linux-next/block/blk-mq-sysfs.c

462 lines
11 KiB
C
Raw Normal View History

blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/blk-mq.h>
#include "blk-mq.h"
#include "blk-mq-tag.h"
static void blk_mq_sysfs_release(struct kobject *kobj)
{
}
struct blk_mq_ctx_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct blk_mq_ctx *, char *);
ssize_t (*store)(struct blk_mq_ctx *, const char *, size_t);
};
struct blk_mq_hw_ctx_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct blk_mq_hw_ctx *, char *);
ssize_t (*store)(struct blk_mq_hw_ctx *, const char *, size_t);
};
static ssize_t blk_mq_sysfs_show(struct kobject *kobj, struct attribute *attr,
char *page)
{
struct blk_mq_ctx_sysfs_entry *entry;
struct blk_mq_ctx *ctx;
struct request_queue *q;
ssize_t res;
entry = container_of(attr, struct blk_mq_ctx_sysfs_entry, attr);
ctx = container_of(kobj, struct blk_mq_ctx, kobj);
q = ctx->queue;
if (!entry->show)
return -EIO;
res = -ENOENT;
mutex_lock(&q->sysfs_lock);
if (!blk_queue_dying(q))
res = entry->show(ctx, page);
mutex_unlock(&q->sysfs_lock);
return res;
}
static ssize_t blk_mq_sysfs_store(struct kobject *kobj, struct attribute *attr,
const char *page, size_t length)
{
struct blk_mq_ctx_sysfs_entry *entry;
struct blk_mq_ctx *ctx;
struct request_queue *q;
ssize_t res;
entry = container_of(attr, struct blk_mq_ctx_sysfs_entry, attr);
ctx = container_of(kobj, struct blk_mq_ctx, kobj);
q = ctx->queue;
if (!entry->store)
return -EIO;
res = -ENOENT;
mutex_lock(&q->sysfs_lock);
if (!blk_queue_dying(q))
res = entry->store(ctx, page, length);
mutex_unlock(&q->sysfs_lock);
return res;
}
static ssize_t blk_mq_hw_sysfs_show(struct kobject *kobj,
struct attribute *attr, char *page)
{
struct blk_mq_hw_ctx_sysfs_entry *entry;
struct blk_mq_hw_ctx *hctx;
struct request_queue *q;
ssize_t res;
entry = container_of(attr, struct blk_mq_hw_ctx_sysfs_entry, attr);
hctx = container_of(kobj, struct blk_mq_hw_ctx, kobj);
q = hctx->queue;
if (!entry->show)
return -EIO;
res = -ENOENT;
mutex_lock(&q->sysfs_lock);
if (!blk_queue_dying(q))
res = entry->show(hctx, page);
mutex_unlock(&q->sysfs_lock);
return res;
}
static ssize_t blk_mq_hw_sysfs_store(struct kobject *kobj,
struct attribute *attr, const char *page,
size_t length)
{
struct blk_mq_hw_ctx_sysfs_entry *entry;
struct blk_mq_hw_ctx *hctx;
struct request_queue *q;
ssize_t res;
entry = container_of(attr, struct blk_mq_hw_ctx_sysfs_entry, attr);
hctx = container_of(kobj, struct blk_mq_hw_ctx, kobj);
q = hctx->queue;
if (!entry->store)
return -EIO;
res = -ENOENT;
mutex_lock(&q->sysfs_lock);
if (!blk_queue_dying(q))
res = entry->store(hctx, page, length);
mutex_unlock(&q->sysfs_lock);
return res;
}
static ssize_t blk_mq_sysfs_dispatched_show(struct blk_mq_ctx *ctx, char *page)
{
return sprintf(page, "%lu %lu\n", ctx->rq_dispatched[1],
ctx->rq_dispatched[0]);
}
static ssize_t blk_mq_sysfs_merged_show(struct blk_mq_ctx *ctx, char *page)
{
return sprintf(page, "%lu\n", ctx->rq_merged);
}
static ssize_t blk_mq_sysfs_completed_show(struct blk_mq_ctx *ctx, char *page)
{
return sprintf(page, "%lu %lu\n", ctx->rq_completed[1],
ctx->rq_completed[0]);
}
static ssize_t sysfs_list_show(char *page, struct list_head *list, char *msg)
{
char *start_page = page;
