2005-04-16 15:20:36 -07:00
|
|
|
/* ------------------------------------------------------------------------- */
|
2006-12-10 21:21:31 +01:00
|
|
|
/* */
|
2005-04-16 15:20:36 -07:00
|
|
|
/* i2c.h - definitions for the i2c-bus interface */
|
2006-12-10 21:21:31 +01:00
|
|
|
/* */
|
2005-04-16 15:20:36 -07:00
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* Copyright (C) 1995-2000 Simon G. Vogl
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
|
2006-04-25 14:14:52 +01:00
|
|
|
/* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> and
|
2005-04-16 15:20:36 -07:00
|
|
|
Frodo Looijaard <frodol@dds.nl> */
|
|
|
|
|
|
|
|
#ifndef _LINUX_I2C_H
|
|
|
|
#define _LINUX_I2C_H
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
2006-12-10 21:21:31 +01:00
|
|
|
#ifdef __KERNEL__
|
2005-10-22 00:23:27 +02:00
|
|
|
#include <linux/mod_devicetable.h>
|
2005-04-16 15:20:36 -07:00
|
|
|
#include <linux/device.h> /* for struct device */
|
2005-10-30 15:03:48 -08:00
|
|
|
#include <linux/sched.h> /* for completion */
|
2006-01-18 23:16:04 +01:00
|
|
|
#include <linux/mutex.h>
|
2010-04-13 16:12:28 -07:00
|
|
|
#include <linux/of.h> /* for struct device_node */
|
2011-10-30 13:47:25 +01:00
|
|
|
#include <linux/swab.h> /* for swab16 */
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2008-07-14 22:38:35 +02:00
|
|
|
extern struct bus_type i2c_bus_type;
|
2010-08-11 18:21:02 +02:00
|
|
|
extern struct device_type i2c_adapter_type;
|
2008-07-14 22:38:35 +02:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/* --- General options ------------------------------------------------ */
|
|
|
|
|
|
|
|
struct i2c_msg;
|
|
|
|
struct i2c_algorithm;
|
|
|
|
struct i2c_adapter;
|
|
|
|
struct i2c_client;
|
|
|
|
struct i2c_driver;
|
|
|
|
union i2c_smbus_data;
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
struct i2c_board_info;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2011-05-26 13:46:22 -04:00
|
|
|
struct module;
|
|
|
|
|
2009-06-19 16:58:20 +02:00
|
|
|
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* The master routines are the ones normally used to transmit data to devices
|
2006-12-10 21:21:31 +01:00
|
|
|
* on a bus (or read from them). Apart from two basic transfer functions to
|
|
|
|
* transmit one message at a time, a more complex version can be used to
|
2005-04-16 15:20:36 -07:00
|
|
|
* transmit an arbitrary number of messages without interruption.
|
2010-03-02 12:23:49 +01:00
|
|
|
* @count must be be less than 64k since msg.len is u16.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2011-01-10 22:11:23 +01:00
|
|
|
extern int i2c_master_send(const struct i2c_client *client, const char *buf,
|
|
|
|
int count);
|
|
|
|
extern int i2c_master_recv(const struct i2c_client *client, char *buf,
|
2008-10-22 20:21:32 +02:00
|
|
|
int count);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* Transfer num messages.
|
|
|
|
*/
|
2008-10-22 20:21:32 +02:00
|
|
|
extern int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
|
|
|
|
int num);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* This is the very generalized SMBus access routine. You probably do not
|
|
|
|
want to use this, though; one of the functions below may be much easier,
|
2006-12-10 21:21:31 +01:00
|
|
|
and probably just as fast.
|
2005-04-16 15:20:36 -07:00
|
|
|
Note that we use i2c_adapter here, because you do not need a specific
|
|
|
|
smbus adapter to call this function. */
|
2008-10-22 20:21:32 +02:00
|
|
|
extern s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
|
|
|
|
unsigned short flags, char read_write, u8 command,
|
|
|
|
int size, union i2c_smbus_data *data);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* Now follow the 'nice' access routines. These also document the calling
|
2008-07-14 22:38:24 +02:00
|
|
|
conventions of i2c_smbus_xfer. */
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2011-01-10 22:11:23 +01:00
|
|
|
extern s32 i2c_smbus_read_byte(const struct i2c_client *client);
|
|
|
|
extern s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value);
|
|
|
|
extern s32 i2c_smbus_read_byte_data(const struct i2c_client *client,
|
|
|
|
u8 command);
|
|
|
|
extern s32 i2c_smbus_write_byte_data(const struct i2c_client *client,
|
2008-10-22 20:21:32 +02:00
|
|
|
u8 command, u8 value);
|
2011-01-10 22:11:23 +01:00
|
|
|
extern s32 i2c_smbus_read_word_data(const struct i2c_client *client,
|
|
|
|
u8 command);
|
|
|
|
extern s32 i2c_smbus_write_word_data(const struct i2c_client *client,
|
2008-10-22 20:21:32 +02:00
|
|
|
u8 command, u16 value);
|
2011-10-30 13:47:25 +01:00
|
|
|
|
|
|
|
static inline s32
|
|
|
|
i2c_smbus_read_word_swapped(const struct i2c_client *client, u8 command)
|
|
|
|
{
|
|
|
|
s32 value = i2c_smbus_read_word_data(client, command);
|
|
|
|
|
|
|
|
return (value < 0) ? value : swab16(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline s32
|
|
|
|
i2c_smbus_write_word_swapped(const struct i2c_client *client,
