linux-next/drivers/spi/spi-cadence-xspi.c

1300 lines
38 KiB
C
Raw Normal View History

spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
// SPDX-License-Identifier: GPL-2.0+
// Cadence XSPI flash controller driver
// Copyright (C) 2020-21 Cadence
#include <linux/acpi.h>
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/bitfield.h>
#include <linux/limits.h>
#include <linux/log2.h>
#include <linux/bitrev.h>
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
#define CDNS_XSPI_MAGIC_NUM_VALUE 0x6522
#define CDNS_XSPI_MAX_BANKS 8
#define CDNS_XSPI_NAME "cadence-xspi"
/*
* Note: below are additional auxiliary registers to
* configure XSPI controller pin-strap settings
*/
/* PHY DQ timing register */
#define CDNS_XSPI_CCP_PHY_DQ_TIMING 0x0000
/* PHY DQS timing register */
#define CDNS_XSPI_CCP_PHY_DQS_TIMING 0x0004
/* PHY gate loopback control register */
#define CDNS_XSPI_CCP_PHY_GATE_LPBCK_CTRL 0x0008
/* PHY DLL slave control register */
#define CDNS_XSPI_CCP_PHY_DLL_SLAVE_CTRL 0x0010
/* DLL PHY control register */
#define CDNS_XSPI_DLL_PHY_CTRL 0x1034
/* Command registers */
#define CDNS_XSPI_CMD_REG_0 0x0000
#define CDNS_XSPI_CMD_REG_1 0x0004
#define CDNS_XSPI_CMD_REG_2 0x0008
#define CDNS_XSPI_CMD_REG_3 0x000C
#define CDNS_XSPI_CMD_REG_4 0x0010
#define CDNS_XSPI_CMD_REG_5 0x0014
/* Command status registers */
#define CDNS_XSPI_CMD_STATUS_REG 0x0044
/* Controller status register */
#define CDNS_XSPI_CTRL_STATUS_REG 0x0100
#define CDNS_XSPI_INIT_COMPLETED BIT(16)
#define CDNS_XSPI_INIT_LEGACY BIT(9)
#define CDNS_XSPI_INIT_FAIL BIT(8)
#define CDNS_XSPI_CTRL_BUSY BIT(7)
/* Controller interrupt status register */
#define CDNS_XSPI_INTR_STATUS_REG 0x0110
#define CDNS_XSPI_STIG_DONE BIT(23)
#define CDNS_XSPI_SDMA_ERROR BIT(22)
#define CDNS_XSPI_SDMA_TRIGGER BIT(21)
#define CDNS_XSPI_CMD_IGNRD_EN BIT(20)
#define CDNS_XSPI_DDMA_TERR_EN BIT(18)
#define CDNS_XSPI_CDMA_TREE_EN BIT(17)
#define CDNS_XSPI_CTRL_IDLE_EN BIT(16)
#define CDNS_XSPI_TRD_COMP_INTR_STATUS 0x0120
#define CDNS_XSPI_TRD_ERR_INTR_STATUS 0x0130
#define CDNS_XSPI_TRD_ERR_INTR_EN 0x0134
/* Controller interrupt enable register */
#define CDNS_XSPI_INTR_ENABLE_REG 0x0114
#define CDNS_XSPI_INTR_EN BIT(31)
#define CDNS_XSPI_STIG_DONE_EN BIT(23)
#define CDNS_XSPI_SDMA_ERROR_EN BIT(22)
#define CDNS_XSPI_SDMA_TRIGGER_EN BIT(21)
#define CDNS_XSPI_INTR_MASK (CDNS_XSPI_INTR_EN | \
CDNS_XSPI_STIG_DONE_EN | \
CDNS_XSPI_SDMA_ERROR_EN | \
CDNS_XSPI_SDMA_TRIGGER_EN)
/* Controller config register */
#define CDNS_XSPI_CTRL_CONFIG_REG 0x0230
#define CDNS_XSPI_CTRL_WORK_MODE GENMASK(6, 5)
#define CDNS_XSPI_WORK_MODE_DIRECT 0
#define CDNS_XSPI_WORK_MODE_STIG 1
#define CDNS_XSPI_WORK_MODE_ACMD 3
/* SDMA trigger transaction registers */
#define CDNS_XSPI_SDMA_SIZE_REG 0x0240
#define CDNS_XSPI_SDMA_TRD_INFO_REG 0x0244
#define CDNS_XSPI_SDMA_DIR BIT(8)
/* Controller features register */
#define CDNS_XSPI_CTRL_FEATURES_REG 0x0F04
#define CDNS_XSPI_NUM_BANKS GENMASK(25, 24)
#define CDNS_XSPI_DMA_DATA_WIDTH BIT(21)
#define CDNS_XSPI_NUM_THREADS GENMASK(3, 0)
/* Controller version register */
#define CDNS_XSPI_CTRL_VERSION_REG 0x0F00
#define CDNS_XSPI_MAGIC_NUM GENMASK(31, 16)
#define CDNS_XSPI_CTRL_REV GENMASK(7, 0)
/* STIG Profile 1.0 instruction fields (split into registers) */
#define CDNS_XSPI_CMD_INSTR_TYPE GENMASK(6, 0)
#define CDNS_XSPI_CMD_P1_R1_ADDR0 GENMASK(31, 24)
#define CDNS_XSPI_CMD_P1_R2_ADDR1 GENMASK(7, 0)
#define CDNS_XSPI_CMD_P1_R2_ADDR2 GENMASK(15, 8)
#define CDNS_XSPI_CMD_P1_R2_ADDR3 GENMASK(23, 16)
#define CDNS_XSPI_CMD_P1_R2_ADDR4 GENMASK(31, 24)
#define CDNS_XSPI_CMD_P1_R3_ADDR5 GENMASK(7, 0)
#define CDNS_XSPI_CMD_P1_R3_CMD GENMASK(23, 16)
#define CDNS_XSPI_CMD_P1_R3_NUM_ADDR_BYTES GENMASK(30, 28)
#define CDNS_XSPI_CMD_P1_R4_ADDR_IOS GENMASK(1, 0)
#define CDNS_XSPI_CMD_P1_R4_CMD_IOS GENMASK(9, 8)
#define CDNS_XSPI_CMD_P1_R4_BANK GENMASK(14, 12)
/* STIG data sequence instruction fields (split into registers) */
#define CDNS_XSPI_CMD_DSEQ_R2_DCNT_L GENMASK(31, 16)
#define CDNS_XSPI_CMD_DSEQ_R3_DCNT_H GENMASK(15, 0)
#define CDNS_XSPI_CMD_DSEQ_R3_NUM_OF_DUMMY GENMASK(25, 20)
#define CDNS_XSPI_CMD_DSEQ_R4_BANK GENMASK(14, 12)
#define CDNS_XSPI_CMD_DSEQ_R4_DATA_IOS GENMASK(9, 8)
#define CDNS_XSPI_CMD_DSEQ_R4_DIR BIT(4)
/* STIG command status fields */
#define CDNS_XSPI_CMD_STATUS_COMPLETED BIT(15)
#define CDNS_XSPI_CMD_STATUS_FAILED BIT(14)
