199 lines
4.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of the hash table type.
*
* Author : Stephen Smalley, <stephen.smalley.work@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include "hashtab.h"
#include "security.h"
static struct kmem_cache *hashtab_node_cachep __ro_after_init;
/*
* Here we simply round the number of elements up to the nearest power of two.
* I tried also other options like rounding down or rounding to the closest
* power of two (up or down based on which is closer), but I was unable to
* find any significant difference in lookup/insert performance that would
* justify switching to a different (less intuitive) formula. It could be that
* a different formula is actually more optimal, but any future changes here
* should be supported with performance/memory usage data.
*
* The total memory used by the htable arrays (only) with Fedora policy loaded
* is approximately 163 KB at the time of writing.
*/
static u32 hashtab_compute_size(u32 nel)
{
return nel == 0 ? 0 : roundup_pow_of_two(nel);
}
2020-07-09 21:19:51 +02:00
int hashtab_init(struct hashtab *h, u32 nel_hint)
{
u32 size = hashtab_compute_size(nel_hint);
/* should already be zeroed, but better be safe */
h->nel = 0;
h->size = 0;
h->htable = NULL;
if (size) {
h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL);
if (!h->htable)
return -ENOMEM;
h->size = size;
}
return 0;
}
int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key,
void *datum)
{
struct hashtab_node *newnode;
newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
if (!newnode)
return -ENOMEM;
newnode->key = key;
newnode->datum = datum;
newnode->next = *dst;
*dst = newnode;
h->nel++;
return 0;
}
void hashtab_destroy(struct hashtab *h)
{
u32 i;
struct hashtab_node *cur, *temp;
for (i = 0; i < h->size; i++) {
cur = h->htable[i];
while (cur) {
temp = cur;
cur = cur->next;
kmem_cache_free(hashtab_node_cachep, temp);
}
h->htable[i] = NULL;
}
kfree(h->htable);
h->htable = NULL;
}
int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args),
void *args)
{
u32 i;
int ret;
struct hashtab_node *cur;
for (i = 0; i < h->size; i++) {
cur = h->htable[i];
while (cur) {
ret = apply(cur->key, cur->datum, args);
if (ret)
return ret;
cur = cur->next;
}
}
return 0;
}
#ifdef CONFIG_SECURITY_SELINUX_DEBUG
void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
{
u32 i, chain_len, slots_used, max_chain_len;
u64 chain2_len_sum;
struct hashtab_node *cur;
slots_used = 0;
max_chain_len = 0;
chain2_len_sum = 0;
for (i = 0; i < h->size; i++) {
cur = h->htable[i];
if (cur) {
slots_used++;
chain_len = 0;
while (cur) {
chain_len++;
cur = cur->next;
}
if (chain_len > max_chain_len)
max_chain_len = chain_len;
chain2_len_sum += (u64)chain_len * chain_len;
}
}
info->slots_used = slots_used;
info->max_chain_len = max_chain_len;
info->chain2_len_sum = chain2_len_sum;
}
#endif /* CONFIG_SECURITY_SELINUX_DEBUG */
int hashtab_duplicate(struct hashtab *new, const struct hashtab *orig,
int (*copy)(struct hashtab_node *new,
const struct hashtab_node *orig, void *args),
int (*destroy)(void *k, void *d, void *args), void *args)
selinux: refactor changing booleans Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-08-11 15:01:56 -04:00
{
const struct hashtab_node *orig_cur;
selinux: refactor changing booleans Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-08-11 15:01:56 -04:00
struct hashtab_node *cur, *tmp, *tail;
u32 i;
int rc;
selinux: refactor changing booleans Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-08-11 15:01:56 -04:00
memset(new, 0, sizeof(*new));
new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
if (!new->htable)
return -ENOMEM;
new->size = orig->size;
for (i = 0; i < orig->size; i++) {
tail = NULL;
for (orig_cur = orig->htable[i]; orig_cur;
orig_cur = orig_cur->next) {
selinux: refactor changing booleans Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-08-11 15:01:56 -04:00
tmp = kmem_cache_zalloc(hashtab_node_cachep,
GFP_KERNEL);
if (!tmp)
goto error;
rc = copy(tmp, orig_cur, args);
selinux: refactor changing booleans Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-08-11 15:01:56 -04:00
if (rc) {
kmem_cache_free(hashtab_node_cachep, tmp);
goto error;
}
tmp->next = NULL;
if (!tail)
new->htable[i] = tmp;
else
tail->next = tmp;
tail = tmp;
new->nel++;
}
}
return 0;
error:
selinux: refactor changing booleans Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-08-11 15:01:56 -04:00
for (i = 0; i < new->size; i++) {
for (cur = new->htable[i]; cur; cur = tmp) {
tmp = cur->next;
destroy(cur->key, cur->datum, args);
kmem_cache_free(hashtab_node_cachep, cur);
}
}
kfree(new->htable);
memset(new, 0, sizeof(*new));
selinux: refactor changing booleans Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-08-11 15:01:56 -04:00
return -ENOMEM;
}
void __init hashtab_cache_init(void)
{
hashtab_node_cachep = KMEM_CACHE(hashtab_node, SLAB_PANIC);
}