|
|
|
|
u8 command, u16 value)
|
|
|
|
{
|
|
|
|
return i2c_smbus_write_word_data(client, command, swab16(value));
|
|
|
|
}
|
|
|
|
|
2007-05-01 23:26:34 +02:00
|
|
|
/* Returns the number of read bytes */
|
2011-01-10 22:11:23 +01:00
|
|
|
extern s32 i2c_smbus_read_block_data(const struct i2c_client *client,
|
2007-05-01 23:26:34 +02:00
|
|
|
u8 command, u8 *values);
|
2011-01-10 22:11:23 +01:00
|
|
|
extern s32 i2c_smbus_write_block_data(const struct i2c_client *client,
|
2008-10-22 20:21:32 +02:00
|
|
|
u8 command, u8 length, const u8 *values);
|
2005-10-08 00:04:13 +02:00
|
|
|
/* Returns the number of read bytes */
|
2011-01-10 22:11:23 +01:00
|
|
|
extern s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client,
|
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 14:12:29 +02:00
|
|
|
u8 command, u8 length, u8 *values);
|
2011-01-10 22:11:23 +01:00
|
|
|
extern s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client,
|
2006-01-09 15:19:18 +11:00
|
|
|
u8 command, u8 length,
|
2006-06-12 21:42:20 +02:00
|
|
|
const u8 *values);
|
2009-06-19 16:58:20 +02:00
|
|
|
#endif /* I2C */
|
2005-04-16 15:20:36 -07:00
|
|
|
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
/**
|
|
|
|
* struct i2c_driver - represent an I2C device driver
|
|
|
|
* @class: What kind of i2c device we instantiate (for detect)
|
2011-03-20 14:50:53 +01:00
|
|
|
* @attach_adapter: Callback for bus addition (deprecated)
|
|
|
|
* @detach_adapter: Callback for bus removal (deprecated)
|
2009-06-19 16:58:18 +02:00
|
|
|
* @probe: Callback for device binding
|
|
|
|
* @remove: Callback for device unbinding
|
2008-08-28 08:33:23 +02:00
|
|
|
* @shutdown: Callback for device shutdown
|
|
|
|
* @suspend: Callback for device suspend
|
|
|
|
* @resume: Callback for device resume
|
2010-08-09 16:37:16 -07:00
|
|
|
* @alert: Alert callback, for example for the SMBus alert protocol
|
2008-08-28 08:33:23 +02:00
|
|
|
* @command: Callback for bus-wide signaling (optional)
|
|
|
|
* @driver: Device driver model driver
|
|
|
|
* @id_table: List of I2C devices supported by this driver
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
* @detect: Callback for device detection
|
2009-12-14 21:17:25 +01:00
|
|
|
* @address_list: The I2C addresses to probe (for detect)
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
* @clients: List of detected clients we created (for i2c-core use only)
|
2005-11-26 20:34:05 +01:00
|
|
|
*
|
|
|
|
* The driver.owner field should be set to the module owner of this driver.
|
|
|
|
* The driver.name field should be set to the name of this driver.
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
*
|
|
|
|
* For automatic device detection, both @detect and @address_data must
|
|
|
|
* be defined. @class should also be set, otherwise only devices forced
|
|
|
|
* with module parameters will be created. The detect function must
|
|
|
|
* fill at least the name field of the i2c_board_info structure it is
|
|
|
|
* handed upon successful detection, and possibly also the flags field.
|
|
|
|
*
|
|
|
|
* If @detect is missing, the driver will still work fine for enumerated
|
|
|
|
* devices. Detected devices simply won't be supported. This is expected
|
|
|
|
* for the many I2C/SMBus devices which can't be detected reliably, and
|
|
|
|
* the ones which can always be enumerated in practice.
|
|
|
|
*
|
|
|
|
* The i2c_client structure which is handed to the @detect callback is
|
|
|
|
* not a real i2c_client. It is initialized just enough so that you can
|
|
|
|
* call i2c_smbus_read_byte_data and friends on it. Don't do anything
|
|
|
|
* else with it. In particular, calling dev_dbg and friends on it is
|
|
|
|
* not allowed.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
struct i2c_driver {
|
|
|
|
unsigned int class;
|
|
|
|
|
2009-06-19 16:58:18 +02:00
|
|
|
/* Notifies the driver that a new bus has appeared or is about to be
|
2011-03-20 14:50:53 +01:00
|
|
|
* removed. You should avoid using this, it will be removed in a
|
|
|
|
* near future.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2011-03-20 14:50:53 +01:00
|
|
|
int (*attach_adapter)(struct i2c_adapter *) __deprecated;
|
|
|
|
int (*detach_adapter)(struct i2c_adapter *) __deprecated;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2009-06-19 16:58:18 +02:00
|
|
|
/* Standard driver model interfaces */
|
2008-04-29 23:11:39 +02:00
|
|
|
int (*probe)(struct i2c_client *, const struct i2c_device_id *);
|
2007-05-01 23:26:30 +02:00
|
|
|
int (*remove)(struct i2c_client *);
|
2007-05-01 23:26:30 +02:00
|
|
|
|
2007-02-13 22:09:00 +01:00
|
|
|
/* driver model interfaces that don't relate to enumeration */
|
|
|
|
void (*shutdown)(struct i2c_client *);
|
|
|
|
int (*suspend)(struct i2c_client *, pm_message_t mesg);
|
|
|
|
int (*resume)(struct i2c_client *);
|
|
|
|
|
2010-03-02 12:23:42 +01:00
|
|
|
/* Alert callback, for example for the SMBus alert protocol.