#define CDNS_XSPI_CMD_STATUS_DQS_ERROR BIT(3)
#define CDNS_XSPI_CMD_STATUS_CRC_ERROR BIT(2)
#define CDNS_XSPI_CMD_STATUS_BUS_ERROR BIT(1)
#define CDNS_XSPI_CMD_STATUS_INV_SEQ_ERROR BIT(0)
#define CDNS_XSPI_STIG_DONE_FLAG BIT(0)
#define CDNS_XSPI_TRD_STATUS 0x0104
#define MODE_NO_OF_BYTES GENMASK(25, 24)
#define MODEBYTES_COUNT 1
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
/* Helper macros for filling command registers */
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_1(op, data_phase) ( \
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, (data_phase) ? \
CDNS_XSPI_STIG_INSTR_TYPE_1 : CDNS_XSPI_STIG_INSTR_TYPE_0) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R1_ADDR0, (op)->addr.val & 0xff))
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_2(op) ( \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR1, ((op)->addr.val >> 8) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR2, ((op)->addr.val >> 16) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR3, ((op)->addr.val >> 24) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR4, ((op)->addr.val >> 32) & 0xFF))
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op, modebytes) ( \
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
FIELD_PREP(CDNS_XSPI_CMD_P1_R3_ADDR5, ((op)->addr.val >> 40) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R3_CMD, (op)->cmd.opcode) | \
FIELD_PREP(MODE_NO_OF_BYTES, modebytes) | \
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
FIELD_PREP(CDNS_XSPI_CMD_P1_R3_NUM_ADDR_BYTES, (op)->addr.nbytes))
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_4(op, chipsel) ( \
FIELD_PREP(CDNS_XSPI_CMD_P1_R4_ADDR_IOS, ilog2((op)->addr.buswidth)) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R4_CMD_IOS, ilog2((op)->cmd.buswidth)) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R4_BANK, chipsel))
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_1(op) \
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ)
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_2(op) \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R2_DCNT_L, (op)->data.nbytes & 0xFFFF)
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_3(op, dummybytes) ( \
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_DCNT_H, \
((op)->data.nbytes >> 16) & 0xffff) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_NUM_OF_DUMMY, \
(op)->dummy.buswidth != 0 ? \
(((dummybytes) * 8) / (op)->dummy.buswidth) : \
0))
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_4(op, chipsel) ( \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_BANK, chipsel) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DATA_IOS, \
ilog2((op)->data.buswidth)) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DIR, \
((op)->data.dir == SPI_MEM_DATA_IN) ? \
CDNS_XSPI_STIG_CMD_DIR_READ : CDNS_XSPI_STIG_CMD_DIR_WRITE))
/* Helper macros for GENERIC and GENERIC-DSEQ instruction type */
#define CMD_REG_LEN (6*4)
#define INSTRUCTION_TYPE_GENERIC 96
#define CDNS_XSPI_CMD_FLD_P1_GENERIC_CMD (\
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, INSTRUCTION_TYPE_GENERIC))
#define GENERIC_NUM_OF_BYTES GENMASK(27, 24)
#define CDNS_XSPI_CMD_FLD_P3_GENERIC_CMD(len) (\
FIELD_PREP(GENERIC_NUM_OF_BYTES, len))
#define GENERIC_BANK_NUM GENMASK(14, 12)
#define GENERIC_GLUE_CMD BIT(28)
#define CDNS_XSPI_CMD_FLD_P4_GENERIC_CMD(cs, glue) (\
FIELD_PREP(GENERIC_BANK_NUM, cs) | FIELD_PREP(GENERIC_GLUE_CMD, glue))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_1 (\
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_2(nbytes) (\
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R2_DCNT_L, nbytes & 0xffff))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_3(nbytes) ( \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_DCNT_H, (nbytes >> 16) & 0xffff))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_4(dir, chipsel) ( \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_BANK, chipsel) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DIR, dir))
/* Marvell PHY default values */
#define MARVELL_REGS_DLL_PHY_CTRL 0x00000707
#define MARVELL_CTB_RFILE_PHY_CTRL 0x00004000
#define MARVELL_RFILE_PHY_TSEL 0x00000000
#define MARVELL_RFILE_PHY_DQ_TIMING 0x00000101
#define MARVELL_RFILE_PHY_DQS_TIMING 0x00700404
#define MARVELL_RFILE_PHY_GATE_LPBK_CTRL 0x00200030
#define MARVELL_RFILE_PHY_DLL_MASTER_CTRL 0x00800000
