linux-next/kernel/time/sleep_timeout.c

378 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Kernel internal schedule timeout and sleeping functions
*/
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/timer.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include "tick-internal.h"
/*
* Since schedule_timeout()'s timer is defined on the stack, it must store
* the target task on the stack as well.
*/
struct process_timer {
struct timer_list timer;
struct task_struct *task;
};
static void process_timeout(struct timer_list *t)
{
struct process_timer *timeout = from_timer(timeout, t, timer);
wake_up_process(timeout->task);
}
/**
* schedule_timeout - sleep until timeout
* @timeout: timeout value in jiffies
*
* Make the current task sleep until @timeout jiffies have elapsed.
* The function behavior depends on the current task state
* (see also set_current_state() description):
*
* %TASK_RUNNING - the scheduler is called, but the task does not sleep
* at all. That happens because sched_submit_work() does nothing for
* tasks in %TASK_RUNNING state.
*
* %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
* pass before the routine returns unless the current task is explicitly
* woken up, (e.g. by wake_up_process()).
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task or the current task is explicitly woken
* up.
*
* The current task state is guaranteed to be %TASK_RUNNING when this
* routine returns.
*
* Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
* the CPU away without a bound on the timeout. In this case the return
* value will be %MAX_SCHEDULE_TIMEOUT.
*
* Returns: 0 when the timer has expired otherwise the remaining time in
* jiffies will be returned. In all cases the return value is guaranteed
* to be non-negative.
*/
signed long __sched schedule_timeout(signed long timeout)
{
struct process_timer timer;
unsigned long expire;
switch (timeout) {
case MAX_SCHEDULE_TIMEOUT:
/*
* These two special cases are useful to be comfortable
* in the caller. Nothing more. We could take
* MAX_SCHEDULE_TIMEOUT from one of the negative value
* but I' d like to return a valid offset (>=0) to allow
* the caller to do everything it want with the retval.
*/
schedule();
goto out;
default:
/*
* Another bit of PARANOID. Note that the retval will be
* 0 since no piece of kernel is supposed to do a check
* for a negative retval of schedule_timeout() (since it
* should never happens anyway). You just have the printk()
* that will tell you if something is gone wrong and where.
*/
if (timeout < 0) {
pr_err("%s: wrong timeout value %lx\n", __func__, timeout);
dump_stack();
__set_current_state(TASK_RUNNING);
goto out;
}
}
expire = timeout + jiffies;
timer.task = current;
timer_setup_on_stack(&timer.timer, process_timeout, 0);
timer.timer.expires = expire;
add_timer(&timer.timer);
schedule();
del_timer_sync(&timer.timer);
/* Remove the timer from the object tracker */
destroy_timer_on_stack(&timer.timer);
timeout = expire - jiffies;
out:
return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);
/*
* __set_current_state() can be used in schedule_timeout_*() functions, because
* schedule_timeout() calls schedule() unconditionally.
*/
/**
* schedule_timeout_interruptible - sleep until timeout (interruptible)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_INTERRUPTIBLE before starting the timeout.
*/
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
__set_current_state(TASK_INTERRUPTIBLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_interruptible);
/**
* schedule_timeout_killable - sleep until timeout (killable)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_KILLABLE before starting the timeout.
*/
signed long __sched schedule_timeout_killable(signed long timeout)
{
__set_current_state(TASK_KILLABLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);
/**
* schedule_timeout_uninterruptible - sleep until timeout (uninterruptible)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_UNINTERRUPTIBLE before starting the timeout.
*/
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
__set_current_state(TASK_UNINTERRUPTIBLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
/**
* schedule_timeout_idle - sleep until timeout (idle)
* @timeout: timeout value in jiffies
*
* See schedule_timeout() for details.
*
* Task state is set to TASK_IDLE before starting the timeout. It is similar to
* schedule_timeout_uninterruptible(), except this task will not contribute to
* load average.
*/
signed long __sched schedule_timeout_idle(signed long timeout)
{
__set_current_state(TASK_IDLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);
/**
* schedule_hrtimeout_range_clock - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
* @mode: timer mode
* @clock_id: timer clock to be used
*
* Details are explained in schedule_hrtimeout_range() function description as
* this function is commonly used.
*/
int __sched schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
const enum hrtimer_mode mode, clockid_t clock_id)
{
struct hrtimer_sleeper t;
/*
* Optimize when a zero timeout value is given. It does not
* matter whether this is an absolute or a relative time.
*/
if (expires && *expires == 0) {
__set_current_state(TASK_RUNNING);
return 0;
}
/*
* A NULL parameter means "infinite"
*/
if (!expires) {
schedule();
return -EINTR;
}
hrtimer_setup_sleeper_on_stack(&t, clock_id, mode);
hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
hrtimer_sleeper_start_expires(&t, mode);
if (likely(t.task))
schedule();
hrtimer_cancel(&t.timer);
destroy_hrtimer_on_stack(&t.timer);
__set_current_state(TASK_RUNNING);
return !t.task ? 0 : -EINTR;
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
/**
* schedule_hrtimeout_range - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
* @mode: timer mode
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
* the current task state has been set (see set_current_state()).