|
|
|
|
* The format and meaning of the data value depends on the protocol.
|
|
|
|
* For the SMBus alert protocol, there is a single bit of data passed
|
|
|
|
* as the alert response's low bit ("event flag").
|
|
|
|
*/
|
|
|
|
void (*alert)(struct i2c_client *, unsigned int data);
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/* a ioctl like command that can be used to perform specific functions
|
|
|
|
* with the device.
|
|
|
|
*/
|
2008-10-22 20:21:32 +02:00
|
|
|
int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
struct device_driver driver;
|
2008-04-29 23:11:39 +02:00
|
|
|
const struct i2c_device_id *id_table;
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
|
|
|
|
/* Device detection callback for automatic device creation */
|
2009-12-14 21:17:23 +01:00
|
|
|
int (*detect)(struct i2c_client *, struct i2c_board_info *);
|
2009-12-14 21:17:25 +01:00
|
|
|
const unsigned short *address_list;
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
struct list_head clients;
|
2005-04-16 15:20:36 -07:00
|
|
|
};
|
|
|
|
#define to_i2c_driver(d) container_of(d, struct i2c_driver, driver)
|
|
|
|
|
2007-05-01 23:26:28 +02:00
|
|
|
/**
|
|
|
|
* struct i2c_client - represent an I2C slave device
|
2007-07-12 14:12:28 +02:00
|
|
|
* @flags: I2C_CLIENT_TEN indicates the device uses a ten bit chip address;
|
|
|
|
* I2C_CLIENT_PEC indicates it uses SMBus Packet Error Checking
|
2007-05-01 23:26:28 +02:00
|
|
|
* @addr: Address used on the I2C bus connected to the parent adapter.
|
|
|
|
* @name: Indicates the type of the device, usually a chip name that's
|
|
|
|
* generic enough to hide second-sourcing and compatible revisions.
|
2007-07-12 14:12:28 +02:00
|
|
|
* @adapter: manages the bus segment hosting this I2C device
|
2007-07-31 00:39:02 -07:00
|
|
|
* @driver: device's driver, hence pointer to access routines
|
2007-05-01 23:26:28 +02:00
|
|
|
* @dev: Driver model device node for the slave.
|
2007-07-12 14:12:28 +02:00
|
|
|
* @irq: indicates the IRQ generated by this device (if any)
|
2009-06-19 16:58:20 +02:00
|
|
|
* @detected: member of an i2c_driver.clients list or i2c-core's
|
|
|
|
* userspace_devices list
|
2007-05-01 23:26:28 +02:00
|
|
|
*
|
|
|
|
* An i2c_client identifies a single device (i.e. chip) connected to an
|
2007-07-12 14:12:28 +02:00
|
|
|
* i2c bus. The behaviour exposed to Linux is defined by the driver
|
|
|
|
* managing the device.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
struct i2c_client {
|
2007-05-01 23:26:28 +02:00
|
|
|
unsigned short flags; /* div., see below */
|
2006-12-10 21:21:31 +01:00
|
|
|
unsigned short addr; /* chip address - NOTE: 7bit */
|
2005-04-16 15:20:36 -07:00
|
|
|
/* addresses are stored in the */
|
2005-07-20 00:02:32 +02:00
|
|
|
/* _LOWER_ 7 bits */
|
2007-05-01 23:26:28 +02:00
|
|
|
char name[I2C_NAME_SIZE];
|
2005-04-16 15:20:36 -07:00
|
|
|
struct i2c_adapter *adapter; /* the adapter we sit on */
|
|
|
|
struct i2c_driver *driver; /* and our access routines */
|
|
|
|
struct device dev; /* the device structure */
|
2008-07-01 22:38:18 +02:00
|
|
|
int irq; /* irq issued by device */
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2008-07-14 22:38:36 +02:00
|
|
|
struct list_head detected;
|
2005-04-16 15:20:36 -07:00
|
|
|
};
|
|
|
|
#define to_i2c_client(d) container_of(d, struct i2c_client, dev)
|
|
|
|
|
2008-01-27 18:14:51 +01:00
|
|
|
extern struct i2c_client *i2c_verify_client(struct device *dev);
|
|
|
|
|
2005-07-27 12:43:03 -05:00
|
|
|
static inline struct i2c_client *kobj_to_i2c_client(struct kobject *kobj)
|
|
|
|
{
|
2007-07-12 14:12:28 +02:00
|
|
|
struct device * const dev = container_of(kobj, struct device, kobj);
|
|
|
|
return to_i2c_client(dev);
|
2005-07-27 12:43:03 -05:00
|
|
|
}
|
|
|
|
|
2008-10-22 20:21:31 +02:00
|
|
|
static inline void *i2c_get_clientdata(const struct i2c_client *dev)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2008-10-22 20:21:32 +02:00
|
|
|
return dev_get_drvdata(&dev->dev);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
2008-10-22 20:21:32 +02:00
|
|
|
static inline void i2c_set_clientdata(struct i2c_client *dev, void *data)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2008-10-22 20:21:32 +02:00
|
|
|
dev_set_drvdata(&dev->dev, data);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