#define MARVELL_RFILE_PHY_DLL_SLAVE_CTRL 0x0000ff01
/* PHY config registers */
#define CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL 0x1034
#define CDNS_XSPI_PHY_CTB_RFILE_PHY_CTRL 0x0080
#define CDNS_XSPI_PHY_CTB_RFILE_PHY_TSEL 0x0084
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQ_TIMING 0x0000
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQS_TIMING 0x0004
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_GATE_LPBK_CTRL 0x0008
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_MASTER_CTRL 0x000c
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_SLAVE_CTRL 0x0010
#define CDNS_XSPI_DATASLICE_RFILE_PHY_DLL_OBS_REG_0 0x001c
#define CDNS_XSPI_DLL_RST_N BIT(24)
#define CDNS_XSPI_DLL_LOCK BIT(0)
/* Marvell overlay registers - clock */
#define MRVL_XSPI_CLK_CTRL_AUX_REG 0x2020
#define MRVL_XSPI_CLK_ENABLE BIT(0)
#define MRVL_XSPI_CLK_DIV GENMASK(4, 1)
#define MRVL_XSPI_IRQ_ENABLE BIT(6)
#define MRVL_XSPI_CLOCK_IO_HZ 800000000
#define MRVL_XSPI_CLOCK_DIVIDED(div) ((MRVL_XSPI_CLOCK_IO_HZ) / (div))
#define MRVL_DEFAULT_CLK 25000000
/* Marvell overlay registers - xfer */
#define MRVL_XFER_FUNC_CTRL 0x210
#define MRVL_XFER_FUNC_CTRL_READ_DATA(i) (0x000 + 8 * (i))
#define MRVL_XFER_SOFT_RESET BIT(11)
#define MRVL_XFER_CS_N_HOLD GENMASK(9, 6)
#define MRVL_XFER_RECEIVE_ENABLE BIT(4)
#define MRVL_XFER_FUNC_ENABLE BIT(3)
#define MRVL_XFER_CLK_CAPTURE_POL BIT(2)
#define MRVL_XFER_CLK_DRIVE_POL BIT(1)
#define MRVL_XFER_FUNC_START BIT(0)
#define MRVL_XFER_QWORD_COUNT 32
#define MRVL_XFER_QWORD_BYTECOUNT 8
#define MRVL_XSPI_POLL_TIMEOUT_US 1000
#define MRVL_XSPI_POLL_DELAY_US 10
/* Macros for calculating data bits in generic command
* Up to 10 bytes can be fit into cmd_registers
* least significant is placed in cmd_reg[1]
* Other bits are inserted after it in cmd_reg[1,2,3] register
*/
#define GENERIC_CMD_DATA_REG_3_COUNT(len) (len >= 10 ? 2 : len - 8)
#define GENERIC_CMD_DATA_REG_2_COUNT(len) (len >= 7 ? 3 : len - 4)
#define GENERIC_CMD_DATA_REG_1_COUNT(len) (len >= 3 ? 2 : len - 1)
#define GENERIC_CMD_DATA_3_OFFSET(position) (8*(position))
#define GENERIC_CMD_DATA_2_OFFSET(position) (8*(position))
#define GENERIC_CMD_DATA_1_OFFSET(position) (8 + 8*(position))
#define GENERIC_CMD_DATA_INSERT(data, pos) ((data) << (pos))
#define GENERIC_CMD_REG_3_NEEDED(len) (len > 7)
#define GENERIC_CMD_REG_2_NEEDED(len) (len > 3)
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
enum cdns_xspi_stig_instr_type {
CDNS_XSPI_STIG_INSTR_TYPE_0,
CDNS_XSPI_STIG_INSTR_TYPE_1,
CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ = 127,
};
enum cdns_xspi_sdma_dir {
CDNS_XSPI_SDMA_DIR_READ,
CDNS_XSPI_SDMA_DIR_WRITE,
};
enum cdns_xspi_stig_cmd_dir {
CDNS_XSPI_STIG_CMD_DIR_READ,
CDNS_XSPI_STIG_CMD_DIR_WRITE,
};
struct cdns_xspi_driver_data {
bool mrvl_hw_overlay;
u32 dll_phy_ctrl;
u32 ctb_rfile_phy_ctrl;
u32 rfile_phy_tsel;
u32 rfile_phy_dq_timing;
u32 rfile_phy_dqs_timing;
u32 rfile_phy_gate_lpbk_ctrl;
u32 rfile_phy_dll_master_ctrl;
u32 rfile_phy_dll_slave_ctrl;
};
static struct cdns_xspi_driver_data marvell_driver_data = {
.mrvl_hw_overlay = true,
.dll_phy_ctrl = MARVELL_REGS_DLL_PHY_CTRL,
.ctb_rfile_phy_ctrl = MARVELL_CTB_RFILE_PHY_CTRL,
.rfile_phy_tsel = MARVELL_RFILE_PHY_TSEL,
.rfile_phy_dq_timing = MARVELL_RFILE_PHY_DQ_TIMING,
.rfile_phy_dqs_timing = MARVELL_RFILE_PHY_DQS_TIMING,
.rfile_phy_gate_lpbk_ctrl = MARVELL_RFILE_PHY_GATE_LPBK_CTRL,
.rfile_phy_dll_master_ctrl = MARVELL_RFILE_PHY_DLL_MASTER_CTRL,
.rfile_phy_dll_slave_ctrl = MARVELL_RFILE_PHY_DLL_SLAVE_CTRL,
};
static struct cdns_xspi_driver_data cdns_driver_data = {
.mrvl_hw_overlay = false,
};
static const int cdns_mrvl_xspi_clk_div_list[] = {
4, //0x0 = Divide by 4. SPI clock is 200 MHz.
6, //0x1 = Divide by 6. SPI clock is 133.33 MHz.
8, //0x2 = Divide by 8. SPI clock is 100 MHz.
10, //0x3 = Divide by 10. SPI clock is 80 MHz.
12, //0x4 = Divide by 12. SPI clock is 66.666 MHz.
16, //0x5 = Divide by 16. SPI clock is 50 MHz.
18, //0x6 = Divide by 18. SPI clock is 44.44 MHz.
20, //0x7 = Divide by 20. SPI clock is 40 MHz.
24, //0x8 = Divide by 24. SPI clock is 33.33 MHz.
32, //0x9 = Divide by 32. SPI clock is 25 MHz.
40, //0xA = Divide by 40. SPI clock is 20 MHz.
50, //0xB = Divide by 50. SPI clock is 16 MHz.
64, //0xC = Divide by 64. SPI clock is 12.5 MHz.
128 //0xD = Divide by 128. SPI clock is 6.25 MHz.