*
* The @delta argument gives the kernel the freedom to schedule the
* actual wakeup to a time that is both power and performance friendly
* for regular (non RT/DL) tasks.
* The kernel give the normal best effort behavior for "@expires+@delta",
* but may decide to fire the timer earlier, but no earlier than @expires.
*
* You can set the task state as follows -
*
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
* pass before the routine returns unless the current task is explicitly
* woken up, (e.g. by wake_up_process()).
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task or the current task is explicitly woken
* up.
*
* The current task state is guaranteed to be TASK_RUNNING when this
* routine returns.
*
* Returns: 0 when the timer has expired. If the task was woken before the
* timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
* by an explicit wakeup, it returns -EINTR.
*/
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
const enum hrtimer_mode mode)
{
return schedule_hrtimeout_range_clock(expires, delta, mode,
CLOCK_MONOTONIC);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
/**
* schedule_hrtimeout - sleep until timeout
* @expires: timeout value (ktime_t)
* @mode: timer mode
*
* See schedule_hrtimeout_range() for details. @delta argument of
* schedule_hrtimeout_range() is set to 0 and has therefore no impact.
*/
int __sched schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode)
{
return schedule_hrtimeout_range(expires, 0, mode);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout);
/**
* msleep - sleep safely even with waitqueue interruptions
* @msecs: Requested sleep duration in milliseconds
*
* msleep() uses jiffy based timeouts for the sleep duration. Because of the
* design of the timer wheel, the maximum additional percentage delay (slack) is
* 12.5%. This is only valid for timers which will end up in level 1 or a higher
* level of the timer wheel. For explanation of those 12.5% please check the
* detailed description about the basics of the timer wheel.
*
* The slack of timers which will end up in level 0 depends on sleep duration
* (msecs) and HZ configuration and can be calculated in the following way (with
* the timer wheel design restriction that the slack is not less than 12.5%):
*
* ``slack = MSECS_PER_TICK / msecs``
*
* When the allowed slack of the callsite is known, the calculation could be
* turned around to find the minimal allowed sleep duration to meet the
* constraints. For example:
*
* * ``HZ=1000`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 1 / (1/4) = 4``:
* all sleep durations greater or equal 4ms will meet the constraints.
* * ``HZ=1000`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 1 / (1/8) = 8``:
* all sleep durations greater or equal 8ms will meet the constraints.
* * ``HZ=250`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 4 / (1/4) = 16``:
* all sleep durations greater or equal 16ms will meet the constraints.
* * ``HZ=250`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 4 / (1/8) = 32``:
* all sleep durations greater or equal 32ms will meet the constraints.
*
* See also the signal aware variant msleep_interruptible().
*/
void msleep(unsigned int msecs)
{
unsigned long timeout = msecs_to_jiffies(msecs);
while (timeout)
timeout = schedule_timeout_uninterruptible(timeout);
}
EXPORT_SYMBOL(msleep);
/**
* msleep_interruptible - sleep waiting for signals
* @msecs: Requested sleep duration in milliseconds
*
* See msleep() for some basic information.
*
* The difference between msleep() and msleep_interruptible() is that the sleep
* could be interrupted by a signal delivery and then returns early.
*
* Returns: The remaining time of the sleep duration transformed to msecs (see
* schedule_timeout() for details).
*/
unsigned long msleep_interruptible(unsigned int msecs)
{
unsigned long timeout = msecs_to_jiffies(msecs);
while (timeout && !signal_pending(current))
timeout = schedule_timeout_interruptible(timeout);
return jiffies_to_msecs(timeout);
}
EXPORT_SYMBOL(msleep_interruptible);
/**
* usleep_range_state - Sleep for an approximate time in a given state
* @min: Minimum time in usecs to sleep
* @max: Maximum time in usecs to sleep
* @state: State of the current task that will be while sleeping
*
* usleep_range_state() sleeps at least for the minimum specified time but not
* longer than the maximum specified amount of time. The range might reduce
* power usage by allowing hrtimers to coalesce an already scheduled interrupt
* with this hrtimer. In the worst case, an interrupt is scheduled for the upper
* bound.
*
* The sleeping task is set to the specified state before starting the sleep.
*
* In non-atomic context where the exact wakeup time is flexible, use
* usleep_range() or its variants instead of udelay(). The sleep improves
* responsiveness by avoiding the CPU-hogging busy-wait of udelay().
*/
void __sched usleep_range_state(unsigned long min, unsigned long max, unsigned int state)
{
ktime_t exp = ktime_add_us(ktime_get(), min);
u64 delta = (u64)(max - min) * NSEC_PER_USEC;
if (WARN_ON_ONCE(max < min))
delta = 0;
for (;;) {
__set_current_state(state);
/* Do not return before the requested sleep time has elapsed */
if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
break;
}
}
EXPORT_SYMBOL(usleep_range_state);