struct request *rq;
page += sprintf(page, "%s:\n", msg);
list_for_each_entry(rq, list, queuelist)
page += sprintf(page, "\t%p\n", rq);
return page - start_page;
}
static ssize_t blk_mq_sysfs_rq_list_show(struct blk_mq_ctx *ctx, char *page)
{
ssize_t ret;
spin_lock(&ctx->lock);
ret = sysfs_list_show(page, &ctx->rq_list, "CTX pending");
spin_unlock(&ctx->lock);
return ret;
}
static ssize_t blk_mq_hw_sysfs_queued_show(struct blk_mq_hw_ctx *hctx,
char *page)
{
return sprintf(page, "%lu\n", hctx->queued);
}
static ssize_t blk_mq_hw_sysfs_run_show(struct blk_mq_hw_ctx *hctx, char *page)
{
return sprintf(page, "%lu\n", hctx->run);
}
static ssize_t blk_mq_hw_sysfs_dispatched_show(struct blk_mq_hw_ctx *hctx,
char *page)
{
char *start_page = page;
int i;
page += sprintf(page, "%8u\t%lu\n", 0U, hctx->dispatched[0]);
for (i = 1; i < BLK_MQ_MAX_DISPATCH_ORDER; i++) {
unsigned long d = 1U << (i - 1);
page += sprintf(page, "%8lu\t%lu\n", d, hctx->dispatched[i]);
}
return page - start_page;
}
static ssize_t blk_mq_hw_sysfs_rq_list_show(struct blk_mq_hw_ctx *hctx,
char *page)
{
ssize_t ret;
spin_lock(&hctx->lock);
ret = sysfs_list_show(page, &hctx->dispatch, "HCTX pending");
spin_unlock(&hctx->lock);
return ret;
}
static ssize_t blk_mq_hw_sysfs_tags_show(struct blk_mq_hw_ctx *hctx, char *page)
{
return blk_mq_tag_sysfs_show(hctx->tags, page);
}
static ssize_t blk_mq_hw_sysfs_active_show(struct blk_mq_hw_ctx *hctx, char *page)
{
return sprintf(page, "%u\n", atomic_read(&hctx->nr_active));
}
static ssize_t blk_mq_hw_sysfs_cpus_show(struct blk_mq_hw_ctx *hctx, char *page)
{
unsigned int i, first = 1;
ssize_t ret = 0;
blk_mq_disable_hotplug();
for_each_cpu(i, hctx->cpumask) {
if (first)
ret += sprintf(ret + page, "%u", i);
else
ret += sprintf(ret + page, ", %u", i);
first = 0;
}
blk_mq_enable_hotplug();
ret += sprintf(ret + page, "\n");
return ret;
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
static struct blk_mq_ctx_sysfs_entry blk_mq_sysfs_dispatched = {
.attr = {.name = "dispatched", .mode = S_IRUGO },
.show = blk_mq_sysfs_dispatched_show,
};
static struct blk_mq_ctx_sysfs_entry blk_mq_sysfs_merged = {
.attr = {.name = "merged", .mode = S_IRUGO },
.show = blk_mq_sysfs_merged_show,
};
static struct blk_mq_ctx_sysfs_entry blk_mq_sysfs_completed = {
.attr = {.name = "completed", .mode = S_IRUGO },
.show = blk_mq_sysfs_completed_show,
};
static struct blk_mq_ctx_sysfs_entry blk_mq_sysfs_rq_list = {
.attr = {.name = "rq_list", .mode = S_IRUGO },
.show = blk_mq_sysfs_rq_list_show,
};
static struct attribute *default_ctx_attrs[] = {
&blk_mq_sysfs_dispatched.attr,
&blk_mq_sysfs_merged.attr,
&blk_mq_sysfs_completed.attr,
&blk_mq_sysfs_rq_list.attr,
NULL,
};
static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_queued = {
.attr = {.name = "queued", .mode = S_IRUGO },
.show = blk_mq_hw_sysfs_queued_show,
};
static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_run = {
.attr = {.name = "run", .mode = S_IRUGO },
.show = blk_mq_hw_sysfs_run_show,
};
static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_dispatched = {
.attr = {.name = "dispatched", .mode = S_IRUGO },
.show = blk_mq_hw_sysfs_dispatched_show,
};
static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_active = {