};
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
struct cdns_xspi_dev {
struct platform_device *pdev;
struct device *dev;
void __iomem *iobase;
void __iomem *auxbase;
void __iomem *sdmabase;
void __iomem *xferbase;
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
int irq;
int cur_cs;
unsigned int sdmasize;
struct completion cmd_complete;
struct completion auto_cmd_complete;
struct completion sdma_complete;
bool sdma_error;
void *in_buffer;
const void *out_buffer;
u8 hw_num_banks;
const struct cdns_xspi_driver_data *driver_data;
void (*sdma_handler)(struct cdns_xspi_dev *cdns_xspi);
void (*set_interrupts_handler)(struct cdns_xspi_dev *cdns_xspi, bool enabled);
bool xfer_in_progress;
int current_xfer_qword;
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
};
static void cdns_xspi_reset_dll(struct cdns_xspi_dev *cdns_xspi)
{
u32 dll_cntrl = readl(cdns_xspi->iobase +
CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL);
/* Reset DLL */
dll_cntrl |= CDNS_XSPI_DLL_RST_N;
writel(dll_cntrl, cdns_xspi->iobase +
CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL);
}
static bool cdns_xspi_is_dll_locked(struct cdns_xspi_dev *cdns_xspi)
{
u32 dll_lock;
return !readl_relaxed_poll_timeout(cdns_xspi->iobase +
CDNS_XSPI_INTR_STATUS_REG,
dll_lock, ((dll_lock & CDNS_XSPI_DLL_LOCK) == 1), 10, 10000);
}
/* Static configuration of PHY */
static bool cdns_xspi_configure_phy(struct cdns_xspi_dev *cdns_xspi)
{
writel(cdns_xspi->driver_data->dll_phy_ctrl,
cdns_xspi->iobase + CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL);
writel(cdns_xspi->driver_data->ctb_rfile_phy_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_CTB_RFILE_PHY_CTRL);
writel(cdns_xspi->driver_data->rfile_phy_tsel,
cdns_xspi->auxbase + CDNS_XSPI_PHY_CTB_RFILE_PHY_TSEL);
writel(cdns_xspi->driver_data->rfile_phy_dq_timing,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQ_TIMING);
writel(cdns_xspi->driver_data->rfile_phy_dqs_timing,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQS_TIMING);
writel(cdns_xspi->driver_data->rfile_phy_gate_lpbk_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_GATE_LPBK_CTRL);
writel(cdns_xspi->driver_data->rfile_phy_dll_master_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_MASTER_CTRL);
writel(cdns_xspi->driver_data->rfile_phy_dll_slave_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_SLAVE_CTRL);
cdns_xspi_reset_dll(cdns_xspi);
return cdns_xspi_is_dll_locked(cdns_xspi);
}
static bool cdns_mrvl_xspi_setup_clock(struct cdns_xspi_dev *cdns_xspi,
int requested_clk)
{
int i = 0;
int clk_val;
u32 clk_reg;
bool update_clk = false;
while (i < ARRAY_SIZE(cdns_mrvl_xspi_clk_div_list)) {
clk_val = MRVL_XSPI_CLOCK_DIVIDED(
cdns_mrvl_xspi_clk_div_list[i]);
if (clk_val <= requested_clk)
break;
i++;
}
dev_dbg(cdns_xspi->dev, "Found clk div: %d, clk val: %d\n",
cdns_mrvl_xspi_clk_div_list[i],
MRVL_XSPI_CLOCK_DIVIDED(
cdns_mrvl_xspi_clk_div_list[i]));
clk_reg = readl(cdns_xspi->auxbase + MRVL_XSPI_CLK_CTRL_AUX_REG);
if (FIELD_GET(MRVL_XSPI_CLK_DIV, clk_reg) != i) {
clk_reg &= ~MRVL_XSPI_CLK_ENABLE;
writel(clk_reg,
cdns_xspi->auxbase + MRVL_XSPI_CLK_CTRL_AUX_REG);
clk_reg = FIELD_PREP(MRVL_XSPI_CLK_DIV, i);
clk_reg &= ~MRVL_XSPI_CLK_DIV;
clk_reg |= FIELD_PREP(MRVL_XSPI_CLK_DIV, i);
clk_reg |= MRVL_XSPI_CLK_ENABLE;
clk_reg |= MRVL_XSPI_IRQ_ENABLE;
update_clk = true;
}
if (update_clk)
writel(clk_reg,
cdns_xspi->auxbase + MRVL_XSPI_CLK_CTRL_AUX_REG);
return update_clk;
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
static int cdns_xspi_wait_for_controller_idle(struct cdns_xspi_dev *cdns_xspi)
{
u32 ctrl_stat;
return readl_relaxed_poll_timeout(cdns_xspi->iobase +
CDNS_XSPI_CTRL_STATUS_REG,
ctrl_stat,
((ctrl_stat &
CDNS_XSPI_CTRL_BUSY) == 0),
100, 1000);
}
static void cdns_xspi_trigger_command(struct cdns_xspi_dev *cdns_xspi,
u32 cmd_regs[6])
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
{
writel(cmd_regs[5], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_5);
writel(cmd_regs[4], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_4);
writel(cmd_regs[3], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_3);
writel(cmd_regs[2], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_2);
writel(cmd_regs[1], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_1);
writel(cmd_regs[0], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_0);
}
static int cdns_xspi_check_command_status(struct cdns_xspi_dev *cdns_xspi)
{
int ret = 0;
u32 cmd_status = readl(cdns_xspi->iobase + CDNS_XSPI_CMD_STATUS_REG);
if (cmd_status & CDNS_XSPI_CMD_STATUS_COMPLETED) {
if ((cmd_status & CDNS_XSPI_CMD_STATUS_FAILED) != 0) {
if (cmd_status & CDNS_XSPI_CMD_STATUS_DQS_ERROR) {
dev_err(cdns_xspi->dev,
"Incorrect DQS pulses detected\n");
ret = -EPROTO;
}
if (cmd_status & CDNS_XSPI_CMD_STATUS_CRC_ERROR) {
dev_err(cdns_xspi->dev,
"CRC error received\n");
ret = -EPROTO;
}
if (cmd_status & CDNS_XSPI_CMD_STATUS_BUS_ERROR) {
dev_err(cdns_xspi->dev,
"Error resp on system DMA interface\n");
ret = -EPROTO;
}
if (cmd_status & CDNS_XSPI_CMD_STATUS_INV_SEQ_ERROR) {
dev_err(cdns_xspi->dev,
"Invalid command sequence detected\n");
ret = -EPROTO;
}
}
} else {
dev_err(cdns_xspi->dev, "Fatal err - command not completed\n");
ret = -EPROTO;
}
return ret;
}
static void cdns_xspi_set_interrupts(struct cdns_xspi_dev *cdns_xspi,
bool enabled)
{
u32 intr_enable;
intr_enable = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
if (enabled)
intr_enable |= CDNS_XSPI_INTR_MASK;
else
intr_enable &= ~CDNS_XSPI_INTR_MASK;
writel(intr_enable, cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
}
static void marvell_xspi_set_interrupts(struct cdns_xspi_dev *cdns_xspi,
bool enabled)
{
u32 intr_enable;
u32 irq_status;
irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