/**
|
|
|
|
* struct i2c_board_info - template for device creation
|
2008-05-18 20:49:41 +02:00
|
|
|
* @type: chip type, to initialize i2c_client.name
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
* @flags: to initialize i2c_client.flags
|
|
|
|
* @addr: stored in i2c_client.addr
|
|
|
|
* @platform_data: stored in i2c_client.dev.platform_data
|
2008-10-22 20:21:33 +02:00
|
|
|
* @archdata: copied into i2c_client.dev.archdata
|
2010-08-09 16:37:16 -07:00
|
|
|
* @of_node: pointer to OpenFirmware device node
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
* @irq: stored in i2c_client.irq
|
2007-07-12 14:12:28 +02:00
|
|
|
*
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
* I2C doesn't actually support hardware probing, although controllers and
|
|
|
|
* devices may be able to use I2C_SMBUS_QUICK to tell whether or not there's
|
|
|
|
* a device at a given address. Drivers commonly need more information than
|
|
|
|
* that, such as chip type, configuration, associated IRQ, and so on.
|
|
|
|
*
|
|
|
|
* i2c_board_info is used to build tables of information listing I2C devices
|
2009-06-19 16:58:18 +02:00
|
|
|
* that are present. This information is used to grow the driver model tree.
|
|
|
|
* For mainboards this is done statically using i2c_register_board_info();
|
|
|
|
* bus numbers identify adapters that aren't yet available. For add-on boards,
|
|
|
|
* i2c_new_device() does this dynamically with the adapter already known.
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
*/
|
|
|
|
struct i2c_board_info {
|
|
|
|
char type[I2C_NAME_SIZE];
|
|
|
|
unsigned short flags;
|
|
|
|
unsigned short addr;
|
|
|
|
void *platform_data;
|
2008-10-22 20:21:33 +02:00
|
|
|
struct dev_archdata *archdata;
|
2010-04-13 16:12:28 -07:00
|
|
|
struct device_node *of_node;
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
int irq;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
2008-04-29 23:11:40 +02:00
|
|
|
* I2C_BOARD_INFO - macro used to list an i2c device and its address
|
|
|
|
* @dev_type: identifies the device type
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
* @dev_addr: the device's address on the bus.
|
|
|
|
*
|
|
|
|
* This macro initializes essential fields of a struct i2c_board_info,
|
|
|
|
* declaring what has been provided on a particular board. Optional
|
2008-04-29 23:11:40 +02:00
|
|
|
* fields (such as associated irq, or device-specific platform_data)
|
|
|
|
* are provided using conventional syntax.
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
*/
|
2008-10-22 20:21:32 +02:00
|
|
|
#define I2C_BOARD_INFO(dev_type, dev_addr) \
|
2009-04-13 17:02:14 +02:00
|
|
|
.type = dev_type, .addr = (dev_addr)
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
|
|
|
|
|
2009-06-19 16:58:20 +02:00
|
|
|
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
/* Add-on boards should register/unregister their devices; e.g. a board
|
|
|
|
* with integrated I2C, a config eeprom, sensors, and a codec that's
|
|
|
|
* used in conjunction with the primary hardware.
|
|
|
|
*/
|
|
|
|
extern struct i2c_client *
|
|
|
|
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info);
|
|
|
|
|
2007-05-01 23:26:31 +02:00
|
|
|
/* If you don't know the exact address of an I2C device, use this variant
|
|
|
|
* instead, which can probe for device presence in a list of possible
|
2010-08-11 18:20:56 +02:00
|
|
|
* addresses. The "probe" callback function is optional. If it is provided,
|
|
|
|
* it must return 1 on successful probe, 0 otherwise. If it is not provided,
|
|
|
|
* a default probing method is used.
|
2007-05-01 23:26:31 +02:00
|
|
|
*/
|
|
|
|
extern struct i2c_client *
|
|
|
|
i2c_new_probed_device(struct i2c_adapter *adap,
|
|
|
|
struct i2c_board_info *info,
|
2010-08-11 18:20:56 +02:00
|
|
|
unsigned short const *addr_list,
|
|
|
|
int (*probe)(struct i2c_adapter *, unsigned short addr));
|
2007-05-01 23:26:31 +02:00
|
|
|
|
2010-08-11 18:20:57 +02:00
|
|
|
/* Common custom probe functions */
|
|
|
|
extern int i2c_probe_func_quick_read(struct i2c_adapter *, unsigned short addr);
|
|
|
|
|
2008-01-27 18:14:52 +01:00
|
|
|
/* For devices that use several addresses, use i2c_new_dummy() to make
|
|
|
|
* client handles for the extra addresses.
