spi: Updates for v4.21

The main thing this release has been a lot of work on the integration
 with SPI NOR flashes, there's been some specific support for a while for
 controller features designed to make them perform better but it's not
 worked out as well as hoped so the interface has been redesigned in a
 way that will hopefully do better - it's already been adopted by a
 number of additional controllers so things are looking good.  Otherwise
 most of the work has been driver specific:
 
  - Support for better integration with NOR flashes from Boris Brezillon
    and Yogesh Narayan Gaur plus usage of it in several drivers.
  - A big cleanup of the Rockchip driver from Emil Renner Berthing.
  - Lots of performance improvements for bcm2835 from Lukas Wunner.
  - Slave mode support for pxa2xx from Lubomir Rintel.
  - Support for Macronix MXIC, Mediatek MT7629 and MT8183, NPCM PSPI,
    and Renesas r8a77470.
 -----BEGIN PGP SIGNATURE-----
 
 iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAlwhLBsTHGJyb29uaWVA
 a2VybmVsLm9yZwAKCRAk1otyXVSH0AGvB/9odNqLjVJiG6v0EIKqLyYXMzCYgmrZ
 RyBZoqTKoNmXxv0b/Fdsi8VaiJ8x2WIcqLzhpQlg3twOCvXQbgoA+JzQNyHZlZ1u
 8cxfFGebVS6r0k14bkmAVR8LSvGlReOZQLC2MvccVc/UAwN0/p5ncN0xUADHvIOW
 /Pmx0/e2uCMx1+OMAudlUXQ5IIbnb5/OjvDfR/7tlVo5YKSgkHBJeunOYSaPSNuO
 QNf9+kZxvQ8djYbpYqqHWovPF7JSlQAj0WkMJPB/g3R09E/vatSBlCMnETBJWn/L
 wogHquLK/vwRaS+MqTSrGsi0ylpqgxmZrbGKcXKF51fim0EvBg7cMqe6
 =ZnI3
 -----END PGP SIGNATURE-----

Merge tag 'spi-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "The main thing this release has been a lot of work on the integration
  with SPI NOR flashes, there's been some specific support for a while
  for controller features designed to make them perform better but it's
  not worked out as well as hoped so the interface has been redesigned
  in a way that will hopefully do better - it's already been adopted by
  a number of additional controllers so things are looking good.

  Otherwise most of the work has been driver specific:

   - Support for better integration with NOR flashes from Boris
     Brezillon and Yogesh Narayan Gaur plus usage of it in several
     drivers.

   - A big cleanup of the Rockchip driver from Emil Renner Berthing.

   - Lots of performance improvements for bcm2835 from Lukas Wunner.

   - Slave mode support for pxa2xx from Lubomir Rintel.

   - Support for Macronix MXIC, Mediatek MT7629 and MT8183, NPCM PSPI,
     and Renesas r8a77470"

* tag 'spi-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (90 commits)
  spi: sh-msiof: Reduce the number of times write to and perform the transmission from FIFO
  spi: sh-msiof: Add r8a774c0 support
  doc: lpspi: Document DT bindings for LPSPI slave mode
  spi: lpspi: Let watermark change with send data length
  spi: lpspi: Add slave mode support
  spi: lpspi: Replace all "master" with "controller"
  spi: imx: drop useless member speed_hz from driver data struct
  spi: imx: rename config callback and add useful parameters
  spi: imx: style fixes
  spi: imx: mx51-ecspi: Move some initialisation to prepare_message hook.
  spi: imx: add a device specific prepare_message callback
  mtd: atmel-quadspi: disallow building on ebsa110
  spi: Update NPCM PSPI controller documentation
  spi: npcm: Modify pspi send function
  spi: Use of_node_name_eq for node name comparisons
  spi: dw-mmio: add ACPI support
  spi: bcm2835: Synchronize with callback on DMA termination
  spi: bcm2835: Speed up FIFO access if fill level is known
  spi: bcm2835: Polish transfer of DMA prologue
  spi: spi-mem: add support for octal mode I/O data transfer
  ...
This commit is contained in:
Linus Torvalds 2018-12-25 14:43:54 -08:00
commit 0051db8218
40 changed files with 2882 additions and 1100 deletions

View File

@ -0,0 +1,43 @@
Nuvoton NPCM Peripheral Serial Peripheral Interface(PSPI) controller driver
Nuvoton NPCM7xx SOC support two PSPI channels.
Required properties:
- compatible : "nuvoton,npcm750-pspi" for NPCM7XX BMC
- #address-cells : should be 1. see spi-bus.txt
- #size-cells : should be 0. see spi-bus.txt
- specifies physical base address and size of the register.
- interrupts : contain PSPI interrupt.
- clocks : phandle of PSPI reference clock.
- clock-names: Should be "clk_apb5".
- pinctrl-names : a pinctrl state named "default" must be defined.
- pinctrl-0 : phandle referencing pin configuration of the device.
- cs-gpios: Specifies the gpio pins to be used for chipselects.
See: Documentation/devicetree/bindings/spi/spi-bus.txt
Optional properties:
- clock-frequency : Input clock frequency to the PSPI block in Hz.
Default is 25000000 Hz.
Aliases:
- All the SPI controller nodes should be represented in the aliases node using
the following format 'spi{n}' withe the correct numbered in "aliases" node.
Example:
aliases {
spi0 = &spi0;
};
spi0: spi@f0200000 {
compatible = "nuvoton,npcm750-pspi";
reg = <0xf0200000 0x1000>;
pinctrl-names = "default";
pinctrl-0 = <&pspi1_pins>;
#address-cells = <1>;
#size-cells = <0>;
interrupts = <GIC_SPI 31 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk NPCM7XX_CLK_APB5>;
clock-names = "clk_apb5";
cs-gpios = <&gpio6 11 GPIO_ACTIVE_LOW>;
};

View File

@ -2,6 +2,7 @@ OMAP2+ McSPI device
Required properties:
- compatible :
- "ti,am654-mcspi" for AM654.
- "ti,omap2-mcspi" for OMAP2 & OMAP3.
- "ti,omap4-mcspi" for OMAP4+.
- ti,spi-num-cs : Number of chipselect supported by the instance.

View File

@ -5,6 +5,7 @@ Required properties:
"renesas,msiof-r8a7744" (RZ/G1N)
"renesas,msiof-r8a7745" (RZ/G1E)
"renesas,msiof-r8a774a1" (RZ/G2M)
"renesas,msiof-r8a774c0" (RZ/G2E)
"renesas,msiof-r8a7790" (R-Car H2)
"renesas,msiof-r8a7791" (R-Car M2-W)
"renesas,msiof-r8a7792" (R-Car V2H)

View File

@ -5,8 +5,11 @@ Required properties:
- "fsl,imx7ulp-spi" for LPSPI compatible with the one integrated on i.MX7ULP soc
- "fsl,imx8qxp-spi" for LPSPI compatible with the one integrated on i.MX8QXP soc
- reg : address and length of the lpspi master registers
- interrupt-parent : core interrupt controller
- interrupts : lpspi interrupt
- clocks : lpspi clock specifier
- spi-slave : spi slave mode support. In slave mode, add this attribute without
value. In master mode, remove it.
Examples:
@ -16,4 +19,5 @@ lpspi2: lpspi@40290000 {
interrupt-parent = <&intc>;
interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks IMX7ULP_CLK_LPSPI2>;
spi-slave;
};

View File

@ -6,8 +6,10 @@ Required properties:
- mediatek,mt2712-spi: for mt2712 platforms
- mediatek,mt6589-spi: for mt6589 platforms
- mediatek,mt7622-spi: for mt7622 platforms
- "mediatek,mt7629-spi", "mediatek,mt7622-spi": for mt7629 platforms
- mediatek,mt8135-spi: for mt8135 platforms
- mediatek,mt8173-spi: for mt8173 platforms
- mediatek,mt8183-spi: for mt8183 platforms
- #address-cells: should be 1.