writel(irq_status, cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
intr_enable = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
if (enabled)
intr_enable |= CDNS_XSPI_INTR_MASK;
else
intr_enable &= ~CDNS_XSPI_INTR_MASK;
writel(intr_enable, cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
static int cdns_xspi_controller_init(struct cdns_xspi_dev *cdns_xspi)
{
u32 ctrl_ver;
u32 ctrl_features;
u16 hw_magic_num;
ctrl_ver = readl(cdns_xspi->iobase + CDNS_XSPI_CTRL_VERSION_REG);
hw_magic_num = FIELD_GET(CDNS_XSPI_MAGIC_NUM, ctrl_ver);
if (hw_magic_num != CDNS_XSPI_MAGIC_NUM_VALUE) {
dev_err(cdns_xspi->dev,
"Incorrect XSPI magic number: %x, expected: %x\n",
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
hw_magic_num, CDNS_XSPI_MAGIC_NUM_VALUE);
return -EIO;
}
ctrl_features = readl(cdns_xspi->iobase + CDNS_XSPI_CTRL_FEATURES_REG);
cdns_xspi->hw_num_banks = FIELD_GET(CDNS_XSPI_NUM_BANKS, ctrl_features);
cdns_xspi->set_interrupts_handler(cdns_xspi, false);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return 0;
}
static void cdns_xspi_sdma_handle(struct cdns_xspi_dev *cdns_xspi)
{
u32 sdma_size, sdma_trd_info;
u8 sdma_dir;
sdma_size = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_SIZE_REG);
sdma_trd_info = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_TRD_INFO_REG);
sdma_dir = FIELD_GET(CDNS_XSPI_SDMA_DIR, sdma_trd_info);
switch (sdma_dir) {
case CDNS_XSPI_SDMA_DIR_READ:
ioread8_rep(cdns_xspi->sdmabase,
cdns_xspi->in_buffer, sdma_size);
break;
case CDNS_XSPI_SDMA_DIR_WRITE:
iowrite8_rep(cdns_xspi->sdmabase,
cdns_xspi->out_buffer, sdma_size);
break;
}
}
static void m_ioreadq(void __iomem *addr, void *buf, int len)
{
if (IS_ALIGNED((long)buf, 8) && len >= 8) {
u64 full_ops = len / 8;
u64 *buffer = buf;
len -= full_ops * 8;
buf += full_ops * 8;
do {
u64 b = readq(addr);
*buffer++ = b;
} while (--full_ops);
}
while (len) {
u64 tmp_buf;
tmp_buf = readq(addr);
memcpy(buf, &tmp_buf, min(len, 8));
len = len > 8 ? len - 8 : 0;
buf += 8;
}
}
static void m_iowriteq(void __iomem *addr, const void *buf, int len)
{
if (IS_ALIGNED((long)buf, 8) && len >= 8) {
u64 full_ops = len / 8;
const u64 *buffer = buf;
len -= full_ops * 8;
buf += full_ops * 8;
do {
writeq(*buffer++, addr);
} while (--full_ops);
}
while (len) {
u64 tmp_buf;
memcpy(&tmp_buf, buf, min(len, 8));
writeq(tmp_buf, addr);
len = len > 8 ? len - 8 : 0;
buf += 8;
}
}
static void marvell_xspi_sdma_handle(struct cdns_xspi_dev *cdns_xspi)
{
u32 sdma_size, sdma_trd_info;
u8 sdma_dir;
sdma_size = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_SIZE_REG);
sdma_trd_info = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_TRD_INFO_REG);
sdma_dir = FIELD_GET(CDNS_XSPI_SDMA_DIR, sdma_trd_info);
switch (sdma_dir) {
case CDNS_XSPI_SDMA_DIR_READ:
m_ioreadq(cdns_xspi->sdmabase,
cdns_xspi->in_buffer, sdma_size);
break;
case CDNS_XSPI_SDMA_DIR_WRITE:
m_iowriteq(cdns_xspi->sdmabase,
cdns_xspi->out_buffer, sdma_size);
break;
}
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
static int cdns_xspi_send_stig_command(struct cdns_xspi_dev *cdns_xspi,
const struct spi_mem_op *op,
bool data_phase)
{
u32 cmd_regs[6];
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
u32 cmd_status;
int ret;
int dummybytes = op->dummy.nbytes;
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
ret = cdns_xspi_wait_for_controller_idle(cdns_xspi);
if (ret < 0)
return -EIO;
writel(FIELD_PREP(CDNS_XSPI_CTRL_WORK_MODE, CDNS_XSPI_WORK_MODE_STIG),
cdns_xspi->iobase + CDNS_XSPI_CTRL_CONFIG_REG);
cdns_xspi->set_interrupts_handler(cdns_xspi, true);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cdns_xspi->sdma_error = false;
memset(cmd_regs, 0, sizeof(cmd_regs));
cmd_regs[1] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_1(op, data_phase);
cmd_regs[2] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_2(op);
if (dummybytes != 0) {
cmd_regs[3] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op, 1);
dummybytes--;
} else {
cmd_regs[3] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op, 0);
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cmd_regs[4] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_4(op,
cdns_xspi->cur_cs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
if (data_phase) {
cmd_regs[0] = CDNS_XSPI_STIG_DONE_FLAG;
cmd_regs[1] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_1(op);
cmd_regs[2] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_2(op);
cmd_regs[3] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_3(op, dummybytes);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cmd_regs[4] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_4(op,
cdns_xspi->cur_cs);
cdns_xspi->in_buffer = op->data.buf.in;
cdns_xspi->out_buffer = op->data.buf.out;
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
wait_for_completion(&cdns_xspi->sdma_complete);
if (cdns_xspi->sdma_error) {
cdns_xspi->set_interrupts_handler(cdns_xspi, false);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return -EIO;
}
cdns_xspi->sdma_handler(cdns_xspi);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
}
wait_for_completion(&cdns_xspi->cmd_complete);
cdns_xspi->set_interrupts_handler(cdns_xspi, false);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cmd_status = cdns_xspi_check_command_status(cdns_xspi);
if (cmd_status)
return -EPROTO;
return 0;
}
static int cdns_xspi_mem_op(struct cdns_xspi_dev *cdns_xspi,
struct spi_mem *mem,
const struct spi_mem_op *op)
{
enum spi_mem_data_dir dir = op->data.dir;
if (cdns_xspi->cur_cs != spi_get_chipselect(mem->spi, 0))
cdns_xspi->cur_cs = spi_get_chipselect(mem->spi, 0);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return cdns_xspi_send_stig_command(cdns_xspi, op,