.attr = {.name = "active", .mode = S_IRUGO },
.show = blk_mq_hw_sysfs_active_show,
};
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_pending = {
.attr = {.name = "pending", .mode = S_IRUGO },
.show = blk_mq_hw_sysfs_rq_list_show,
};
static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_tags = {
.attr = {.name = "tags", .mode = S_IRUGO },
.show = blk_mq_hw_sysfs_tags_show,
};
static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_cpus = {
.attr = {.name = "cpu_list", .mode = S_IRUGO },
.show = blk_mq_hw_sysfs_cpus_show,
};
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
static struct attribute *default_hw_ctx_attrs[] = {
&blk_mq_hw_sysfs_queued.attr,
&blk_mq_hw_sysfs_run.attr,
&blk_mq_hw_sysfs_dispatched.attr,
&blk_mq_hw_sysfs_pending.attr,
&blk_mq_hw_sysfs_tags.attr,
&blk_mq_hw_sysfs_cpus.attr,
&blk_mq_hw_sysfs_active.attr,
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
NULL,
};
static const struct sysfs_ops blk_mq_sysfs_ops = {
.show = blk_mq_sysfs_show,
.store = blk_mq_sysfs_store,
};
static const struct sysfs_ops blk_mq_hw_sysfs_ops = {
.show = blk_mq_hw_sysfs_show,
.store = blk_mq_hw_sysfs_store,
};
static struct kobj_type blk_mq_ktype = {
.sysfs_ops = &blk_mq_sysfs_ops,
.release = blk_mq_sysfs_release,
};
static struct kobj_type blk_mq_ctx_ktype = {
.sysfs_ops = &blk_mq_sysfs_ops,
.default_attrs = default_ctx_attrs,
.release = blk_mq_sysfs_release,
};
static struct kobj_type blk_mq_hw_ktype = {
.sysfs_ops = &blk_mq_hw_sysfs_ops,
.default_attrs = default_hw_ctx_attrs,
.release = blk_mq_sysfs_release,
};
static void blk_mq_unregister_hctx(struct blk_mq_hw_ctx *hctx)
{
struct blk_mq_ctx *ctx;
int i;
if (!hctx->nr_ctx || !(hctx->flags & BLK_MQ_F_SYSFS_UP))
return;
hctx_for_each_ctx(hctx, ctx, i)
kobject_del(&ctx->kobj);
kobject_del(&hctx->kobj);
}
static int blk_mq_register_hctx(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct blk_mq_ctx *ctx;
int i, ret;
if (!hctx->nr_ctx || !(hctx->flags & BLK_MQ_F_SYSFS_UP))
return 0;
ret = kobject_add(&hctx->kobj, &q->mq_kobj, "%u", hctx->queue_num);
if (ret)
return ret;
hctx_for_each_ctx(hctx, ctx, i) {
ret = kobject_add(&ctx->kobj, &hctx->kobj, "cpu%u", ctx->cpu);
if (ret)
break;
}
return ret;
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
void blk_mq_unregister_disk(struct gendisk *disk)
{
struct request_queue *q = disk->queue;
block: fix memory leaks on unplugging block device All objects, which are allocated in blk_mq_register_disk, must be released in blk_mq_unregister_disk. I use a KVM virtual machine and virtio disk to reproduce this issue. kmemleak: 18 new suspected memory leaks (see /sys/kernel/debug/kmemleak) $ cat /sys/kernel/debug/kmemleak | head -n 30 unreferenced object 0xffff8800b6636150 (size 8): comm "kworker/0:2", pid 65, jiffies 4294809903 (age 86.358s) hex dump (first 8 bytes): 76 69 72 74 69 6f 34 00 virtio4. backtrace: [<ffffffff8165d41e>] kmemleak_alloc+0x4e/0xb0 [<ffffffff8118cfc5>] __kmalloc_track_caller+0xf5/0x260 [<ffffffff81155b11>] kstrdup+0x31/0x60 [<ffffffff812242be>] sysfs_new_dirent+0x2e/0x140 [<ffffffff81224678>] create_dir+0x38/0xe0 [<ffffffff812249e3>] sysfs_create_dir_ns+0x73/0xc0 [<ffffffff8130dfa9>] kobject_add_internal+0xc9/0x340 [<ffffffff8130e535>] kobject_add+0x65/0xb0 [<ffffffff813f34f8>] device_add+0x128/0x660 [<ffffffff813f3a4a>] device_register+0x1a/0x20 [<ffffffff813ae6f8>] register_virtio_device+0x98/0xe0 [<ffffffff813b0cce>] virtio_pci_probe+0x12e/0x1c0 [<ffffffff81340675>] local_pci_probe+0x45/0xa0 [<ffffffff81341a51>] pci_device_probe+0x121/0x130 [<ffffffff813f67f7>] driver_probe_device+0x87/0x390 [<ffffffff813f6b3b>] __device_attach+0x3b/0x40 unreferenced object 0xffff8800b65aa1d8 (size 144): Fixes: 320ae51feed5 (blk-mq: new multi-queue block IO queueing mechanism) Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-12-06 09:06:41 +04:00
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
int i, j;
queue_for_each_hw_ctx(q, hctx, i) {
blk_mq_unregister_hctx(hctx);
hctx_for_each_ctx(hctx, ctx, j)
block: fix memory leaks on unplugging block device All objects, which are allocated in blk_mq_register_disk, must be released in blk_mq_unregister_disk. I use a KVM virtual machine and virtio disk to reproduce this issue. kmemleak: 18 new suspected memory leaks (see /sys/kernel/debug/kmemleak) $ cat /sys/kernel/debug/kmemleak | head -n 30 unreferenced object 0xffff8800b6636150 (size 8): comm "kworker/0:2", pid 65, jiffies 4294809903 (age 86.358s) hex dump (first 8 bytes): 76 69 72 74 69 6f 34 00 virtio4. backtrace: [<ffffffff8165d41e>] kmemleak_alloc+0x4e/0xb0 [<ffffffff8118cfc5>] __kmalloc_track_caller+0xf5/0x260 [<ffffffff81155b11>] kstrdup+0x31/0x60 [<ffffffff812242be>] sysfs_new_dirent+0x2e/0x140 [<ffffffff81224678>] create_dir+0x38/0xe0 [<ffffffff812249e3>] sysfs_create_dir_ns+0x73/0xc0 [<ffffffff8130dfa9>] kobject_add_internal+0xc9/0x340 [<ffffffff8130e535>] kobject_add+0x65/0xb0 [<ffffffff813f34f8>] device_add+0x128/0x660 [<ffffffff813f3a4a>] device_register+0x1a/0x20 [<ffffffff813ae6f8>] register_virtio_device+0x98/0xe0 [<ffffffff813b0cce>] virtio_pci_probe+0x12e/0x1c0 [<ffffffff81340675>] local_pci_probe+0x45/0xa0 [<ffffffff81341a51>] pci_device_probe+0x121/0x130 [<ffffffff813f67f7>] driver_probe_device+0x87/0x390 [<ffffffff813f6b3b>] __device_attach+0x3b/0x40 unreferenced object 0xffff8800b65aa1d8 (size 144): Fixes: 320ae51feed5 (blk-mq: new multi-queue block IO queueing mechanism) Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-12-06 09:06:41 +04:00
kobject_put(&ctx->kobj);
block: fix memory leaks on unplugging block device All objects, which are allocated in blk_mq_register_disk, must be released in blk_mq_unregister_disk. I use a KVM virtual machine and virtio disk to reproduce this issue. kmemleak: 18 new suspected memory leaks (see /sys/kernel/debug/kmemleak) $ cat /sys/kernel/debug/kmemleak | head -n 30 unreferenced object 0xffff8800b6636150 (size 8): comm "kworker/0:2", pid 65, jiffies 4294809903 (age 86.358s) hex dump (first 8 bytes): 76 69 72 74 69 6f 34 00 virtio4. backtrace: [<ffffffff8165d41e>] kmemleak_alloc+0x4e/0xb0 [<ffffffff8118cfc5>] __kmalloc_track_caller+0xf5/0x260 [<ffffffff81155b11>] kstrdup+0x31/0x60 [<ffffffff812242be>] sysfs_new_dirent+0x2e/0x140 [<ffffffff81224678>] create_dir+0x38/0xe0 [<ffffffff812249e3>] sysfs_create_dir_ns+0x73/0xc0 [<ffffffff8130dfa9>] kobject_add_internal+0xc9/0x340 [<ffffffff8130e535>] kobject_add+0x65/0xb0 [<ffffffff813f34f8>] device_add+0x128/0x660 [<ffffffff813f3a4a>] device_register+0x1a/0x20 [<ffffffff813ae6f8>] register_virtio_device+0x98/0xe0 [<ffffffff813b0cce>] virtio_pci_probe+0x12e/0x1c0 [<ffffffff81340675>] local_pci_probe+0x45/0xa0 [<ffffffff81341a51>] pci_device_probe+0x121/0x130 [<ffffffff813f67f7>] driver_probe_device+0x87/0x390 [<ffffffff813f6b3b>] __device_attach+0x3b/0x40 unreferenced object 0xffff8800b65aa1d8 (size 144): Fixes: 320ae51feed5 (blk-mq: new multi-queue block IO queueing mechanism) Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-12-06 09:06:41 +04:00
kobject_put(&hctx->kobj);
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
kobject_uevent(&q->mq_kobj, KOBJ_REMOVE);
kobject_del(&q->mq_kobj);
block: fix memory leaks on unplugging block device All objects, which are allocated in blk_mq_register_disk, must be released in blk_mq_unregister_disk. I use a KVM virtual machine and virtio disk to reproduce this issue. kmemleak: 18 new suspected memory leaks (see /sys/kernel/debug/kmemleak) $ cat /sys/kernel/debug/kmemleak | head -n 30 unreferenced object 0xffff8800b6636150 (size 8): comm "kworker/0:2", pid 65, jiffies 4294809903 (age 86.358s) hex dump (first 8 bytes): 76 69 72 74 69 6f 34 00 virtio4. backtrace: [<ffffffff8165d41e>] kmemleak_alloc+0x4e/0xb0 [<ffffffff8118cfc5>] __kmalloc_track_caller+0xf5/0x260 [<ffffffff81155b11>] kstrdup+0x31/0x60 [<ffffffff812242be>] sysfs_new_dirent+0x2e/0x140 [<ffffffff81224678>] create_dir+0x38/0xe0 [<ffffffff812249e3>] sysfs_create_dir_ns+0x73/0xc0 [<ffffffff8130dfa9>] kobject_add_internal+0xc9/0x340 [<ffffffff8130e535>] kobject_add+0x65/0xb0 [<ffffffff813f34f8>] device_add+0x128/0x660 [<ffffffff813f3a4a>] device_register+0x1a/0x20 [<ffffffff813ae6f8>] register_virtio_device+0x98/0xe0 [<ffffffff813b0cce>] virtio_pci_probe+0x12e/0x1c0 [<ffffffff81340675>] local_pci_probe+0x45/0xa0 [<ffffffff81341a51>] pci_device_probe+0x121/0x130 [<ffffffff813f67f7>] driver_probe_device+0x87/0x390 [<ffffffff813f6b3b>] __device_attach+0x3b/0x40 unreferenced object 0xffff8800b65aa1d8 (size 144): Fixes: 320ae51feed5 (blk-mq: new multi-queue block IO queueing mechanism) Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-12-06 09:06:41 +04:00
kobject_put(&q->mq_kobj);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
kobject_put(&disk_to_dev(disk)->kobj);
}
static void blk_mq_sysfs_init(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
blk-mq: Fix uninitialized kobject at CPU hotplugging When a CPU is hotplugged, the current blk-mq spews a warning like: kobject '(null)' (ffffe8ffffc8b5d8): tried to add an uninitialized object, something is seriously wrong. CPU: 1 PID: 1386 Comm: systemd-udevd Not tainted 3.18.0-rc7-2.g088d59b-default #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_171129-lamiak 04/01/2014 0000000000000000 0000000000000002 ffffffff81605f07 ffffe8ffffc8b5d8 ffffffff8132c7a0 ffff88023341d370 0000000000000020 ffff8800bb05bd58 ffff8800bb05bd08 000000000000a0a0 000000003f441940 0000000000000007 Call Trace: [<ffffffff81005306>] dump_trace+0x86/0x330 [<ffffffff81005644>] show_stack_log_lvl+0x94/0x170 [<ffffffff81006d21>] show_stack+0x21/0x50 [<ffffffff81605f07>] dump_stack+0x41/0x51 [<ffffffff8132c7a0>] kobject_add+0xa0/0xb0 [<ffffffff8130aee1>] blk_mq_register_hctx+0x91/0xb0 [<ffffffff8130b82e>] blk_mq_sysfs_register+0x3e/0x60 [<ffffffff81309298>] blk_mq_queue_reinit_notify+0xf8/0x190 [<ffffffff8107cfdc>] notifier_call_chain+0x4c/0x70 [<ffffffff8105fd23>] cpu_notify+0x23/0x50 [<ffffffff81060037>] _cpu_up+0x157/0x170 [<ffffffff810600d9>] cpu_up+0x89/0xb0 [<ffffffff815fa5b5>] cpu_subsys_online+0x35/0x80 [<ffffffff814323cd>] device_online+0x5d/0xa0 [<ffffffff81432485>] online_store+0x75/0x80 [<ffffffff81236a5a>] kernfs_fop_write+0xda/0x150 [<ffffffff811c5532>] vfs_write+0xb2/0x1f0 [<ffffffff811c5f42>] SyS_write+0x42/0xb0 [<ffffffff8160c4ed>] system_call_fastpath+0x16/0x1b [<00007f0132fb24e0>] 0x7f0132fb24e0 This is indeed because of an uninitialized kobject for blk_mq_ctx. The blk_mq_ctx kobjects are initialized in blk_mq_sysfs_init(), but it goes loop over hctx_for_each_ctx(), i.e. it initializes only for online CPUs. Thus, when a CPU is hotplugged, the ctx for the newly onlined CPU is registered without initialization. This patch fixes the issue by initializing the all ctx kobjects belonging to each queue. Bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=908794 Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-12-10 16:38:30 +01:00
int i;
kobject_init(&q->mq_kobj, &blk_mq_ktype);
blk-mq: Fix uninitialized kobject at CPU hotplugging When a CPU is hotplugged, the current blk-mq spews a warning like: kobject '(null)' (ffffe8ffffc8b5d8): tried to add an uninitialized object, something is seriously wrong. CPU: 1 PID: 1386 Comm: systemd-udevd Not tainted 3.18.0-rc7-2.g088d59b-default #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_171129-lamiak 04/01/2014 0000000000000000 0000000000000002 ffffffff81605f07 ffffe8ffffc8b5d8 ffffffff8132c7a0 ffff88023341d370 0000000000000020 ffff8800bb05bd58 ffff8800bb05bd08 000000000000a0a0 000000003f441940 0000000000000007 Call Trace: [<ffffffff81005306>] dump_trace+0x86/0x330 [<ffffffff81005644>] show_stack_log_lvl+0x94/0x170 [<ffffffff81006d21>] show_stack+0x21/0x50 [<ffffffff81605f07>] dump_stack+0x41/0x51 [<ffffffff8132c7a0>] kobject_add+0xa0/0xb0 [<ffffffff8130aee1>] blk_mq_register_hctx+0x91/0xb0 [<ffffffff8130b82e>] blk_mq_sysfs_register+0x3e/0x60 [<ffffffff81309298>] blk_mq_queue_reinit_notify+0xf8/0x190 [<ffffffff8107cfdc>] notifier_call_chain+0x4c/0x70 [<ffffffff8105fd23>] cpu_notify+0x23/0x50 [<ffffffff81060037>] _cpu_up+0x157/0x170 [<ffffffff810600d9>] cpu_up+0x89/0xb0 [<ffffffff815fa5b5>] cpu_subsys_online+0x35/0x80 [<ffffffff814323cd>] device_online+0x5d/0xa0 [<ffffffff81432485>] online_store+0x75/0x80 [<ffffffff81236a5a>] kernfs_fop_write+0xda/0x150 [<ffffffff811c5532>] vfs_write+0xb2/0x1f0 [<ffffffff811c5f42>] SyS_write+0x42/0xb0 [<ffffffff8160c4ed>] system_call_fastpath+0x16/0x1b [<00007f0132fb24e0>] 0x7f0132fb24e0 This is indeed because of an uninitialized kobject for blk_mq_ctx. The blk_mq_ctx kobjects are initialized in blk_mq_sysfs_init(), but it goes loop over hctx_for_each_ctx(), i.e. it initializes only for online CPUs. Thus, when a CPU is hotplugged, the ctx for the newly onlined CPU is registered without initialization. This patch fixes the issue by initializing the all ctx kobjects belonging to each queue. Bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=908794 Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-12-10 16:38:30 +01:00