|
|
|
|
*/
|
|
|
|
extern struct i2c_client *
|
2008-05-11 20:37:06 +02:00
|
|
|
i2c_new_dummy(struct i2c_adapter *adap, u16 address);
|
2008-01-27 18:14:52 +01:00
|
|
|
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
extern void i2c_unregister_device(struct i2c_client *);
|
2009-06-19 16:58:20 +02:00
|
|
|
#endif /* I2C */
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
|
|
|
|
/* Mainboard arch_initcall() code should register all its I2C devices.
|
|
|
|
* This is done at arch_initcall time, before declaring any i2c adapters.
|
|
|
|
* Modules for add-on boards must use other calls.
|
|
|
|
*/
|
2008-02-24 20:03:42 +01:00
|
|
|
#ifdef CONFIG_I2C_BOARDINFO
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
extern int
|
2008-10-22 20:21:32 +02:00
|
|
|
i2c_register_board_info(int busnum, struct i2c_board_info const *info,
|
|
|
|
unsigned n);
|
2008-02-24 20:03:42 +01:00
|
|
|
#else
|
|
|
|
static inline int
|
2008-10-22 20:21:32 +02:00
|
|
|
i2c_register_board_info(int busnum, struct i2c_board_info const *info,
|
|
|
|
unsigned n)
|
2008-02-24 20:03:42 +01:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2009-06-19 16:58:20 +02:00
|
|
|
#endif /* I2C_BOARDINFO */
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-05-01 23:26:31 +02:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* The following structs are for those who like to implement new bus drivers:
|
|
|
|
* i2c_algorithm is the interface to a class of hardware solutions which can
|
|
|
|
* be addressed using the same bus algorithms - i.e. bit-banging or the PCF8584
|
|
|
|
* to name two of the most common.
|
|
|
|
*/
|
|
|
|
struct i2c_algorithm {
|
|
|
|
/* If an adapter algorithm can't do I2C-level access, set master_xfer
|
2006-12-10 21:21:31 +01:00
|
|
|
to NULL. If an adapter algorithm can do SMBus access, set
|
2005-04-16 15:20:36 -07:00
|
|
|
smbus_xfer. If set to NULL, the SMBus protocol is simulated
|
|
|
|
using common I2C messages */
|
2006-07-01 17:12:53 +02:00
|
|
|
/* master_xfer should return the number of messages successfully
|
|
|
|
processed, or a negative value on error */
|
2008-10-22 20:21:32 +02:00
|
|
|
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,
|
|
|
|
int num);
|
2006-12-10 21:21:31 +01:00
|
|
|
int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
|
2008-10-22 20:21:32 +02:00
|
|
|
unsigned short flags, char read_write,
|
|
|
|
u8 command, int size, union i2c_smbus_data *data);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* To determine what the adapter supports */
|
|
|
|
u32 (*functionality) (struct i2c_adapter *);
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* i2c_adapter is the structure used to identify a physical i2c bus along
|
|
|
|
* with the access algorithms necessary to access it.
|
|
|
|
*/
|
|
|
|
struct i2c_adapter {
|
|
|
|
struct module *owner;
|
2008-10-22 20:21:30 +02:00
|
|
|
unsigned int class; /* classes to allow probing for */
|
2006-09-03 22:37:11 +02:00
|
|
|
const struct i2c_algorithm *algo; /* the algorithm to access the bus */
|
2005-04-16 15:20:36 -07:00
|
|
|
void *algo_data;
|
|
|
|
|
|
|
|
/* data fields that are valid for all devices */
|
2009-12-06 17:06:22 +01:00
|
|
|
struct rt_mutex bus_lock;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2009-02-24 19:19:49 +01:00
|
|
|
int timeout; /* in jiffies */
|
2005-04-16 15:20:36 -07:00
|
|
|
int retries;
|
|
|
|
struct device dev; /* the adapter device */
|
|
|
|
|
|
|
|
int nr;
|
2007-05-01 23:26:28 +02:00
|
|
|
char name[48];
|
2005-04-16 15:20:36 -07:00
|
|
|
struct completion dev_released;
|
2010-05-04 11:09:28 +02:00
|
|
|
|
2010-08-11 18:21:01 +02:00
|
|
|
struct mutex userspace_clients_lock;
|
2010-05-04 11:09:28 +02:00
|
|
|
struct list_head userspace_clients;
|
2005-04-16 15:20:36 -07:00
|
|
|
};
|
2007-05-01 23:26:28 +02:00
|
|
|
#define to_i2c_adapter(d) container_of(d, struct i2c_adapter, dev)
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2008-10-22 20:21:31 +02:00
|
|
|
static inline void *i2c_get_adapdata(const struct i2c_adapter *dev)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2008-10-22 20:21:32 +02:00
|
|
|
return dev_get_drvdata(&dev->dev);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