View File

@ -0,0 +1,34 @@
Macronix SPI controller Device Tree Bindings
--------------------------------------------
Required properties:
- compatible: should be "mxicy,mx25f0a-spi"
- #address-cells: should be 1
- #size-cells: should be 0
- reg: should contain 2 entries, one for the registers and one for the direct
mapping area
- reg-names: should contain "regs" and "dirmap"
- interrupts: interrupt line connected to the SPI controller
- clock-names: should contain "ps_clk", "send_clk" and "send_dly_clk"
- clocks: should contain 3 entries for the "ps_clk", "send_clk" and
"send_dly_clk" clocks
Example:
spi@43c30000 {
compatible = "mxicy,mx25f0a-spi";
reg = <0x43c30000 0x10000>, <0xa0000000 0x20000000>;
reg-names = "regs", "dirmap";
clocks = <&clkwizard 0>, <&clkwizard 1>, <&clkc 18>;
clock-names = "send_clk", "send_dly_clk", "ps_clk";
#address-cells = <1>;
#size-cells = <0>;
flash@0 {
compatible = "jedec,spi-nor";
reg = <0>;
spi-max-frequency = <25000000>;
spi-tx-bus-width = <4>;
spi-rx-bus-width = <4>;
};
};

View File

@ -11,6 +11,9 @@ Required properties:
Optional properties:
- cs-gpios: list of GPIO chip selects. See the SPI bus bindings,
Documentation/devicetree/bindings/spi/spi-bus.txt
- spi-slave: Empty property indicating the SPI controller is used in slave mode.
- ready-gpios: GPIO used to signal a SPI master that the FIFO is filled
and we're ready to service a transfer. Only useful in slave mode.
Child nodes represent devices on the SPI bus
See ../spi/spi-bus.txt

View File

@ -15,6 +15,7 @@ Required properties:
- "renesas,qspi-r8a7743" (RZ/G1M)
- "renesas,qspi-r8a7744" (RZ/G1N)
- "renesas,qspi-r8a7745" (RZ/G1E)
- "renesas,qspi-r8a77470" (RZ/G1C)
- "renesas,qspi-r8a7790" (R-Car H2)
- "renesas,qspi-r8a7791" (R-Car M2-W)
- "renesas,qspi-r8a7792" (R-Car V2H)

View File

@ -5,6 +5,8 @@ UniPhier SoCs have SCSSI which supports SPI single channel.
Required properties:
- compatible: should be "socionext,uniphier-scssi"
- reg: address and length of the spi master registers
- #address-cells: must be <1>, see spi-bus.txt
- #size-cells: must be <0>, see spi-bus.txt
- interrupts: a single interrupt specifier
- pinctrl-names: should be "default"
- pinctrl-0: pin control state for the default mode
@ -16,6 +18,8 @@ Example:
spi0: spi@54006000 {
compatible = "socionext,uniphier-scssi";
reg = <0x54006000 0x100>;
#address-cells = <1>;
#size-cells = <0>;
interrupts = <0 39 4>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_spi0>;

View File

@ -39,15 +39,6 @@ config SPI_ASPEED_SMC
and support for the SPI flash memory controller (SPI) for
the host firmware. The implementation only supports SPI NOR.
config SPI_ATMEL_QUADSPI
tristate "Atmel Quad SPI Controller"
depends on ARCH_AT91 || (ARM && COMPILE_TEST)
depends on OF && HAS_IOMEM
help
This enables support for the Quad SPI controller in master mode.
This driver does not support generic SPI. The implementation only
supports SPI NOR.
config SPI_CADENCE_QUADSPI
tristate "Cadence Quad SPI controller"
depends on OF && (ARM || ARM64 || COMPILE_TEST)

View File

@ -1,7 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o
obj-$(CONFIG_SPI_ASPEED_SMC) += aspeed-smc.o
obj-$(CONFIG_SPI_ATMEL_QUADSPI) += atmel-quadspi.o
obj-$(CONFIG_SPI_CADENCE_QUADSPI) += cadence-quadspi.o
obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o
obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o

View File

@ -91,6 +91,15 @@ config SPI_AT91_USART
This selects a driver for the AT91 USART Controller as SPI Master,
present on AT91 and SAMA5 SoC series.
config SPI_ATMEL_QUADSPI
tristate "Atmel Quad SPI Controller"
depends on ARCH_AT91 || (ARM && COMPILE_TEST && !ARCH_EBSA110)
depends on OF && HAS_IOMEM
help
This enables support for the Quad SPI controller in master mode.
This driver does not support generic SPI. The implementation only
supports spi-mem interface.
config SPI_AU1550
tristate "Au1550/Au1200/Au1300 SPI Controller"
depends on MIPS_ALCHEMY
@ -397,6 +406,13 @@ config SPI_MT65XX
say Y or M here.If you are not sure, say N.
SPI drivers for Mediatek MT65XX and MT81XX series ARM SoCs.
config SPI_NPCM_PSPI
tristate "Nuvoton NPCM PSPI Controller"
depends on ARCH_NPCM || COMPILE_TEST
help
This driver provides support for Nuvoton NPCM BMC
Peripheral SPI controller in master mode.
config SPI_NUC900
tristate "Nuvoton NUC900 series SPI"
depends on ARCH_W90X900
@ -435,7 +451,7 @@ config SPI_OMAP_UWIRE
config SPI_OMAP24XX
tristate "McSPI driver for OMAP"
depends on ARCH_OMAP2PLUS || COMPILE_TEST
depends on ARCH_OMAP2PLUS || ARCH_K3 || COMPILE_TEST
select SG_SPLIT
help
SPI master controller for OMAP24XX and later Multichannel SPI
@ -684,6 +700,12 @@ config SPI_SUN6I
help
This enables using the SPI controller on the Allwinner A31 SoCs.
config SPI_MXIC
tristate "Macronix MX25F0A SPI controller"
depends on SPI_MASTER
help
This selects the Macronix MX25F0A SPI controller driver.
config SPI_MXS
tristate "Freescale MXS SPI controller"
depends on ARCH_MXS

View File

@ -16,6 +16,7 @@ obj-$(CONFIG_SPI_LOOPBACK_TEST) += spi-loopback-test.o
obj-$(CONFIG_SPI_ALTERA) += spi-altera.o
obj-$(CONFIG_SPI_ARMADA_3700) += spi-armada-3700.o
obj-$(CONFIG_SPI_ATMEL) += spi-atmel.o
obj-$(CONFIG_SPI_ATMEL_QUADSPI) += atmel-quadspi.o
obj-$(CONFIG_SPI_AT91_USART) += spi-at91-usart.o
obj-$(CONFIG_SPI_ATH79) += spi-ath79.o
obj-$(CONFIG_SPI_AU1550) += spi-au1550.o
@ -58,7 +59,9 @@ obj-$(CONFIG_SPI_MPC512x_PSC) += spi-mpc512x-psc.o
obj-$(CONFIG_SPI_MPC52xx_PSC) += spi-mpc52xx-psc.o
obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52xx.o
obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o
obj-$(CONFIG_SPI_MXIC) += spi-mxic.o
obj-$(CONFIG_SPI_MXS) += spi-mxs.o
obj-$(CONFIG_SPI_NPCM_PSPI) += spi-npcm-pspi.o
obj-$(CONFIG_SPI_NUC900) += spi-nuc900.o
obj-$(CONFIG_SPI_OC_TINY) += spi-oc-tiny.o
spi-octeon-objs := spi-cavium.o spi-cavium-octeon.o