queue_for_each_hw_ctx(q, hctx, i)
kobject_init(&hctx->kobj, &blk_mq_hw_ktype);
blk-mq: Fix uninitialized kobject at CPU hotplugging When a CPU is hotplugged, the current blk-mq spews a warning like: kobject '(null)' (ffffe8ffffc8b5d8): tried to add an uninitialized object, something is seriously wrong. CPU: 1 PID: 1386 Comm: systemd-udevd Not tainted 3.18.0-rc7-2.g088d59b-default #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_171129-lamiak 04/01/2014 0000000000000000 0000000000000002 ffffffff81605f07 ffffe8ffffc8b5d8 ffffffff8132c7a0 ffff88023341d370 0000000000000020 ffff8800bb05bd58 ffff8800bb05bd08 000000000000a0a0 000000003f441940 0000000000000007 Call Trace: [<ffffffff81005306>] dump_trace+0x86/0x330 [<ffffffff81005644>] show_stack_log_lvl+0x94/0x170 [<ffffffff81006d21>] show_stack+0x21/0x50 [<ffffffff81605f07>] dump_stack+0x41/0x51 [<ffffffff8132c7a0>] kobject_add+0xa0/0xb0 [<ffffffff8130aee1>] blk_mq_register_hctx+0x91/0xb0 [<ffffffff8130b82e>] blk_mq_sysfs_register+0x3e/0x60 [<ffffffff81309298>] blk_mq_queue_reinit_notify+0xf8/0x190 [<ffffffff8107cfdc>] notifier_call_chain+0x4c/0x70 [<ffffffff8105fd23>] cpu_notify+0x23/0x50 [<ffffffff81060037>] _cpu_up+0x157/0x170 [<ffffffff810600d9>] cpu_up+0x89/0xb0 [<ffffffff815fa5b5>] cpu_subsys_online+0x35/0x80 [<ffffffff814323cd>] device_online+0x5d/0xa0 [<ffffffff81432485>] online_store+0x75/0x80 [<ffffffff81236a5a>] kernfs_fop_write+0xda/0x150 [<ffffffff811c5532>] vfs_write+0xb2/0x1f0 [<ffffffff811c5f42>] SyS_write+0x42/0xb0 [<ffffffff8160c4ed>] system_call_fastpath+0x16/0x1b [<00007f0132fb24e0>] 0x7f0132fb24e0 This is indeed because of an uninitialized kobject for blk_mq_ctx. The blk_mq_ctx kobjects are initialized in blk_mq_sysfs_init(), but it goes loop over hctx_for_each_ctx(), i.e. it initializes only for online CPUs. Thus, when a CPU is hotplugged, the ctx for the newly onlined CPU is registered without initialization. This patch fixes the issue by initializing the all ctx kobjects belonging to each queue. Bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=908794 Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-12-10 16:38:30 +01:00
queue_for_each_ctx(q, ctx, i)
kobject_init(&ctx->kobj, &blk_mq_ctx_ktype);
}
blk-mq, percpu_ref: start q->mq_usage_counter in atomic mode blk-mq uses percpu_ref for its usage counter which tracks the number of in-flight commands and used to synchronously drain the queue on freeze. percpu_ref shutdown takes measureable wallclock time as it involves a sched RCU grace period. This means that draining a blk-mq takes measureable wallclock time. One would think that this shouldn't matter as queue shutdown should be a rare event which takes place asynchronously w.r.t. userland. Unfortunately, SCSI probing involves synchronously setting up and then tearing down a lot of request_queues back-to-back for non-existent LUNs. This means that SCSI probing may take above ten seconds when scsi-mq is used. [ 0.949892] scsi host0: Virtio SCSI HBA [ 1.007864] scsi 0:0:0:0: Direct-Access QEMU QEMU HARDDISK 1.1. PQ: 0 ANSI: 5 [ 1.021299] scsi 0:0:1:0: Direct-Access QEMU QEMU HARDDISK 1.1. PQ: 0 ANSI: 5 [ 1.520356] tsc: Refined TSC