(dir != SPI_MEM_NO_DATA));
}
static int cdns_xspi_mem_op_execute(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct cdns_xspi_dev *cdns_xspi =
spi_controller_get_devdata(mem->spi->controller);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
int ret = 0;
ret = cdns_xspi_mem_op(cdns_xspi, mem, op);
return ret;
}
static int marvell_xspi_mem_op_execute(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct cdns_xspi_dev *cdns_xspi =
spi_controller_get_devdata(mem->spi->controller);
int ret = 0;
cdns_mrvl_xspi_setup_clock(cdns_xspi, mem->spi->max_speed_hz);
ret = cdns_xspi_mem_op(cdns_xspi, mem, op);
return ret;
}
#ifdef CONFIG_ACPI
static bool cdns_xspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_device *spi = mem->spi;
const union acpi_object *obj;
struct acpi_device *adev;
adev = ACPI_COMPANION(&spi->dev);
if (!acpi_dev_get_property(adev, "spi-tx-bus-width", ACPI_TYPE_INTEGER,
&obj)) {
switch (obj->integer.value) {
case 1:
break;
case 2:
spi->mode |= SPI_TX_DUAL;
break;
case 4:
spi->mode |= SPI_TX_QUAD;
break;
case 8:
spi->mode |= SPI_TX_OCTAL;
break;
default:
dev_warn(&spi->dev,
"spi-tx-bus-width %lld not supported\n",
obj->integer.value);
break;
}
}
if (!acpi_dev_get_property(adev, "spi-rx-bus-width", ACPI_TYPE_INTEGER,
&obj)) {
switch (obj->integer.value) {
case 1:
break;
case 2:
spi->mode |= SPI_RX_DUAL;
break;
case 4:
spi->mode |= SPI_RX_QUAD;
break;
case 8:
spi->mode |= SPI_RX_OCTAL;
break;
default:
dev_warn(&spi->dev,
"spi-rx-bus-width %lld not supported\n",
obj->integer.value);
break;
}
}
if (!spi_mem_default_supports_op(mem, op))
return false;
return true;
}
#endif
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
static int cdns_xspi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct cdns_xspi_dev *cdns_xspi =
spi_controller_get_devdata(mem->spi->controller);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
op->data.nbytes = clamp_val(op->data.nbytes, 0, cdns_xspi->sdmasize);
return 0;
}
static const struct spi_controller_mem_ops cadence_xspi_mem_ops = {
#ifdef CONFIG_ACPI
.supports_op = cdns_xspi_supports_op,
#endif
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
.exec_op = cdns_xspi_mem_op_execute,
.adjust_op_size = cdns_xspi_adjust_mem_op_size,
};
static const struct spi_controller_mem_ops marvell_xspi_mem_ops = {
#ifdef CONFIG_ACPI
.supports_op = cdns_xspi_supports_op,
#endif
.exec_op = marvell_xspi_mem_op_execute,
.adjust_op_size = cdns_xspi_adjust_mem_op_size,
};
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
static irqreturn_t cdns_xspi_irq_handler(int this_irq, void *dev)
{
struct cdns_xspi_dev *cdns_xspi = dev;
u32 irq_status;
irqreturn_t result = IRQ_NONE;
irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
writel(irq_status, cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
if (irq_status &
(CDNS_XSPI_SDMA_ERROR | CDNS_XSPI_SDMA_TRIGGER |
CDNS_XSPI_STIG_DONE)) {
if (irq_status & CDNS_XSPI_SDMA_ERROR) {
dev_err(cdns_xspi->dev,
"Slave DMA transaction error\n");
cdns_xspi->sdma_error = true;
complete(&cdns_xspi->sdma_complete);
}
if (irq_status & CDNS_XSPI_SDMA_TRIGGER)
complete(&cdns_xspi->sdma_complete);
if (irq_status & CDNS_XSPI_STIG_DONE)
complete(&cdns_xspi->cmd_complete);
result = IRQ_HANDLED;
}
irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_TRD_COMP_INTR_STATUS);
if (irq_status) {
writel(irq_status,
cdns_xspi->iobase + CDNS_XSPI_TRD_COMP_INTR_STATUS);
complete(&cdns_xspi->auto_cmd_complete);
result = IRQ_HANDLED;
}
return result;
}
static int cdns_xspi_of_get_plat_data(struct platform_device *pdev)
{
struct fwnode_handle *fwnode_child;
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
unsigned int cs;
device_for_each_child_node(&pdev->dev, fwnode_child) {
if (!fwnode_device_is_available(fwnode_child))
continue;
if (fwnode_property_read_u32(fwnode_child, "reg", &cs)) {
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
dev_err(&pdev->dev, "Couldn't get memory chip select\n");
fwnode_handle_put(fwnode_child);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return -ENXIO;
} else if (cs >= CDNS_XSPI_MAX_BANKS) {
dev_err(&pdev->dev, "reg (cs) parameter value too large\n");
fwnode_handle_put(fwnode_child);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return -ENXIO;
}
}
return 0;
}
static void cdns_xspi_print_phy_config(struct cdns_xspi_dev *cdns_xspi)
{
struct device *dev = cdns_xspi->dev;
dev_info(dev, "PHY configuration\n");
dev_info(dev, " * xspi_dll_phy_ctrl: %08x\n",
readl(cdns_xspi->iobase + CDNS_XSPI_DLL_PHY_CTRL));
dev_info(dev, " * phy_dq_timing: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DQ_TIMING));
dev_info(dev, " * phy_dqs_timing: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DQS_TIMING));
dev_info(dev, " * phy_gate_loopback_ctrl: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_GATE_LPBCK_CTRL));
dev_info(dev, " * phy_dll_slave_ctrl: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DLL_SLAVE_CTRL));
}
static int cdns_xspi_prepare_generic(int cs, const void *dout, int len, int glue, u32 *cmd_regs)
{
u8 *data = (u8 *)dout;
int i;
int data_counter = 0;
memset(cmd_regs, 0x00, CMD_REG_LEN);
if (GENERIC_CMD_REG_3_NEEDED(len)) {
for (i = GENERIC_CMD_DATA_REG_3_COUNT(len); i >= 0 ; i--)
cmd_regs[3] |= GENERIC_CMD_DATA_INSERT(data[data_counter++],
GENERIC_CMD_DATA_3_OFFSET(i));
}
if (GENERIC_CMD_REG_2_NEEDED(len)) {
for (i = GENERIC_CMD_DATA_REG_2_COUNT(len); i >= 0; i--)
cmd_regs[2] |= GENERIC_CMD_DATA_INSERT(data[data_counter++],
GENERIC_CMD_DATA_2_OFFSET(i));
}
for (i = GENERIC_CMD_DATA_REG_1_COUNT(len); i >= 0 ; i--)
cmd_regs[1] |= GENERIC_CMD_DATA_INSERT(data[data_counter++],
GENERIC_CMD_DATA_1_OFFSET(i));
cmd_regs[1] |= CDNS_XSPI_CMD_FLD_P1_GENERIC_CMD;
cmd_regs[3] |= CDNS_XSPI_CMD_FLD_P3_GENERIC_CMD(len);