View File

@ -2,8 +2,10 @@
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -27,14 +29,10 @@
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/platform_data/atmel.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/gpio/consumer.h>
#include <linux/spi/spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
@ -67,7 +65,7 @@
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SSM BIT(0)
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
@ -157,33 +155,24 @@ struct atmel_qspi {
struct clk *clk;
struct platform_device *pdev;
u32 pending;
struct spi_nor nor;
u32 clk_rate;
struct completion cmd_completion;
};
struct atmel_qspi_command {
union {
struct {
u32 instruction:1;
u32 address:3;
u32 mode:1;
u32 dummy:1;
u32 data:1;
u32 reserved:25;
} bits;
u32 word;
} enable;
u8 instruction;
u8 mode;
u8 num_mode_cycles;
u8 num_dummy_cycles;
u32 address;
struct qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
size_t buf_len;
const void *tx_buf;
void *rx_buf;
static const struct qspi_mode sama5d2_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
/* Register access functions */
@ -197,246 +186,140 @@ static inline void qspi_writel(struct atmel_qspi *aq, u32 reg, u32 value)
writel_relaxed(value, aq->regs + reg);
}
static int atmel_qspi_run_transfer(struct atmel_qspi *aq,
const struct atmel_qspi_command *cmd)
static inline bool is_compatible(const struct spi_mem_op *op,
const struct qspi_mode *mode)
{
void __iomem *ahb_mem;
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
/* Then fallback to a PIO transfer (memcpy() DOES NOT work!) */
ahb_mem = aq->mem;
if (cmd->enable.bits.address)
ahb_mem += cmd->address;
if (cmd->tx_buf)
_memcpy_toio(ahb_mem, cmd->tx_buf, cmd->buf_len);
else
_memcpy_fromio(cmd->rx_buf, ahb_mem, cmd->buf_len);
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
return 0;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
#ifdef DEBUG
static void atmel_qspi_debug_command(struct atmel_qspi *aq,
const struct atmel_qspi_command *cmd,
u32 ifr)
static int find_mode(const struct spi_mem_op *op)
{
u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE];
size_t len = 0;
int i;
u32 i;
if (cmd->enable.bits.instruction)
cmd_buf[len++] = cmd->instruction;
for (i = 0; i < ARRAY_SIZE(sama5d2_qspi_modes); i++)
if (is_compatible(op, &sama5d2_qspi_modes[i]))
return i;
for (i = cmd->enable.bits.address-1; i >= 0; --i)
cmd_buf[len++] = (cmd->address >> (i << 3)) & 0xff;
if (cmd->enable.bits.mode)
cmd_buf[len++] = cmd->mode;
if (cmd->enable.bits.dummy) {
int num = cmd->num_dummy_cycles;
switch (ifr & QSPI_IFR_WIDTH_MASK) {
case QSPI_IFR_WIDTH_SINGLE_BIT_SPI:
case QSPI_IFR_WIDTH_DUAL_OUTPUT:
case QSPI_IFR_WIDTH_QUAD_OUTPUT:
num >>= 3;
break;
case QSPI_IFR_WIDTH_DUAL_IO:
case QSPI_IFR_WIDTH_DUAL_CMD:
num >>= 2;
break;
case QSPI_IFR_WIDTH_QUAD_IO:
case QSPI_IFR_WIDTH_QUAD_CMD:
num >>= 1;
break;
default:
return;
}
for (i = 0; i < num; ++i)
cmd_buf[len++] = 0;
}
/* Dump the SPI command */
print_hex_dump(KERN_DEBUG, "qspi cmd: ", DUMP_PREFIX_NONE,
32, 1, cmd_buf, len, false);
#ifdef VERBOSE_DEBUG
/* If verbose debug is enabled, also dump the TX data */
if (cmd->enable.bits.data && cmd->tx_buf)
print_hex_dump(KERN_DEBUG, "qspi tx : ", DUMP_PREFIX_NONE,
32, 1, cmd->tx_buf, cmd->buf_len, false);
#endif
return -1;
}
#else
#define atmel_qspi_debug_command(aq, cmd, ifr)
#endif
static int atmel_qspi_run_command(struct atmel_qspi *aq,
const struct atmel_qspi_command *cmd,
u32 ifr_tfrtyp, enum spi_nor_protocol proto)
static bool atmel_qspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->master);
int mode;
u32 dummy_cycles = 0;
u32 iar, icr, ifr, sr;
int err = 0;
iar = 0;
icr = 0;
ifr = ifr_tfrtyp;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
/* Set the SPI protocol */
switch (proto) {
case SNOR_PROTO_1_1_1:
ifr |= QSPI_IFR_WIDTH_SINGLE_BIT_SPI;
break;
qspi_writel(aq, QSPI_MR, QSPI_MR_SMM);
case SNOR_PROTO_1_1_2:
ifr |= QSPI_IFR_WIDTH_DUAL_OUTPUT;
break;
mode = find_mode(op);
if (mode < 0)
return -ENOTSUPP;
case SNOR_PROTO_1_1_4:
ifr |= QSPI_IFR_WIDTH_QUAD_OUTPUT;
break;
ifr |= sama5d2_qspi_modes[mode].config;
case SNOR_PROTO_1_2_2:
ifr |= QSPI_IFR_WIDTH_DUAL_IO;
break;
if (op->dummy.buswidth && op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
case SNOR_PROTO_1_4_4:
ifr |= QSPI_IFR_WIDTH_QUAD_IO;
break;
case SNOR_PROTO_2_2_2:
ifr |= QSPI_IFR_WIDTH_DUAL_CMD;
break;
case SNOR_PROTO_4_4_4:
ifr |= QSPI_IFR_WIDTH_QUAD_CMD;
break;
default:
return -EINVAL;
}
/* Compute instruction parameters */
if (cmd->enable.bits.instruction) {
icr |= QSPI_ICR_INST(cmd->instruction);
ifr |= QSPI_IFR_INSTEN;
}
/* Compute address parameters */
switch (cmd->enable.bits.address) {
case 4:
ifr |= QSPI_IFR_ADDRL;
/* fall through to the 24bit (3 byte) address case. */
case 3:
iar = (cmd->enable.bits.data) ? 0 : cmd->address;
ifr |= QSPI_IFR_ADDREN;
break;
case 0:
break;
default:
return -EINVAL;
}
/* Compute option parameters */
if (cmd->enable.bits.mode && cmd->num_mode_cycles) {
u32 mode_cycle_bits, mode_bits;
icr |= QSPI_ICR_OPT(cmd->mode);
ifr |= QSPI_IFR_OPTEN;
switch (ifr & QSPI_IFR_WIDTH_MASK) {
case QSPI_IFR_WIDTH_SINGLE_BIT_SPI:
case QSPI_IFR_WIDTH_DUAL_OUTPUT:
case QSPI_IFR_WIDTH_QUAD_OUTPUT:
mode_cycle_bits = 1;
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case QSPI_IFR_WIDTH_DUAL_IO:
case QSPI_IFR_WIDTH_DUAL_CMD:
mode_cycle_bits = 2;
break;
case QSPI_IFR_WIDTH_QUAD_IO:
case QSPI_IFR_WIDTH_QUAD_CMD:
mode_cycle_bits = 4;
break;
default:
return -EINVAL;
}
mode_bits = cmd->num_mode_cycles * mode_cycle_bits;
switch (mode_bits) {
case 1:
ifr |= QSPI_IFR_OPTL_1BIT;
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
ifr |= QSPI_IFR_OPTL_2BIT;
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_OPTL_4BIT;
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
case 8:
ifr |= QSPI_IFR_OPTL_8BIT;
break;
default:
return -EINVAL;
return -ENOTSUPP;
}
}
/* Set number of dummy cycles */
if (cmd->enable.bits.dummy)
ifr |= QSPI_IFR_NBDUM(cmd->num_dummy_cycles);
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable */
if (cmd->enable.bits.data) {
if (op->data.nbytes)
ifr |= QSPI_IFR_DATAEN;
/* Special case for Continuous Read Mode */
if (!cmd->tx_buf && !cmd->rx_buf)
ifr |= QSPI_IFR_CRM;
}
if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes)
ifr |= QSPI_IFR_TFRTYP_TRSFR_READ;
else
ifr |= QSPI_IFR_TFRTYP_TRSFR_WRITE;
/* Clear pending interrupts */
(void)qspi_readl(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers */
atmel_qspi_debug_command(aq, cmd, ifr);
qspi_writel(aq, QSPI_IAR, iar);
qspi_writel(aq, QSPI_ICR, icr);
qspi_writel(aq, QSPI_IFR, ifr);
/* Skip to the final steps if there is no data */
if (!cmd->enable.bits.data)
goto no_data;
if (op->data.nbytes) {
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)qspi_readl(aq, QSPI_IFR);
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)qspi_readl(aq, QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN)
_memcpy_fromio(op->data.buf.in,
aq->mem + iar, op->data.nbytes);
else
_memcpy_toio(aq->mem + iar,
op->data.buf.out, op->data.nbytes);
/* Stop here for continuous read */
if (!cmd->tx_buf && !cmd->rx_buf)
return 0;
/* Send/Receive data */
err = atmel_qspi_run_transfer(aq, cmd);
/* Release the chip-select */
qspi_writel(aq, QSPI_CR, QSPI_CR_LASTXFER);
}
/* Release the chip-select */
qspi_writel(aq, QSPI_CR, QSPI_CR_LASTXFER);
if (err)
return err;
#if defined(DEBUG) && defined(VERBOSE_DEBUG)
/*
* If verbose debug is enabled, also dump the RX data in addition to
* the SPI command previously dumped by atmel_qspi_debug_command()
*/
if (cmd->rx_buf)
print_hex_dump(KERN_DEBUG, "qspi rx : ", DUMP_PREFIX_NONE,
32, 1, cmd->rx_buf, cmd->buf_len, false);
#endif
no_data:
/* Poll INSTRuction End status */
sr = qspi_readl(aq, QSPI_SR);
if ((sr & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
@ -454,129 +337,50 @@ static int atmel_qspi_run_command(struct atmel_qspi *aq,
return err;
}
static int atmel_qspi_read_reg(struct spi_nor *nor, u8 opcode,
u8 *buf, int len)
const char *atmel_qspi_get_name(struct spi_mem *spimem)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.data = 1;
cmd.instruction = opcode;
cmd.rx_buf = buf;
cmd.buf_len = len;
return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_READ,
nor->reg_proto);
return dev_name(spimem->spi->dev.parent);
}
static int atmel_qspi_write_reg(struct spi_nor *nor, u8 opcode,
u8 *buf, int len)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.data = (buf != NULL && len > 0);
cmd.instruction = opcode;
cmd.tx_buf = buf;
cmd.buf_len = len;
return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE,
nor->reg_proto);
}
static ssize_t atmel_qspi_write(struct spi_nor *nor, loff_t to, size_t len,
const u_char *write_buf)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
ssize_t ret;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.address = nor->addr_width;
cmd.enable.bits.data = 1;
cmd.instruction = nor->program_opcode;
cmd.address = (u32)to;
cmd.tx_buf = write_buf;
cmd.buf_len = len;
ret = atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE_MEM,
nor->write_proto);
return (ret < 0) ? ret : len;
}
static int atmel_qspi_erase(struct spi_nor *nor, loff_t offs)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.address = nor->addr_width;
cmd.instruction = nor->erase_opcode;
cmd.address = (u32)offs;
return atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_WRITE,
nor->reg_proto);
}
static ssize_t atmel_qspi_read(struct spi_nor *nor, loff_t from, size_t len,
u_char *read_buf)
{
struct atmel_qspi *aq = nor->priv;
struct atmel_qspi_command cmd;
u8 num_mode_cycles, num_dummy_cycles;
ssize_t ret;
if (nor->read_dummy >= 2) {
num_mode_cycles = 2;
num_dummy_cycles = nor->read_dummy - 2;
} else {
num_mode_cycles = nor->read_dummy;
num_dummy_cycles = 0;
}
memset(&cmd, 0, sizeof(cmd));
cmd.enable.bits.instruction = 1;
cmd.enable.bits.address = nor->addr_width;
cmd.enable.bits.mode = (num_mode_cycles > 0);
cmd.enable.bits.dummy = (num_dummy_cycles > 0);
cmd.enable.bits.data = 1;
cmd.instruction = nor->read_opcode;
cmd.address = (u32)from;
cmd.mode = 0xff; /* This value prevents from entering the 0-4-4 mode */
cmd.num_mode_cycles = num_mode_cycles;
cmd.num_dummy_cycles = num_dummy_cycles;
cmd.rx_buf = read_buf;
cmd.buf_len = len;
ret = atmel_qspi_run_command(aq, &cmd, QSPI_IFR_TFRTYP_TRSFR_READ_MEM,
nor->read_proto);
return (ret < 0) ? ret : len;
}
static int atmel_qspi_init(struct atmel_qspi *aq)
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
.get_name = atmel_qspi_get_name
};
static int atmel_qspi_setup(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->master;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long src_rate;
u32 mr, scr, scbr;
u32 scr, scbr;
/* Reset the QSPI controller */
qspi_writel(aq, QSPI_CR, QSPI_CR_SWRST);
if (ctrl->busy)
return -EBUSY;
/* Set the QSPI controller in Serial Memory Mode */
mr = QSPI_MR_NBBITS(8) | QSPI_MR_SSM;
qspi_writel(aq, QSPI_MR, mr);
if (!spi->max_speed_hz)
return -EINVAL;
src_rate = clk_get_rate(aq->clk);
if (!src_rate)
return -EINVAL;
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(src_rate, aq->clk_rate);
scbr = DIV_ROUND_UP(src_rate, spi->max_speed_hz);
if (scbr > 0)
scbr--;
scr = QSPI_SCR_SCBR(scbr);
qspi_writel(aq, QSPI_SCR, scr);
return 0;
}
static int atmel_qspi_init(struct atmel_qspi *aq)
{
/* Reset the QSPI controller */
qspi_writel(aq, QSPI_CR, QSPI_CR_SWRST);
/* Enable the QSPI controller */
qspi_writel(aq, QSPI_CR, QSPI_CR_QSPIEN);
@ -604,38 +408,25 @@ static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id)
static int atmel_qspi_probe(struct platform_device *pdev)
{
const struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ |
SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_READ_1_1_2 |
SNOR_HWCAPS_READ_1_2_2 |
SNOR_HWCAPS_READ_2_2_2 |
SNOR_HWCAPS_READ_1_1_4 |
SNOR_HWCAPS_READ_1_4_4 |
SNOR_HWCAPS_READ_4_4_4 |
SNOR_HWCAPS_PP |
SNOR_HWCAPS_PP_1_1_4 |
SNOR_HWCAPS_PP_1_4_4 |
SNOR_HWCAPS_PP_4_4_4,
};
struct device_node *child, *np = pdev->dev.of_node;
struct spi_controller *ctrl;
struct atmel_qspi *aq;
struct resource *res;
struct spi_nor *nor;
struct mtd_info *mtd;
int irq, err = 0;
if (of_get_child_count(np) != 1)
return -ENODEV;
child = of_get_next_child(np, NULL);
ctrl = spi_alloc_master(&pdev->dev, sizeof(*aq));
if (!ctrl)
return -ENOMEM;
aq = devm_kzalloc(&pdev->dev, sizeof(*aq), GFP_KERNEL);
if (!aq) {
err = -ENOMEM;
goto exit;
}
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
ctrl->setup = atmel_qspi_setup;
ctrl->bus_num = -1;
ctrl->mem_ops = &atmel_qspi_mem_ops;
ctrl->num_chipselect = 1;
ctrl->dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, ctrl);
aq = spi_controller_get_devdata(ctrl);
platform_set_drvdata(pdev, aq);
init_completion(&aq->cmd_completion);
aq->pdev = pdev;
@ -684,54 +475,30 @@ static int atmel_qspi_probe(struct platform_device *pdev)
if (err)
goto disable_clk;
/* Setup the spi-nor */
nor = &aq->nor;
mtd = &nor->mtd;
nor->dev = &pdev->dev;
spi_nor_set_flash_node(nor, child);
nor->priv = aq;
mtd->priv = nor;
nor->read_reg = atmel_qspi_read_reg;
nor->write_reg = atmel_qspi_write_reg;
nor->read = atmel_qspi_read;
nor->write = atmel_qspi_write;
nor->erase = atmel_qspi_erase;
err = of_property_read_u32(child, "spi-max-frequency", &aq->clk_rate);
if (err < 0)
goto disable_clk;
err = atmel_qspi_init(aq);
if (err)
goto disable_clk;
err = spi_nor_scan(nor, NULL, &hwcaps);
err = spi_register_controller(ctrl);
if (err)
goto disable_clk;
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto disable_clk;
of_node_put(child);
return 0;
disable_clk:
clk_disable_unprepare(aq->clk);
exit:
of_node_put(child);
spi_controller_put(ctrl);
return err;
}
static int atmel_qspi_remove(struct platform_device *pdev)
{
struct atmel_qspi *aq = platform_get_drvdata(pdev);
struct spi_controller *ctrl = platform_get_drvdata(pdev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
mtd_device_unregister(&aq->nor.mtd);
spi_unregister_controller(ctrl);
qspi_writel(aq, QSPI_CR, QSPI_CR_QSPIDIS);
clk_disable_unprepare(aq->clk);
return 0;
@ -777,5 +544,6 @@ static struct platform_driver atmel_qspi_driver = {
module_platform_driver(atmel_qspi_driver);
MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>");
MODULE_AUTHOR("Piotr Bugalski <bugalski.piotr@gmail.com");
MODULE_DESCRIPTION("Atmel QSPI Controller driver");
MODULE_LICENSE("GPL v2");