2008-10-22 20:21:32 +02:00
|
|
|
static inline void i2c_set_adapdata(struct i2c_adapter *dev, void *data)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2008-10-22 20:21:32 +02:00
|
|
|
dev_set_drvdata(&dev->dev, data);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
2010-10-24 18:16:57 +02:00
|
|
|
static inline struct i2c_adapter *
|
|
|
|
i2c_parent_is_i2c_adapter(const struct i2c_adapter *adapter)
|
2010-08-11 18:21:02 +02:00
|
|
|
{
|
2010-10-24 18:16:57 +02:00
|
|
|
struct device *parent = adapter->dev.parent;
|
|
|
|
|
|
|
|
if (parent != NULL && parent->type == &i2c_adapter_type)
|
|
|
|
return to_i2c_adapter(parent);
|
|
|
|
else
|
|
|
|
return NULL;
|
2010-08-11 18:21:02 +02:00
|
|
|
}
|
|
|
|
|
2011-03-20 14:50:52 +01:00
|
|
|
int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *));
|
|
|
|
|
2010-08-11 18:20:58 +02:00
|
|
|
/* Adapter locking functions, exported for shared pin cases */
|
|
|
|
void i2c_lock_adapter(struct i2c_adapter *);
|
|
|
|
void i2c_unlock_adapter(struct i2c_adapter *);
|
2009-11-07 13:10:46 +01:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*flags for the client struct: */
|
2007-10-13 23:56:29 +02:00
|
|
|
#define I2C_CLIENT_PEC 0x04 /* Use Packet Error Checking */
|
|
|
|
#define I2C_CLIENT_TEN 0x10 /* we have a ten bit chip address */
|
|
|
|
/* Must equal I2C_M_TEN below */
|
|
|
|
#define I2C_CLIENT_WAKE 0x80 /* for board_info; true iff can wake */
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* i2c adapter classes (bitmask) */
|
|
|
|
#define I2C_CLASS_HWMON (1<<0) /* lm_sensors, ... */
|
2008-07-14 22:38:28 +02:00
|
|
|
#define I2C_CLASS_DDC (1<<3) /* DDC bus on graphics adapters */
|
2011-05-25 20:43:32 +02:00
|
|
|
#define I2C_CLASS_SPD (1<<7) /* Memory modules */
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* Internal numbers to terminate lists */
|
|
|
|
#define I2C_CLIENT_END 0xfffeU
|
|
|
|
|
i2c: New macro to initialize i2c address lists on the fly
For video4linux we sometimes need to probe for a single i2c address.
Normally you would do it like this:
static const unsigned short addrs[] = {
addr, I2C_CLIENT_END
};
client = i2c_new_probed_device(adapter, &info, addrs);
This is a bit awkward and I came up with this macro:
#define V4L2_I2C_ADDRS(addr, addrs...) \
((const unsigned short []){ addr, ## addrs, I2C_CLIENT_END })
This can construct a list of one or more i2c addresses on the fly. But
this is something that really belongs in i2c.h, renamed to I2C_ADDRS.
With this macro we can just do:
client = i2c_new_probed_device(adapter, &info, I2C_ADDRS(addr));
Note that this can also be used to initialize an array:
static const unsigned short addrs[] = I2C_ADDRS(0x2a, 0x2c);
Whether you want to is another matter, but it works. This functionality is
also available in the oldest supported gcc (3.2).
Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2009-06-19 16:58:21 +02:00
|
|
|
/* Construct an I2C_CLIENT_END-terminated array of i2c addresses */
|
|
|
|
#define I2C_ADDRS(addr, addrs...) \
|
|
|
|
((const unsigned short []){ addr, ## addrs, I2C_CLIENT_END })
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* ----- functions exported by i2c.o */
|
|
|
|
|
|
|
|
/* administration...
|
|
|
|
*/
|
2009-06-19 16:58:20 +02:00
|
|
|
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
|
2005-04-16 15:20:36 -07:00
|
|
|
extern int i2c_add_adapter(struct i2c_adapter *);
|
|
|
|
extern int i2c_del_adapter(struct i2c_adapter *);
|
2007-05-01 23:26:31 +02:00
|
|
|
extern int i2c_add_numbered_adapter(struct i2c_adapter *);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2005-12-06 15:33:15 -08:00
|
|
|
extern int i2c_register_driver(struct module *, struct i2c_driver *);
|
2007-05-01 23:26:32 +02:00
|
|
|
extern void i2c_del_driver(struct i2c_driver *);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2011-05-27 09:02:11 -04:00
|
|
|
/* use a define to avoid include chaining to get THIS_MODULE */
|
|
|
|
#define i2c_add_driver(driver) \
|
|
|
|
i2c_register_driver(THIS_MODULE, driver)
|
2005-12-06 15:33:15 -08:00
|
|
|
|
2008-01-27 18:14:48 +01:00
|
|
|
extern struct i2c_client *i2c_use_client(struct i2c_client *client);
|
|
|
|