cmd_regs[4] |= CDNS_XSPI_CMD_FLD_P4_GENERIC_CMD(cs, glue);
return 0;
}
static void marvell_xspi_read_single_qword(struct cdns_xspi_dev *cdns_xspi, u8 **buffer)
{
u64 d = readq(cdns_xspi->xferbase +
MRVL_XFER_FUNC_CTRL_READ_DATA(cdns_xspi->current_xfer_qword));
u8 *ptr = (u8 *)&d;
int k;
for (k = 0; k < 8; k++) {
u8 val = bitrev8((ptr[k]));
**buffer = val;
*buffer = *buffer + 1;
}
cdns_xspi->current_xfer_qword++;
cdns_xspi->current_xfer_qword %= MRVL_XFER_QWORD_COUNT;
}
static void cdns_xspi_finish_read(struct cdns_xspi_dev *cdns_xspi, u8 **buffer, u32 data_count)
{
u64 d = readq(cdns_xspi->xferbase +
MRVL_XFER_FUNC_CTRL_READ_DATA(cdns_xspi->current_xfer_qword));
u8 *ptr = (u8 *)&d;
int k;
for (k = 0; k < data_count % MRVL_XFER_QWORD_BYTECOUNT; k++) {
u8 val = bitrev8((ptr[k]));
**buffer = val;
*buffer = *buffer + 1;
}
cdns_xspi->current_xfer_qword++;
cdns_xspi->current_xfer_qword %= MRVL_XFER_QWORD_COUNT;
}
static int cdns_xspi_prepare_transfer(int cs, int dir, int len, u32 *cmd_regs)
{
memset(cmd_regs, 0x00, CMD_REG_LEN);
cmd_regs[1] |= CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_1;
cmd_regs[2] |= CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_2(len);
cmd_regs[4] |= CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_4(dir, cs);
return 0;
}
static bool cdns_xspi_is_stig_ready(struct cdns_xspi_dev *cdns_xspi, bool sleep)
{
u32 ctrl_stat;
return !readl_relaxed_poll_timeout
(cdns_xspi->iobase + CDNS_XSPI_CTRL_STATUS_REG,
ctrl_stat,
((ctrl_stat & BIT(3)) == 0),
sleep ? MRVL_XSPI_POLL_DELAY_US : 0,
sleep ? MRVL_XSPI_POLL_TIMEOUT_US : 0);
}
static bool cdns_xspi_is_sdma_ready(struct cdns_xspi_dev *cdns_xspi, bool sleep)
{
u32 ctrl_stat;
return !readl_relaxed_poll_timeout
(cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG,
ctrl_stat,
(ctrl_stat & CDNS_XSPI_SDMA_TRIGGER),
sleep ? MRVL_XSPI_POLL_DELAY_US : 0,
sleep ? MRVL_XSPI_POLL_TIMEOUT_US : 0);
}
static int cdns_xspi_transfer_one_message_b0(struct spi_controller *controller,
struct spi_message *m)
{
struct cdns_xspi_dev *cdns_xspi = spi_controller_get_devdata(controller);
struct spi_device *spi = m->spi;
struct spi_transfer *t = NULL;
const unsigned int max_len = MRVL_XFER_QWORD_BYTECOUNT * MRVL_XFER_QWORD_COUNT;
int current_transfer_len;
int cs = spi_get_chipselect(spi, 0);
int cs_change = 0;
/* Enable xfer state machine */
if (!cdns_xspi->xfer_in_progress) {
u32 xfer_control = readl(cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
cdns_xspi->current_xfer_qword = 0;
cdns_xspi->xfer_in_progress = true;
xfer_control |= (MRVL_XFER_RECEIVE_ENABLE |
MRVL_XFER_CLK_CAPTURE_POL |
MRVL_XFER_FUNC_START |
MRVL_XFER_SOFT_RESET |
FIELD_PREP(MRVL_XFER_CS_N_HOLD, (1 << cs)));
xfer_control &= ~(MRVL_XFER_FUNC_ENABLE | MRVL_XFER_CLK_DRIVE_POL);
writel(xfer_control, cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
}
list_for_each_entry(t, &m->transfers, transfer_list) {
u8 *txd = (u8 *) t->tx_buf;
u8 *rxd = (u8 *) t->rx_buf;
u8 data[10];
u32 cmd_regs[6];
if (!txd)
txd = data;
cdns_xspi->in_buffer = txd + 1;
cdns_xspi->out_buffer = txd + 1;
while (t->len) {
current_transfer_len = min(max_len, t->len);
if (current_transfer_len < 10) {
cdns_xspi_prepare_generic(cs, txd, current_transfer_len,
false, cmd_regs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
if (!cdns_xspi_is_stig_ready(cdns_xspi, true))
return -EIO;
} else {
cdns_xspi_prepare_generic(cs, txd, 1, true, cmd_regs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
cdns_xspi_prepare_transfer(cs, 1, current_transfer_len - 1,
cmd_regs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
if (!cdns_xspi_is_sdma_ready(cdns_xspi, true))
return -EIO;
cdns_xspi->sdma_handler(cdns_xspi);
if (!cdns_xspi_is_stig_ready(cdns_xspi, true))
return -EIO;
cdns_xspi->in_buffer += current_transfer_len;
cdns_xspi->out_buffer += current_transfer_len;
}
if (rxd) {
int j;
for (j = 0; j < current_transfer_len / 8; j++)
marvell_xspi_read_single_qword(cdns_xspi, &rxd);
cdns_xspi_finish_read(cdns_xspi, &rxd, current_transfer_len);
} else {
cdns_xspi->current_xfer_qword += current_transfer_len /
MRVL_XFER_QWORD_BYTECOUNT;
if (current_transfer_len % MRVL_XFER_QWORD_BYTECOUNT)
cdns_xspi->current_xfer_qword++;
cdns_xspi->current_xfer_qword %= MRVL_XFER_QWORD_COUNT;
}
cs_change = t->cs_change;
t->len -= current_transfer_len;
}
spi_transfer_delay_exec(t);
}
if (!cs_change) {
u32 xfer_control = readl(cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
xfer_control &= ~(MRVL_XFER_RECEIVE_ENABLE |
MRVL_XFER_SOFT_RESET);
writel(xfer_control, cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
cdns_xspi->xfer_in_progress = false;
}
m->status = 0;
spi_finalize_current_message(controller);
return 0;
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
static int cdns_xspi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_controller *host = NULL;
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
struct cdns_xspi_dev *cdns_xspi = NULL;
struct resource *res;
int ret;
host = devm_spi_alloc_host(dev, sizeof(*cdns_xspi));
if (!host)
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return -ENOMEM;
host->mode_bits = SPI_3WIRE | SPI_TX_DUAL | SPI_TX_QUAD |
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_OCTAL | SPI_RX_OCTAL |
SPI_MODE_0 | SPI_MODE_3;
cdns_xspi = spi_controller_get_devdata(host);
cdns_xspi->driver_data = of_device_get_match_data(dev);
if (!cdns_xspi->driver_data) {
cdns_xspi->driver_data = acpi_device_get_match_data(dev);
if (!cdns_xspi->driver_data)
return -ENODEV;
}
if (cdns_xspi->driver_data->mrvl_hw_overlay) {
host->mem_ops = &marvell_xspi_mem_ops;
host->transfer_one_message = cdns_xspi_transfer_one_message_b0;
cdns_xspi->sdma_handler = &marvell_xspi_sdma_handle;