View File

@ -12,7 +12,9 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
@ -399,6 +401,59 @@ static int at91_usart_spi_probe(struct platform_device *pdev)
return ret;
}
__maybe_unused static int at91_usart_spi_runtime_suspend(struct device *dev)
{
struct spi_controller *ctlr = dev_get_drvdata(dev);
struct at91_usart_spi *aus = spi_master_get_devdata(ctlr);
clk_disable_unprepare(aus->clk);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
__maybe_unused static int at91_usart_spi_runtime_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct at91_usart_spi *aus = spi_master_get_devdata(ctrl);
pinctrl_pm_select_default_state(dev);
return clk_prepare_enable(aus->clk);
}
__maybe_unused static int at91_usart_spi_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
int ret;
ret = spi_controller_suspend(ctrl);
if (ret)
return ret;
if (!pm_runtime_suspended(dev))
at91_usart_spi_runtime_suspend(dev);
return 0;
}
__maybe_unused static int at91_usart_spi_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct at91_usart_spi *aus = spi_master_get_devdata(ctrl);
int ret;
if (!pm_runtime_suspended(dev)) {
ret = at91_usart_spi_runtime_resume(dev);
if (ret)
return ret;
}
at91_usart_spi_init(aus);
return spi_controller_resume(ctrl);
}
static int at91_usart_spi_remove(struct platform_device *pdev)
{
struct spi_controller *ctlr = platform_get_drvdata(pdev);
@ -409,6 +464,12 @@ static int at91_usart_spi_remove(struct platform_device *pdev)
return 0;
}
static const struct dev_pm_ops at91_usart_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(at91_usart_spi_suspend, at91_usart_spi_resume)
SET_RUNTIME_PM_OPS(at91_usart_spi_runtime_suspend,
at91_usart_spi_runtime_resume, NULL)
};
static const struct of_device_id at91_usart_spi_dt_ids[] = {
{ .compatible = "microchip,at91sam9g45-usart-spi"},
{ /* sentinel */}
@ -419,6 +480,7 @@ MODULE_DEVICE_TABLE(of, at91_usart_spi_dt_ids);
static struct platform_driver at91_usart_spi_driver = {
.driver = {
.name = "at91_usart_spi",
.pm = &at91_usart_spi_pm_ops,
},
.probe = at91_usart_spi_probe,
.remove = at91_usart_spi_remove,