extern void i2c_release_client(struct i2c_client *client);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* call the i2c_client->command() of all attached clients with
|
|
|
|
* the given arguments */
|
|
|
|
extern void i2c_clients_command(struct i2c_adapter *adap,
|
|
|
|
unsigned int cmd, void *arg);
|
|
|
|
|
2011-03-20 14:50:52 +01:00
|
|
|
extern struct i2c_adapter *i2c_get_adapter(int nr);
|
2005-04-16 15:20:36 -07:00
|
|
|
extern void i2c_put_adapter(struct i2c_adapter *adap);
|
|
|
|
|
|
|
|
|
|
|
|
/* Return the functionality mask */
|
|
|
|
static inline u32 i2c_get_functionality(struct i2c_adapter *adap)
|
|
|
|
{
|
|
|
|
return adap->algo->functionality(adap);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return 1 if adapter supports everything we need, 0 if not. */
|
|
|
|
static inline int i2c_check_functionality(struct i2c_adapter *adap, u32 func)
|
|
|
|
{
|
|
|
|
return (func & i2c_get_functionality(adap)) == func;
|
|
|
|
}
|
|
|
|
|
2008-10-22 20:21:32 +02:00
|
|
|
/* Return the adapter number for a specific adapter */
|
2005-07-28 23:09:40 +02:00
|
|
|
static inline int i2c_adapter_id(struct i2c_adapter *adap)
|
|
|
|
{
|
|
|
|
return adap->nr;
|
|
|
|
}
|
2011-11-16 10:13:36 +01:00
|
|
|
|
|
|
|
/**
|
|
|
|
* module_i2c_driver() - Helper macro for registering a I2C driver
|
|
|
|
* @__i2c_driver: i2c_driver struct
|
|
|
|
*
|
|
|
|
* Helper macro for I2C drivers which do not do anything special in module
|
|
|
|
* init/exit. This eliminates a lot of boilerplate. Each module may only
|
|
|
|
* use this macro once, and calling it replaces module_init() and module_exit()
|
|
|
|
*/
|
|
|
|
#define module_i2c_driver(__i2c_driver) \
|
|
|
|
module_driver(__i2c_driver, i2c_add_driver, \
|
|
|
|
i2c_del_driver)
|
|
|
|
|
2009-06-19 16:58:20 +02:00
|
|
|
#endif /* I2C */
|
2006-04-25 14:14:52 +01:00
|
|
|
#endif /* __KERNEL__ */
|
2005-07-28 23:09:40 +02:00
|
|
|
|
2007-10-13 23:56:31 +02:00
|
|
|
/**
|
|
|
|
* struct i2c_msg - an I2C transaction segment beginning with START
|
|
|
|
* @addr: Slave address, either seven or ten bits. When this is a ten
|
|
|
|
* bit address, I2C_M_TEN must be set in @flags and the adapter
|
|
|
|
* must support I2C_FUNC_10BIT_ADDR.
|
|
|
|
* @flags: I2C_M_RD is handled by all adapters. No other flags may be
|
|
|
|
* provided unless the adapter exported the relevant I2C_FUNC_*
|
|
|
|
* flags through i2c_check_functionality().
|
|
|
|
* @len: Number of data bytes in @buf being read from or written to the
|
|
|
|
* I2C slave address. For read transactions where I2C_M_RECV_LEN
|
|
|
|
* is set, the caller guarantees that this buffer can hold up to
|
|
|
|
* 32 bytes in addition to the initial length byte sent by the
|
|
|
|
* slave (plus, if used, the SMBus PEC); and this value will be
|
|
|
|
* incremented by the number of block data bytes received.
|
|
|
|
* @buf: The buffer into which data is read, or from which it's written.
|
|
|
|
*
|
|
|
|
* An i2c_msg is the low level representation of one segment of an I2C
|
|
|
|
* transaction. It is visible to drivers in the @i2c_transfer() procedure,
|
|
|
|
* to userspace from i2c-dev, and to I2C adapter drivers through the
|
|
|
|
* @i2c_adapter.@master_xfer() method.
|
|
|
|
*
|
|
|
|
* Except when I2C "protocol mangling" is used, all I2C adapters implement
|
|
|
|
* the standard rules for I2C transactions. Each transaction begins with a
|
|
|
|
* START. That is followed by the slave address, and a bit encoding read
|
|
|
|
* versus write. Then follow all the data bytes, possibly including a byte
|
|
|
|
* with SMBus PEC. The transfer terminates with a NAK, or when all those
|
|
|
|
* bytes have been transferred and ACKed. If this is the last message in a
|
|
|
|
* group, it is followed by a STOP. Otherwise it is followed by the next
|
|
|
|
* @i2c_msg transaction segment, beginning with a (repeated) START.
|
|
|
|
*
|
|
|
|
* Alternatively, when the adapter supports I2C_FUNC_PROTOCOL_MANGLING then
|
|
|
|
* passing certain @flags may have changed those standard protocol behaviors.
|
|
|
|
* Those flags are only for use with broken/nonconforming slaves, and with
|
|
|
|
* adapters which are known to support the specific mangling options they
|
|
|
|
* need (one or more of IGNORE_NAK, NO_RD_ACK, NOSTART, and REV_DIR_ADDR).
