 17:28:55 +02:00
unsigned long flags;
if (clocksource_is_watchdog(cs)) {
/* Select and try to install a replacement watchdog. */
clocksource_select_watchdog(true);
if (clocksource_is_watchdog(cs))
return -EBUSY;
}
if (cs == curr_clocksource) {
/* Select and try to install a replacement clock source */
clocksource_select_fallback();
if (curr_clocksource == cs)
return -EBUSY;
}
2018-04-23 17:28:55 +02:00
if (clocksource_is_suspend(cs)) {
/*
* Select and try to install a replacement suspend clocksource.
* If no replacement suspend clocksource, we will just let the
* clocksource go and have no suspend clocksource.
*/
clocksource_suspend_select(true);
}
2018-04-23 17:28:55 +02:00
clocksource_watchdog_lock(&flags);
clocksource_dequeue_watchdog(cs);
list_del_init(&cs->list);
2018-04-23 17:28:55 +02:00
clocksource_watchdog_unlock(&flags);
return 0;
}
/**
* clocksource_unregister - remove a registered clocksource
* @cs: clocksource to be unregistered
*/
int clocksource_unregister(struct clocksource *cs)
{
int ret = 0;
mutex_lock(&clocksource_mutex);
if (!list_empty(&cs->list))
ret = clocksource_unbind(cs);
mutex_unlock(&clocksource_mutex);
return ret;
}
EXPORT_SYMBOL(clocksource_unregister);
#ifdef CONFIG_SYSFS
/**
* current_clocksource_show - sysfs interface for current clocksource
* @dev: unused
* @attr: unused
* @buf: char buffer to be filled with clocksource list
*
* Provides sysfs interface for listing current clocksource.
*/
static ssize_t current_clocksource_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t count = 0;
mutex_lock(&clocksource_mutex);
count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
mutex_unlock(&clocksource_mutex);
return count;
}
ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
{
size_t ret = cnt;
/* strings from sysfs write are not 0 terminated! */
if (!cnt || cnt >= CS_NAME_LEN)
return -EINVAL;
/* strip of \n: */
if (buf[cnt-1] == '\n')
cnt--;
if (cnt > 0)
memcpy(dst, buf, cnt);
dst[cnt] = 0;
return ret;
}
/**
* current_clocksource_store - interface for manually overriding clocksource
* @dev: unused
* @attr: unused
* @buf: name of override clocksource
* @count: length of buffer
*
* Takes input from sysfs interface for manually overriding the default
* clocksource selection.
*/
static ssize_t current_clocksource_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t ret;
mutex_lock(&clocksource_mutex);
ret = sysfs_get_uname(buf, override_name, count);
if (ret >= 0)
clocksource_select();
mutex_unlock(&clocksource_mutex);
return ret;
}
static DEVICE_ATTR_RW(current_clocksource);
/**
* unbind_clocksource_store - interface for manually unbinding clocksource
* @dev: unused
* @attr: unused
* @buf: unused
* @count: length of buffer
*
* Takes input from sysfs interface for manually unbinding a clocksource.
*/
static ssize_t unbind_clocksource_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct clocksource *cs;
char name[CS_NAME_LEN];
ssize_t ret;
ret = sysfs_get_uname(buf, name, count);
if (ret < 0)
return ret;
ret = -ENODEV;
mutex_lock(&clocksource_mutex);
list_for_each_entry(cs, &clocksource_list, list) {
if (strcmp(cs->name, name))
continue;
ret = clocksource_unbind(cs);
break;
}
mutex_unlock(&clocksource_mutex);
return ret ? ret : count;
}
static DEVICE_ATTR_WO(unbind_clocksource);
/**
* available_clocksource_show - sysfs interface for listing clocksource
* @dev: unused
* @attr: unused
* @buf: char buffer to be filled with clocksource list
*
* Provides sysfs interface for listing registered clocksources
*/
static ssize_t available_clocksource_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct clocksource *src;
ssize_t count = 0;
mutex_lock(&clocksource_mutex);
list_for_each_entry(src, &clocksource_list, list) {
/*
* Don't show non-HRES clocksource if the tick code is
* in one shot mode (highres=on or nohz=on)
*/
if (!tick_oneshot_mode_active() ||
(src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
count += snprintf(buf + count,
max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
"%s ", src->name);
}
mutex_unlock(&clocksource_mutex);
count += snprintf(buf + count,
max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
return count;
}
static DEVICE_ATTR_RO(available_clocksource);
static struct attribute *clocksource_attrs[] = {
&dev_attr_current_clocksource.attr,
&dev_attr_unbind_clocksource.attr,
&dev_attr_available_clocksource.attr,
NULL
};
ATTRIBUTE_GROUPS(clocksource);
static const struct bus_type clocksource_subsys = {
.name = "clocksource",
.dev_name = "clocksource",
};
static struct device device_clocksource = {
.id = 0,
.bus = &clocksource_subsys,
.groups = clocksource_groups,
};
static int __init init_clocksource_sysfs(void)
{
int error = subsys_system_register(&clocksource_subsys, NULL);
if (!error)
error = device_register(&device_clocksource);
return error;
}
device_initcall(init_clocksource_sysfs);
#endif /* CONFIG_SYSFS */
/**
* boot_override_clocksource - boot clock override
* @str: override name
*
* Takes a clocksource= boot argument and uses it
* as the clocksource override name.
*/
static int __init boot_override_clocksource(char* str)
{
mutex_lock(&clocksource_mutex);
if (str)
strscpy(override_name, str, sizeof(override_name));
mutex_unlock(&clocksource_mutex);
return 1;
}
__setup("clocksource=", boot_override_clocksource);
/**
* boot_override_clock - Compatibility layer for deprecated boot option
* @str: override name
*
* DEPRECATED! Takes a clock= boot argument and uses it
* as the clocksource override name
*/
static int __init boot_override_clock(char* str)
{
if (!strcmp(str, "pmtmr")) {
pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
return boot_override_clocksource("acpi_pm");
}
pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
return boot_override_clocksource(str);
}
__setup("clock=", boot_override_clock);