View File

@ -20,7 +20,6 @@
* GNU General Public License for more details.
*/
#include <asm/page.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
@ -72,6 +71,8 @@
#define BCM2835_SPI_CS_CS_10 0x00000002
#define BCM2835_SPI_CS_CS_01 0x00000001
#define BCM2835_SPI_FIFO_SIZE 64
#define BCM2835_SPI_FIFO_SIZE_3_4 48
#define BCM2835_SPI_POLLING_LIMIT_US 30
#define BCM2835_SPI_POLLING_JIFFIES 2
#define BCM2835_SPI_DMA_MIN_LENGTH 96
@ -80,15 +81,36 @@
#define DRV_NAME "spi-bcm2835"
/**
* struct bcm2835_spi - BCM2835 SPI controller
* @regs: base address of register map
* @clk: core clock, divided to calculate serial clock
* @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
* @tfr: SPI transfer currently processed
* @tx_buf: pointer whence next transmitted byte is read
* @rx_buf: pointer where next received byte is written
* @tx_len: remaining bytes to transmit
* @rx_len: remaining bytes to receive
* @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
* length is not a multiple of 4 (to overcome hardware limitation)
* @rx_prologue: bytes received without DMA if first RX sglist entry's
* length is not a multiple of 4 (to overcome hardware limitation)
* @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
* @dma_pending: whether a DMA transfer is in progress
*/
struct bcm2835_spi {
void __iomem *regs;
struct clk *clk;
int irq;
struct spi_transfer *tfr;
const u8 *tx_buf;
u8 *rx_buf;
int tx_len;
int rx_len;
bool dma_pending;
int tx_prologue;
int rx_prologue;
unsigned int tx_spillover;
unsigned int dma_pending;
};
static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
@ -126,6 +148,115 @@ static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
}
}
/**
* bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
* @bs: BCM2835 SPI controller
* @count: bytes to read from RX FIFO
*
* The caller must ensure that @bs->rx_len is greater than or equal to @count,
* that the RX FIFO contains at least @count bytes and that the DMA Enable flag
* in the CS register is set (such that a read from the FIFO register receives
* 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
*/
static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
{
u32 val;
int len;
bs->rx_len -= count;
while (count > 0) {
val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
len = min(count, 4);
memcpy(bs->rx_buf, &val, len);
bs->rx_buf += len;
count -= 4;
}
}
/**
* bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
* @bs: BCM2835 SPI controller
* @count: bytes to write to TX FIFO
*
* The caller must ensure that @bs->tx_len is greater than or equal to @count,
* that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
* in the CS register is set (such that a write to the FIFO register transmits
* 32-bit instead of just 8-bit).
*/
static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
{
u32 val;
int len;
bs->tx_len -= count;
while (count > 0) {
if (bs->tx_buf) {
len = min(count, 4);
memcpy(&val, bs->tx_buf, len);
bs->tx_buf += len;
} else {
val = 0;
}
bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
count -= 4;
}
}
/**
* bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
* @bs: BCM2835 SPI controller
*
* The caller must ensure that the RX FIFO can accommodate as many bytes
* as have been written to the TX FIFO: Transmission is halted once the
* RX FIFO is full, causing this function to spin forever.
*/
static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
{
while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
cpu_relax();
}
/**
* bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
* @bs: BCM2835 SPI controller
* @count: bytes available for reading in RX FIFO
*/
static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
{
u8 val;
count = min(count, bs->rx_len);
bs->rx_len -= count;
while (count) {
val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
if (bs->rx_buf)
*bs->rx_buf++ = val;
count--;
}
}
/**
* bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
* @bs: BCM2835 SPI controller
* @count: bytes available for writing in TX FIFO
*/
static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
{
u8 val;
count = min(count, bs->tx_len);
bs->tx_len -= count;
while (count) {
val = bs->tx_buf ? *bs->tx_buf++ : 0;
bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
count--;
}
}
static void bcm2835_spi_reset_hw(struct spi_master *master)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
@ -149,14 +280,26 @@ static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct bcm2835_spi *bs = spi_master_get_devdata(master);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
/*
* An interrupt is signaled either if DONE is set (TX FIFO empty)
* or if RXR is set (RX FIFO >= ¾ full).
*/
if (cs & BCM2835_SPI_CS_RXF)
bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
else if (cs & BCM2835_SPI_CS_RXR)
bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
/* Read as many bytes as possible from FIFO */
bcm2835_rd_fifo(bs);
/* Write as many bytes as possible to FIFO */
bcm2835_wr_fifo(bs);
/* based on flags decide if we can finish the transfer */
if (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE) {
if (!bs->rx_len) {
/* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(master);
/* wake up the framework */
@ -169,32 +312,22 @@ static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
u32 cs)
u32 cs, bool fifo_empty)
{
struct bcm2835_spi *bs = spi_master_get_devdata(master);
/* fill in fifo if we have gpio-cs
* note that there have been rare events where the native-CS
* flapped for <1us which may change the behaviour
* with gpio-cs this does not happen, so it is implemented
* only for this case
*/
if (gpio_is_valid(spi->cs_gpio)) {
/* enable HW block, but without interrupts enabled
* this would triggern an immediate interrupt
*/
bcm2835_wr(bs, BCM2835_SPI_CS,
cs | BCM2835_SPI_CS_TA);
/* fill in tx fifo as much as possible */
bcm2835_wr_fifo(bs);
}
/*
* Enable the HW block. This will immediately trigger a DONE (TX
* empty) interrupt, upon which we will fill the TX FIFO with the
* first TX bytes. Pre-filling the TX FIFO here to avoid the
* interrupt doesn't work:-(
* Enable HW block, but with interrupts still disabled.
* Otherwise the empty TX FIFO would immediately trigger an interrupt.
*/
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
/* fill TX FIFO as much as possible */
if (fifo_empty)
bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
bcm2835_wr_fifo(bs);
/* enable interrupts */
cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
@ -211,15 +344,162 @@ static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
* the main one being that DMA transfers are limited to 16 bit
* (so 0 to 65535 bytes) by the SPI HW due to BCM2835_SPI_DLEN
*
* also we currently assume that the scatter-gather fragments are
* all multiple of 4 (except the last) - otherwise we would need
* to reset the FIFO before subsequent transfers...
* this also means that tx/rx transfers sg's need to be of equal size!
*
* there may be a few more border-cases we may need to address as well
* but unfortunately this would mean splitting up the scatter-gather
* list making it slightly unpractical...
*/
/**
* bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
* @master: SPI master
* @tfr: SPI transfer
* @bs: BCM2835 SPI controller
* @cs: CS register
*
* A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
* Only the final write access is permitted to transmit less than 4 bytes, the
* SPI controller deduces its intended size from the DLEN register.
*
* If a TX or RX sglist contains multiple entries, one per page, and the first
* entry starts in the middle of a page, that first entry's length may not be
* a multiple of 4. Subsequent entries are fine because they span an entire
* page, hence do have a length that's a multiple of 4.
*
* This cannot happen with kmalloc'ed buffers (which is what most clients use)
* because they are contiguous in physical memory and therefore not split on
* page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
* buffers.
*
* The DMA engine is incapable of combining sglist entries into a continuous
* stream of 4 byte chunks, it treats every entry separately: A TX entry is
* rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
* entry is rounded up by throwing away received bytes.
*
* Overcome this limitation by transferring the first few bytes without DMA:
* E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
* write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
* The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
* the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
*
* Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
* write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
* Caution, the additional 4 bytes spill over to the second TX sglist entry
* if the length of the first is *exactly* 1.
*
* At most 6 bytes are written and at most 3 bytes read. Do we know the
* transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
*
* The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
* by the DMA engine. Toggling the DMA Enable flag in the CS register switches
* the width but also garbles the FIFO's contents. The prologue must therefore
* be transmitted in 32-bit width to ensure that the following DMA transfer can
* pick up the residue in the RX FIFO in ungarbled form.
*/
static void bcm2835_spi_transfer_prologue(struct spi_master *master,
struct spi_transfer *tfr,
struct bcm2835_spi *bs,
u32 cs)
{
int tx_remaining;
bs->tfr = tfr;
bs->tx_prologue = 0;
bs->rx_prologue = 0;
bs->tx_spillover = false;
if (!sg_is_last(&tfr->tx_sg.sgl[0]))
bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
if (!sg_is_last(&tfr->rx_sg.sgl[0])) {
bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
if (bs->rx_prologue > bs->tx_prologue) {
if (sg_is_last(&tfr->tx_sg.sgl[0])) {
bs->tx_prologue = bs->rx_prologue;
} else {
bs->tx_prologue += 4;
bs->tx_spillover =
!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
}
}
}
/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
if (!bs->tx_prologue)
return;
/* Write and read RX prologue. Adjust first entry in RX sglist. */
if (bs->rx_prologue) {
bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
| BCM2835_SPI_CS_DMAEN);
bcm2835_wr_fifo_count(bs, bs->rx_prologue);
bcm2835_wait_tx_fifo_empty(bs);
bcm2835_rd_fifo_count(bs, bs->rx_prologue);
bcm2835_spi_reset_hw(master);
dma_sync_single_for_device(master->dma_rx->device->dev,
sg_dma_address(&tfr->rx_sg.sgl[0]),
bs->rx_prologue, DMA_FROM_DEVICE);
sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
}
/*
* Write remaining TX prologue. Adjust first entry in TX sglist.
* Also adjust second entry if prologue spills over to it.
*/
tx_remaining = bs->tx_prologue - bs->rx_prologue;
if (tx_remaining) {
bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
| BCM2835_SPI_CS_DMAEN);
bcm2835_wr_fifo_count(bs, tx_remaining);
bcm2835_wait_tx_fifo_empty(bs);
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX);
}
if (likely(!bs->tx_spillover)) {
sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
} else {
sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
}
}
/**
* bcm2835_spi_undo_prologue() - reconstruct original sglist state
* @bs: BCM2835 SPI controller
*
* Undo changes which were made to an SPI transfer's sglist when transmitting
* the prologue. This is necessary to ensure the same memory ranges are
* unmapped that were originally mapped.
*/
static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
{
struct spi_transfer *tfr = bs->tfr;
if (!bs->tx_prologue)
return;
if (bs->rx_prologue) {
sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
}
if (likely(!bs->tx_spillover)) {
sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
} else {
sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
}
}
static void bcm2835_spi_dma_done(void *data)
{
struct spi_master *master = data;
@ -233,10 +513,10 @@ static void bcm2835_spi_dma_done(void *data)
* is called the tx-dma must have finished - can't get to this
* situation otherwise...
*/
dmaengine_terminate_all(master->dma_tx);
/* mark as no longer pending */
bs->dma_pending = 0;
if (cmpxchg(&bs->dma_pending, true, false)) {
dmaengine_terminate_async(master->dma_tx);
bcm2835_spi_undo_prologue(bs);
}
/* and mark as completed */;
complete(&master->xfer_completion);
@ -286,20 +566,6 @@ static int bcm2835_spi_prepare_sg(struct spi_master *master,
return dma_submit_error(cookie);
}
static inline int bcm2835_check_sg_length(struct sg_table *sgt)
{
int i;
struct scatterlist *sgl;
/* check that the sg entries are word-sized (except for last) */
for_each_sg(sgt->sgl, sgl, (int)sgt->nents - 1, i) {
if (sg_dma_len(sgl) % 4)
return -EFAULT;
}
return 0;
}
static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr,
@ -308,18 +574,16 @@ static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
struct bcm2835_spi *bs = spi_master_get_devdata(master);
int ret;
/* check that the scatter gather segments are all a multiple of 4 */
if (bcm2835_check_sg_length(&tfr->tx_sg) ||
bcm2835_check_sg_length(&tfr->rx_sg)) {
dev_warn_once(&spi->dev,
"scatter gather segment length is not a multiple of 4 - falling back to interrupt mode\n");
return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
}
/*
* Transfer first few bytes without DMA if length of first TX or RX
* sglist entry is not a multiple of 4 bytes (hardware limitation).
*/
bcm2835_spi_transfer_prologue(master, tfr, bs, cs);
/* setup tx-DMA */
ret = bcm2835_spi_prepare_sg(master, tfr, true);
if (ret)
return ret;
goto err_reset_hw;
/* start TX early */
dma_async_issue_pending(master->dma_tx);
@ -328,7 +592,7 @@ static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
bs->dma_pending = 1;
/* set the DMA length */
bcm2835_wr(bs, BCM2835_SPI_DLEN, tfr->len);
bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
/* start the HW */
bcm2835_wr(bs, BCM2835_SPI_CS,
@ -341,9 +605,9 @@ static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
ret = bcm2835_spi_prepare_sg(master, tfr, false);
if (ret) {
/* need to reset on errors */
dmaengine_terminate_all(master->dma_tx);
bcm2835_spi_reset_hw(master);
return ret;
dmaengine_terminate_sync(master->dma_tx);
bs->dma_pending = false;
goto err_reset_hw;
}
/* start rx dma late */
@ -351,16 +615,17 @@ static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
/* wait for wakeup in framework */
return 1;
err_reset_hw:
bcm2835_spi_reset_hw(master);
bcm2835_spi_undo_prologue(bs);
return ret;
}
static bool bcm2835_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr)
{
/* only run for gpio_cs */
if (!gpio_is_valid(spi->cs_gpio))
return false;
/* we start DMA efforts only on bigger transfers */
if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
return false;
@ -378,25 +643,6 @@ static bool bcm2835_spi_can_dma(struct spi_master *master,
return false;
}
/* if we run rx/tx_buf with word aligned addresses then we are OK */
if ((((size_t)tfr->rx_buf & 3) == 0) &&
(((size_t)tfr->tx_buf & 3) == 0))
return true;
/* otherwise we only allow transfers within the same page
* to avoid wasting time on dma_mapping when it is not practical
*/
if (((size_t)tfr->tx_buf & (PAGE_SIZE - 1)) + tfr->len > PAGE_SIZE) {
dev_warn_once(&spi->dev,
"Unaligned spi tx-transfer bridging page\n");
return false;
}
if (((size_t)tfr->rx_buf & (PAGE_SIZE - 1)) + tfr->len > PAGE_SIZE) {
dev_warn_once(&spi->dev,
"Unaligned spi rx-transfer bridging page\n");
return false;
}
/* return OK */
return true;
}
@ -404,12 +650,12 @@ static bool bcm2835_spi_can_dma(struct spi_master *master,
static void bcm2835_dma_release(struct spi_master *master)
{
if (master->dma_tx) {
dmaengine_terminate_all(master->dma_tx);
dmaengine_terminate_sync(master->dma_tx);
dma_release_channel(master->dma_tx);
master->dma_tx = NULL;
}
if (master->dma_rx) {
dmaengine_terminate_all(master->dma_rx);
dmaengine_terminate_sync(master->dma_rx);
dma_release_channel(master->dma_rx);
master->dma_rx = NULL;
}
@ -492,7 +738,7 @@ static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
* if we are interrupted here, then the data is
* getting transferred by the HW while we are interrupted
*/
bcm2835_wr_fifo(bs);
bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
/* set the timeout */
timeout = jiffies + BCM2835_SPI_POLLING_JIFFIES;
@ -515,7 +761,7 @@ static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
bs->tx_len, bs->rx_len);
/* fall back to interrupt mode */
return bcm2835_spi_transfer_one_irq(master, spi,
tfr, cs);
tfr, cs, false);
}
}
@ -560,12 +806,12 @@ static int bcm2835_spi_transfer_one(struct spi_master *master,
else
cs &= ~BCM2835_SPI_CS_REN;
/* for gpio_cs set dummy CS so that no HW-CS get changed
* we can not run this in bcm2835_spi_set_cs, as it does
* not get called for cs_gpio cases, so we need to do it here
/*
* The driver always uses software-controlled GPIO Chip Select.
* Set the hardware-controlled native Chip Select to an invalid
* value to prevent it from interfering.
*/
if (gpio_is_valid(spi->cs_gpio) || (spi->mode & SPI_NO_CS))
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
/* set transmit buffers and length */
bs->tx_buf = tfr->tx_buf;
@ -589,7 +835,7 @@ static int bcm2835_spi_transfer_one(struct spi_master *master,
return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs);
/* run in interrupt-mode */
return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs, true);
}
static int bcm2835_spi_prepare_message(struct spi_master *master,
@ -617,68 +863,15 @@ static void bcm2835_spi_handle_err(struct spi_master *master,
struct bcm2835_spi *bs = spi_master_get_devdata(master);
/* if an error occurred and we have an active dma, then terminate */
if (bs->dma_pending) {
dmaengine_terminate_all(master->dma_tx);
dmaengine_terminate_all(master->dma_rx);
bs->dma_pending = 0;
if (cmpxchg(&bs->dma_pending, true, false)) {
dmaengine_terminate_sync(master->dma_tx);
dmaengine_terminate_sync(master->dma_rx);
bcm2835_spi_undo_prologue(bs);
}
/* and reset */
bcm2835_spi_reset_hw(master);
}
static void bcm2835_spi_set_cs(struct spi_device *spi, bool gpio_level)
{
/*
* we can assume that we are "native" as per spi_set_cs
* calling us ONLY when cs_gpio is not set
* we can also assume that we are CS < 3 as per bcm2835_spi_setup
* we would not get called because of error handling there.
* the level passed is the electrical level not enabled/disabled
* so it has to get translated back to enable/disable
* see spi_set_cs in spi.c for the implementation
*/
struct spi_master *master = spi->master;
struct bcm2835_spi *bs = spi_master_get_devdata(master);
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
bool enable;
/* calculate the enable flag from the passed gpio_level */
enable = (spi->mode & SPI_CS_HIGH) ? gpio_level : !gpio_level;
/* set flags for "reverse" polarity in the registers */
if (spi->mode & SPI_CS_HIGH) {
/* set the correct CS-bits */
cs |= BCM2835_SPI_CS_CSPOL;
cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select;
} else {
/* clean the CS-bits */
cs &= ~BCM2835_SPI_CS_CSPOL;
cs &= ~(BCM2835_SPI_CS_CSPOL0 << spi->chip_select);
}
/* select the correct chip_select depending on disabled/enabled */
if (enable) {
/* set cs correctly */
if (spi->mode & SPI_NO_CS) {
/* use the "undefined" chip-select */
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
} else {
/* set the chip select */
cs &= ~(BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01);
cs |= spi->chip_select;
}
} else {
/* disable CSPOL which puts HW-CS into deselected state */
cs &= ~BCM2835_SPI_CS_CSPOL;
/* use the "undefined" chip-select as precaution */
cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
}
/* finally set the calculated flags in SPI_CS */
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
}
static int chip_match_name(struct gpio_chip *chip, void *data)
{
return !strcmp(chip->label, data);
@ -750,7 +943,6 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->num_chipselect = 3;
master->setup = bcm2835_spi_setup;
master->set_cs = bcm2835_spi_set_cs;
master->transfer_one = bcm2835_spi_transfer_one;
master->handle_err = bcm2835_spi_handle_err;
master->prepare_message = bcm2835_spi_prepare_message;
@ -843,4 +1035,4 @@ module_platform_driver(bcm2835_spi_driver);
MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
MODULE_LICENSE("GPL v2");
MODULE_LICENSE("GPL");