clocksource calibration: 2491.910 MHz <stall> [ 16.186549] sd 0:0:0:0: Attached scsi generic sg0 type 0 [ 16.190478] sd 0:0:1:0: Attached scsi generic sg1 type 0 [ 16.194099] osd: LOADED open-osd 0.2.1 [ 16.203202] sd 0:0:0:0: [sda] 31457280 512-byte logical blocks: (16.1 GB/15.0 GiB) [ 16.208478] sd 0:0:0:0: [sda] Write Protect is off [ 16.211439] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA [ 16.218771] sd 0:0:1:0: [sdb] 31457280 512-byte logical blocks: (16.1 GB/15.0 GiB) [ 16.223264] sd 0:0:1:0: [sdb] Write Protect is off [ 16.225682] sd 0:0:1:0: [sdb] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA This is also the reason why request_queues start in bypass mode which is ended on blk_register_queue() as shutting down a fully functional queue also involves a RCU grace period and the queues for non-existent SCSI devices never reach registration. blk-mq basically needs to do the same thing - start the mq in a degraded mode which is faster to shut down and then make it fully functional only after the queue reaches registration. percpu_ref recently grew facilities to force atomic operation until explicitly switched to percpu mode, which can be used for this purpose. This patch makes blk-mq initialize q->mq_usage_counter in atomic mode and switch it to percpu mode only once blk_register_queue() is reached. Note that this issue was previously worked around by 0a30288da1ae ("blk-mq, percpu_ref: implement a kludge for SCSI blk-mq stall during probe") for v3.17. The temp fix was reverted in preparation of adding persistent atomic mode to percpu_ref by 9eca80461a45 ("Revert "blk-mq, percpu_ref: implement a kludge for SCSI blk-mq stall during probe""). This patch and the prerequisite percpu_ref changes will be merged during v3.18 devel cycle. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Christoph Hellwig <hch@infradead.org> Link: http://lkml.kernel.org/g/20140919113815.GA10791@lst.de Fixes: add703fda981 ("blk-mq: use percpu_ref for mq usage count") Reviewed-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-09-24 13:31:50 -04:00
/* see blk_register_queue() */
void blk_mq_finish_init(struct request_queue *q)
{
percpu_ref_switch_to_percpu(&q->mq_usage_counter);
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
int blk_mq_register_disk(struct gendisk *disk)
{
struct device *dev = disk_to_dev(disk);
struct request_queue *q = disk->queue;
struct blk_mq_hw_ctx *hctx;
int ret, i;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
blk_mq_sysfs_init(q);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
ret = kobject_add(&q->mq_kobj, kobject_get(&dev->kobj), "%s", "mq");
if (ret < 0)
return ret;
kobject_uevent(&q->mq_kobj, KOBJ_ADD);
queue_for_each_hw_ctx(q, hctx, i) {
hctx->flags |= BLK_MQ_F_SYSFS_UP;
ret = blk_mq_register_hctx(hctx);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
if (ret)
break;
}
if (ret) {
blk_mq_unregister_disk(disk);
return ret;
}
return 0;
}
void blk_mq_sysfs_unregister(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_unregister_hctx(hctx);
}
int blk_mq_sysfs_register(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i, ret = 0;
queue_for_each_hw_ctx(q, hctx, i) {
ret = blk_mq_register_hctx(hctx);
if (ret)
break;
}
return ret;
}