cdns_xspi->set_interrupts_handler = &marvell_xspi_set_interrupts;
} else {
host->mem_ops = &cadence_xspi_mem_ops;
cdns_xspi->sdma_handler = &cdns_xspi_sdma_handle;
cdns_xspi->set_interrupts_handler = &cdns_xspi_set_interrupts;
}
host->dev.of_node = pdev->dev.of_node;
host->bus_num = -1;
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
platform_set_drvdata(pdev, host);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cdns_xspi->pdev = pdev;
cdns_xspi->dev = &pdev->dev;
cdns_xspi->cur_cs = 0;
init_completion(&cdns_xspi->cmd_complete);
init_completion(&cdns_xspi->auto_cmd_complete);
init_completion(&cdns_xspi->sdma_complete);
ret = cdns_xspi_of_get_plat_data(pdev);
if (ret)
return -ENODEV;
cdns_xspi->iobase = devm_platform_ioremap_resource_byname(pdev, "io");
if (IS_ERR(cdns_xspi->iobase)) {
cdns_xspi->iobase = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(cdns_xspi->iobase)) {
dev_err(dev, "Failed to remap controller base address\n");
return PTR_ERR(cdns_xspi->iobase);
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sdma");
cdns_xspi->sdmabase = devm_ioremap_resource(dev, res);
if (IS_ERR(cdns_xspi->sdmabase)) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
cdns_xspi->sdmabase = devm_ioremap_resource(dev, res);
if (IS_ERR(cdns_xspi->sdmabase))
return PTR_ERR(cdns_xspi->sdmabase);
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cdns_xspi->sdmasize = resource_size(res);
cdns_xspi->auxbase = devm_platform_ioremap_resource_byname(pdev, "aux");
if (IS_ERR(cdns_xspi->auxbase)) {
cdns_xspi->auxbase = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(cdns_xspi->auxbase)) {
dev_err(dev, "Failed to remap AUX address\n");
return PTR_ERR(cdns_xspi->auxbase);
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
}
if (cdns_xspi->driver_data->mrvl_hw_overlay) {
cdns_xspi->xferbase = devm_platform_ioremap_resource_byname(pdev, "xfer");
if (IS_ERR(cdns_xspi->xferbase)) {
cdns_xspi->xferbase = devm_platform_ioremap_resource(pdev, 3);
if (IS_ERR(cdns_xspi->xferbase)) {
dev_info(dev, "XFER register base not found, set it\n");
// For compatibility with older firmware
cdns_xspi->xferbase = cdns_xspi->iobase + 0x8000;
}
}
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cdns_xspi->irq = platform_get_irq(pdev, 0);
if (cdns_xspi->irq < 0)
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return -ENXIO;
ret = devm_request_irq(dev, cdns_xspi->irq, cdns_xspi_irq_handler,
IRQF_SHARED, pdev->name, cdns_xspi);
if (ret) {
dev_err(dev, "Failed to request IRQ: %d\n", cdns_xspi->irq);
return ret;
}
if (cdns_xspi->driver_data->mrvl_hw_overlay) {
cdns_mrvl_xspi_setup_clock(cdns_xspi, MRVL_DEFAULT_CLK);
cdns_xspi_configure_phy(cdns_xspi);
}
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
cdns_xspi_print_phy_config(cdns_xspi);
ret = cdns_xspi_controller_init(cdns_xspi);
if (ret) {
dev_err(dev, "Failed to initialize controller\n");
return ret;
}
host->num_chipselect = 1 << cdns_xspi->hw_num_banks;
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
ret = devm_spi_register_controller(dev, host);
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
if (ret) {
dev_err(dev, "Failed to register SPI host\n");
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return ret;
}
dev_info(dev, "Successfully registered SPI host\n");
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
return 0;
}
static const struct of_device_id cdns_xspi_of_match[] = {
{
.compatible = "cdns,xspi-nor",
.data = &cdns_driver_data,
},
{
.compatible = "marvell,cn10-xspi-nor",
.data = &marvell_driver_data,
spi: cadence: add support for Cadence XSPI controller This patch adds driver for Cadence's XSPI controller. It supports 3 work modes. 1. ACMD (auto command) work mode ACMD name is because it uses auto command engine in the controller. It further has 2 modes PIO and CDMA (command DMA). The CDMA work mode is dedicated for high-performance application where very low software overhead is required. In this mode the Command Engine is programmed by the series of linked descriptors stored in system memory. These descriptors provide commands to execute and store status information for finished commands. The PIO mode work mode is dedicated for single operation where constructing a linked list of descriptors would require too much effort. 2. STIG (Software Triggered Instruction Generator) work mode In STIG mode, controller sends low-level instructions to memory. Each instruction is 128-bit width. There is special instruction DataSequence which carries information about data phase. Driver uses Slave DMA interface to transfer data as only this interface can be used in STIG work mode. 3. Direct work mode This work mode allows sending data without invoking any command through the slave interface. Currently only STIG work mode is enabled, remaining work modes will be added later. Signed-off-by: Konrad Kociolek <konrad@cadence.com> Signed-off-by: Jayshri Pawar <jpawar@cadence.com> Signed-off-by: Parshuram Thombare <pthombar@cadence.com> Acked-by: Pratyush Yadav <p.yadav@ti.com> Link: https://lore.kernel.org/r/1632038734-23999-1-git-send-email-pthombar@cadence.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-09-19 08:05:34 +00:00
},
{ /* end of table */}
};
MODULE_DEVICE_TABLE(of, cdns_xspi_of_match);
static struct platform_driver cdns_xspi_platform_driver = {
.probe = cdns_xspi_probe,
.driver = {
.name = CDNS_XSPI_NAME,
.of_match_table = cdns_xspi_of_match,
},
};
module_platform_driver(cdns_xspi_platform_driver);
MODULE_DESCRIPTION("Cadence XSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CDNS_XSPI_NAME);
MODULE_AUTHOR("Konrad Kociolek <konrad@cadence.com>");
MODULE_AUTHOR("Jayshri Pawar <jpawar@cadence.com>");
MODULE_AUTHOR("Parshuram Thombare <pthombar@cadence.com>");