View File

@ -542,4 +542,4 @@ module_platform_driver(bcm2835aux_spi_driver);
MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
MODULE_LICENSE("GPL v2");
MODULE_LICENSE("GPL");

View File

@ -20,6 +20,7 @@
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/acpi.h>
#include <linux/property.h>
#include <linux/regmap.h>
@ -243,12 +244,19 @@ static const struct of_device_id dw_spi_mmio_of_match[] = {
};
MODULE_DEVICE_TABLE(of, dw_spi_mmio_of_match);
static const struct acpi_device_id dw_spi_mmio_acpi_match[] = {
{"HISI0173", 0},
{},
};
MODULE_DEVICE_TABLE(acpi, dw_spi_mmio_acpi_match);
static struct platform_driver dw_spi_mmio_driver = {
.probe = dw_spi_mmio_probe,
.remove = dw_spi_mmio_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = dw_spi_mmio_of_match,
.acpi_match_table = ACPI_PTR(dw_spi_mmio_acpi_match),
},
};
module_platform_driver(dw_spi_mmio_driver);

View File

@ -507,6 +507,7 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
master->handle_err = dw_spi_handle_err;
master->max_speed_hz = dws->max_freq;
master->dev.of_node = dev->of_node;
master->dev.fwnode = dev->fwnode;
master->flags = SPI_MASTER_GPIO_SS;
if (dws->set_cs)

View File

@ -1090,8 +1090,8 @@ static int dspi_probe(struct platform_device *pdev)
goto out_clk_put;
}
ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
pdev->name, dspi);
ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
IRQF_SHARED, pdev->name, dspi);
if (ret < 0) {
dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
goto out_clk_put;