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
struct i2c_msg {
|
|
|
|
__u16 addr; /* slave address */
|
2006-12-10 21:21:31 +01:00
|
|
|
__u16 flags;
|
2007-10-13 23:56:31 +02:00
|
|
|
#define I2C_M_TEN 0x0010 /* this is a ten bit chip address */
|
|
|
|
#define I2C_M_RD 0x0001 /* read data, from slave to master */
|
|
|
|
#define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */
|
2006-12-10 21:21:31 +01:00
|
|
|
__u16 len; /* msg length */
|
|
|
|
__u8 *buf; /* pointer to msg data */
|
2005-04-16 15:20:36 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
/* To determine what functionality is present */
|
|
|
|
|
|
|
|
#define I2C_FUNC_I2C 0x00000001
|
|
|
|
#define I2C_FUNC_10BIT_ADDR 0x00000002
|
2008-10-22 20:21:32 +02:00
|
|
|
#define I2C_FUNC_PROTOCOL_MANGLING 0x00000004 /* I2C_M_NOSTART etc. */
|
2007-10-13 23:56:33 +02:00
|
|
|
#define I2C_FUNC_SMBUS_PEC 0x00000008
|
2005-04-16 15:20:36 -07:00
|
|
|
#define I2C_FUNC_SMBUS_BLOCK_PROC_CALL 0x00008000 /* SMBus 2.0 */
|
2006-12-10 21:21:31 +01:00
|
|
|
#define I2C_FUNC_SMBUS_QUICK 0x00010000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_BYTE 0x00020000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_BYTE 0x00040000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_BYTE_DATA 0x00080000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_BYTE_DATA 0x00100000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_WORD_DATA 0x00200000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_WORD_DATA 0x00400000
|
|
|
|
#define I2C_FUNC_SMBUS_PROC_CALL 0x00800000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_BLOCK_DATA 0x01000000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_BLOCK_DATA 0x02000000
|
2005-04-16 15:20:36 -07:00
|
|
|
#define I2C_FUNC_SMBUS_READ_I2C_BLOCK 0x04000000 /* I2C-like block xfer */
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_I2C_BLOCK 0x08000000 /* w/ 1-byte reg. addr. */
|
|
|
|
|
2008-10-22 20:21:32 +02:00
|
|
|
#define I2C_FUNC_SMBUS_BYTE (I2C_FUNC_SMBUS_READ_BYTE | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BYTE)
|
|
|
|
#define I2C_FUNC_SMBUS_BYTE_DATA (I2C_FUNC_SMBUS_READ_BYTE_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BYTE_DATA)
|
|
|
|
#define I2C_FUNC_SMBUS_WORD_DATA (I2C_FUNC_SMBUS_READ_WORD_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_WORD_DATA)
|
|
|
|
#define I2C_FUNC_SMBUS_BLOCK_DATA (I2C_FUNC_SMBUS_READ_BLOCK_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA)
|
|
|
|
#define I2C_FUNC_SMBUS_I2C_BLOCK (I2C_FUNC_SMBUS_READ_I2C_BLOCK | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)
|
|
|
|
|
|
|
|
#define I2C_FUNC_SMBUS_EMUL (I2C_FUNC_SMBUS_QUICK | \
|
|
|
|
I2C_FUNC_SMBUS_BYTE | \
|
|
|
|
I2C_FUNC_SMBUS_BYTE_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WORD_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_PROC_CALL | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_I2C_BLOCK | \
|
|
|
|
I2C_FUNC_SMBUS_PEC)
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2006-12-10 21:21:31 +01:00
|
|
|
/*
|
|
|
|
* Data for SMBus Messages
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
2006-12-10 21:21:31 +01:00
|
|
|
#define I2C_SMBUS_BLOCK_MAX 32 /* As specified in SMBus standard */
|
2005-04-16 15:20:36 -07:00
|
|
|
union i2c_smbus_data {
|
|
|
|
__u8 byte;
|
|
|
|
__u16 word;
|
2005-09-25 16:56:43 +02:00
|
|
|
__u8 block[I2C_SMBUS_BLOCK_MAX + 2]; /* block[0] is used for length */
|
2008-10-22 20:21:32 +02:00
|
|
|
/* and one more for user-space compatibility */
|
2005-04-16 15:20:36 -07:00
|
|
|
};
|
|
|
|
|
2008-07-14 22:38:24 +02:00
|
|
|
/* i2c_smbus_xfer read or write markers */
|
2005-04-16 15:20:36 -07:00
|
|
|
#define I2C_SMBUS_READ 1
|
|
|
|
#define I2C_SMBUS_WRITE 0
|
|
|
|
|
2006-12-10 21:21:31 +01:00
|
|
|
/* SMBus transaction types (size parameter in the above functions)
|
2005-04-16 15:20:36 -07:00
|
|
|
Note: these no longer correspond to the (arbitrary) PIIX4 internal codes! */
|
|
|
|
#define I2C_SMBUS_QUICK 0
|
|
|
|
#define I2C_SMBUS_BYTE 1
|
2006-12-10 21:21:31 +01:00
|
|
|
#define I2C_SMBUS_BYTE_DATA 2
|
2005-04-16 15:20:36 -07:00
|
|
|
#define I2C_SMBUS_WORD_DATA 3
|
|
|
|
#define I2C_SMBUS_PROC_CALL 4
|
|
|
|
#define I2C_SMBUS_BLOCK_DATA 5
|
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 14:12:29 +02:00
|
|
|
#define I2C_SMBUS_I2C_BLOCK_BROKEN 6
|
2005-04-16 15:20:36 -07:00
|
|
|
#define I2C_SMBUS_BLOCK_PROC_CALL 7 /* SMBus 2.0 */
|
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2007-07-12 14:12:29 +02:00
|
|
|
#define I2C_SMBUS_I2C_BLOCK_DATA 8
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
#endif /* _LINUX_I2C_H */
|