View File

@ -3,6 +3,7 @@
// Freescale i.MX7ULP LPSPI driver
//
// Copyright 2016 Freescale Semiconductor, Inc.
// Copyright 2018 NXP Semiconductors
#include <linux/clk.h>
#include <linux/completion.h>
@ -54,6 +55,7 @@
#define IER_RDIE BIT(1)
#define IER_TDIE BIT(0)
#define CFGR1_PCSCFG BIT(27)
#define CFGR1_PINCFG (BIT(24)|BIT(25))
#define CFGR1_PCSPOL BIT(8)
#define CFGR1_NOSTALL BIT(3)
#define CFGR1_MASTER BIT(0)
@ -79,6 +81,7 @@ struct fsl_lpspi_data {
struct device *dev;
void __iomem *base;
struct clk *clk;
bool is_slave;
void *rx_buf;
const void *tx_buf;
@ -86,11 +89,14 @@ struct fsl_lpspi_data {
void (*rx)(struct fsl_lpspi_data *);
u32 remain;
u8 watermark;
u8 txfifosize;
u8 rxfifosize;
struct lpspi_config config;
struct completion xfer_done;
bool slave_aborted;
};
static const struct of_device_id fsl_lpspi_dt_ids[] = {
@ -137,16 +143,18 @@ static void fsl_lpspi_intctrl(struct fsl_lpspi_data *fsl_lpspi,
writel(enable, fsl_lpspi->base + IMX7ULP_IER);
}
static int lpspi_prepare_xfer_hardware(struct spi_master *master)
static int lpspi_prepare_xfer_hardware(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
return clk_prepare_enable(fsl_lpspi->clk);
}
static int lpspi_unprepare_xfer_hardware(struct spi_master *master)
static int lpspi_unprepare_xfer_hardware(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
clk_disable_unprepare(fsl_lpspi->clk);
@ -203,21 +211,22 @@ static void fsl_lpspi_set_cmd(struct fsl_lpspi_data *fsl_lpspi,
u32 temp = 0;
temp |= fsl_lpspi->config.bpw - 1;
temp |= fsl_lpspi->config.prescale << 27;
temp |= (fsl_lpspi->config.mode & 0x3) << 30;
temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
/*
* Set TCR_CONT will keep SS asserted after current transfer.
* For the first transfer, clear TCR_CONTC to assert SS.
* For subsequent transfer, set TCR_CONTC to keep SS asserted.
*/
temp |= TCR_CONT;
if (is_first_xfer)
temp &= ~TCR_CONTC;
else
temp |= TCR_CONTC;
if (!fsl_lpspi->is_slave) {
temp |= fsl_lpspi->config.prescale << 27;
temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
/*
* Set TCR_CONT will keep SS asserted after current transfer.
* For the first transfer, clear TCR_CONTC to assert SS.
* For subsequent transfer, set TCR_CONTC to keep SS asserted.
*/
temp |= TCR_CONT;
if (is_first_xfer)
temp &= ~TCR_CONTC;
else
temp |= TCR_CONTC;
}
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
dev_dbg(fsl_lpspi->dev, "TCR=0x%x\n", temp);
@ -227,7 +236,7 @@ static void fsl_lpspi_set_watermark(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
temp = fsl_lpspi->txfifosize >> 1 | (fsl_lpspi->rxfifosize >> 1) << 16;
temp = fsl_lpspi->watermark >> 1 | (fsl_lpspi->watermark >> 1) << 16;
writel(temp, fsl_lpspi->base + IMX7ULP_FCR);
@ -253,7 +262,8 @@ static int fsl_lpspi_set_bitrate(struct fsl_lpspi_data *fsl_lpspi)
if (prescale == 8 && scldiv >= 256)
return -EINVAL;
writel(scldiv, fsl_lpspi->base + IMX7ULP_CCR);
writel(scldiv | (scldiv << 8) | ((scldiv >> 1) << 16),
fsl_lpspi->base + IMX7ULP_CCR);
dev_dbg(fsl_lpspi->dev, "perclk=%d, speed=%d, prescale =%d, scldiv=%d\n",
perclk_rate, config.speed_hz, prescale, scldiv);
@ -270,13 +280,18 @@ static int fsl_lpspi_config(struct fsl_lpspi_data *fsl_lpspi)
writel(temp, fsl_lpspi->base + IMX7ULP_CR);
writel(0, fsl_lpspi->base + IMX7ULP_CR);
ret = fsl_lpspi_set_bitrate(fsl_lpspi);
if (ret)
return ret;
if (!fsl_lpspi->is_slave) {
ret = fsl_lpspi_set_bitrate(fsl_lpspi);
if (ret)
return ret;
}
fsl_lpspi_set_watermark(fsl_lpspi);
temp = CFGR1_PCSCFG | CFGR1_MASTER;
if (!fsl_lpspi->is_slave)
temp = CFGR1_MASTER;
else
temp = CFGR1_PINCFG;
if (fsl_lpspi->config.mode & SPI_CS_HIGH)
temp |= CFGR1_PCSPOL;
writel(temp, fsl_lpspi->base + IMX7ULP_CFGR1);
@ -291,7 +306,8 @@ static int fsl_lpspi_config(struct fsl_lpspi_data *fsl_lpspi)
static void fsl_lpspi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(spi->master);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(spi->controller);
fsl_lpspi->config.mode = spi->mode;
fsl_lpspi->config.bpw = t ? t->bits_per_word : spi->bits_per_word;
@ -315,14 +331,51 @@ static void fsl_lpspi_setup_transfer(struct spi_device *spi,
fsl_lpspi->tx = fsl_lpspi_buf_tx_u32;
}
if (t->len <= fsl_lpspi->txfifosize)
fsl_lpspi->watermark = t->len;
else
fsl_lpspi->watermark = fsl_lpspi->txfifosize;
fsl_lpspi_config(fsl_lpspi);
}
static int fsl_lpspi_transfer_one(struct spi_master *master,
static int fsl_lpspi_slave_abort(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
fsl_lpspi->slave_aborted = true;
complete(&fsl_lpspi->xfer_done);
return 0;
}
static int fsl_lpspi_wait_for_completion(struct spi_controller *controller)
{
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
if (fsl_lpspi->is_slave) {
if (wait_for_completion_interruptible(&fsl_lpspi->xfer_done) ||
fsl_lpspi->slave_aborted) {
dev_dbg(fsl_lpspi->dev, "interrupted\n");
return -EINTR;
}
} else {
if (!wait_for_completion_timeout(&fsl_lpspi->xfer_done, HZ)) {
dev_dbg(fsl_lpspi->dev, "wait for completion timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int fsl_lpspi_transfer_one(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
int ret;
fsl_lpspi->tx_buf = t->tx_buf;
@ -330,13 +383,13 @@ static int fsl_lpspi_transfer_one(struct spi_master *master,
fsl_lpspi->remain = t->len;
reinit_completion(&fsl_lpspi->xfer_done);
fsl_lpspi->slave_aborted = false;
fsl_lpspi_write_tx_fifo(fsl_lpspi);
ret = wait_for_completion_timeout(&fsl_lpspi->xfer_done, HZ);
if (!ret) {
dev_dbg(fsl_lpspi->dev, "wait for completion timeout\n");
return -ETIMEDOUT;
}
ret = fsl_lpspi_wait_for_completion(controller);
if (ret)
return ret;
ret = fsl_lpspi_txfifo_empty(fsl_lpspi);
if (ret)
@ -347,10 +400,11 @@ static int fsl_lpspi_transfer_one(struct spi_master *master,
return 0;
}
static int fsl_lpspi_transfer_one_msg(struct spi_master *master,
static int fsl_lpspi_transfer_one_msg(struct spi_controller *controller,
struct spi_message *msg)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
struct spi_device *spi = msg->spi;
struct spi_transfer *xfer;
bool is_first_xfer = true;
@ -366,7 +420,7 @@ static int fsl_lpspi_transfer_one_msg(struct spi_master *master,
is_first_xfer = false;
ret = fsl_lpspi_transfer_one(master, spi, xfer);
ret = fsl_lpspi_transfer_one(controller, spi, xfer);
if (ret < 0)
goto complete;
@ -374,13 +428,15 @@ static int fsl_lpspi_transfer_one_msg(struct spi_master *master,
}
complete:
/* de-assert SS, then finalize current message */
temp = readl(fsl_lpspi->base + IMX7ULP_TCR);
temp &= ~TCR_CONTC;
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
if (!fsl_lpspi->is_slave) {
/* de-assert SS, then finalize current message */
temp = readl(fsl_lpspi->base + IMX7ULP_TCR);
temp &= ~TCR_CONTC;
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
}
msg->status = ret;
spi_finalize_current_message(master);
spi_finalize_current_message(controller);
return ret;
}
@ -410,30 +466,39 @@ static irqreturn_t fsl_lpspi_isr(int irq, void *dev_id)
static int fsl_lpspi_probe(struct platform_device *pdev)
{
struct fsl_lpspi_data *fsl_lpspi;
struct spi_master *master;
struct spi_controller *controller;
struct resource *res;
int ret, irq;
u32 temp;
master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_lpspi_data));
if (!master)
if (of_property_read_bool((&pdev->dev)->of_node, "spi-slave"))
controller = spi_alloc_slave(&pdev->dev,
sizeof(struct fsl_lpspi_data));
else
controller = spi_alloc_master(&pdev->dev,
sizeof(struct fsl_lpspi_data));
if (!controller)
return -ENOMEM;
platform_set_drvdata(pdev, master);
platform_set_drvdata(pdev, controller);
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
master->bus_num = pdev->id;
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
controller->bus_num = pdev->id;
fsl_lpspi = spi_master_get_devdata(master);
fsl_lpspi = spi_controller_get_devdata(controller);
fsl_lpspi->dev = &pdev->dev;
fsl_lpspi->is_slave = of_property_read_bool((&pdev->dev)->of_node,
"spi-slave");
master->transfer_one_message = fsl_lpspi_transfer_one_msg;
master->prepare_transfer_hardware = lpspi_prepare_xfer_hardware;
master->unprepare_transfer_hardware = lpspi_unprepare_xfer_hardware;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
master->dev.of_node = pdev->dev.of_node;
master->bus_num = pdev->id;
controller->transfer_one_message = fsl_lpspi_transfer_one_msg;
controller->prepare_transfer_hardware = lpspi_prepare_xfer_hardware;
controller->unprepare_transfer_hardware = lpspi_unprepare_xfer_hardware;
controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
controller->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
controller->dev.of_node = pdev->dev.of_node;
controller->bus_num = pdev->id;
controller->slave_abort = fsl_lpspi_slave_abort;
init_completion(&fsl_lpspi->xfer_done);
@ -441,32 +506,32 @@ static int fsl_lpspi_probe(struct platform_device *pdev)
fsl_lpspi->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsl_lpspi->base)) {
ret = PTR_ERR(fsl_lpspi->base);
goto out_master_put;
goto out_controller_put;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_master_put;
goto out_controller_put;
}
ret = devm_request_irq(&pdev->dev, irq, fsl_lpspi_isr, 0,
dev_name(&pdev->dev), fsl_lpspi);
if (ret) {
dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
goto out_master_put;
goto out_controller_put;
}
fsl_lpspi->clk = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(fsl_lpspi->clk)) {
ret = PTR_ERR(fsl_lpspi->clk);
goto out_master_put;
goto out_controller_put;
}
ret = clk_prepare_enable(fsl_lpspi->clk);
if (ret) {
dev_err(&pdev->dev, "can't enable lpspi clock, ret=%d\n", ret);
goto out_master_put;
goto out_controller_put;
}
temp = readl(fsl_lpspi->base + IMX7ULP_PARAM);
@ -475,24 +540,25 @@ static int fsl_lpspi_probe(struct platform_device *pdev)
clk_disable_unprepare(fsl_lpspi->clk);
ret = devm_spi_register_master(&pdev->dev, master);
ret = devm_spi_register_controller(&pdev->dev, controller);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_master error.\n");
goto out_master_put;
dev_err(&pdev->dev, "spi_register_controller error.\n");
goto out_controller_put;
}
return 0;
out_master_put:
spi_master_put(master);
out_controller_put:
spi_controller_put(controller);
return ret;
}
static int fsl_lpspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
struct spi_controller *controller = platform_get_drvdata(pdev);
struct fsl_lpspi_data *fsl_lpspi =
spi_controller_get_devdata(controller);
clk_disable_unprepare(fsl_lpspi->clk);
@ -509,6 +575,6 @@ static struct platform_driver fsl_lpspi_driver = {
};
module_platform_driver(fsl_lpspi_driver);
MODULE_DESCRIPTION("LPSPI Master Controller driver");
MODULE_DESCRIPTION("LPSPI Controller driver");
MODULE_AUTHOR("Gao Pan <pandy.gao@nxp.com>");
MODULE_LICENSE("GPL");

View File

@ -64,15 +64,13 @@
#define TIMESTAMP_AFTER BIT(3)
#define POST_CMD_DELAY BIT(4)
/* SPI M_COMMAND OPCODE */
enum spi_mcmd_code {
enum spi_m_cmd_opcode {
CMD_NONE,
CMD_XFER,
CMD_CS,
CMD_CANCEL,
};
struct spi_geni_master {
struct geni_se se;
struct device *dev;
@ -87,7 +85,7 @@ struct spi_geni_master {
struct completion xfer_done;
unsigned int oversampling;
spinlock_t lock;
unsigned int cur_mcmd;
enum spi_m_cmd_opcode cur_mcmd;
int irq;
};
@ -129,7 +127,7 @@ static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
struct spi_master *spi = dev_get_drvdata(mas->dev);
struct geni_se *se = &mas->se;
unsigned long timeout;
unsigned long time_left;
reinit_completion(&mas->xfer_done);
pm_runtime_get_sync(mas->dev);
@ -142,8 +140,8 @@ static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
else
geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
timeout = wait_for_completion_timeout(&mas->xfer_done, HZ);
if (!timeout)
time_left = wait_for_completion_timeout(&mas->xfer_done, HZ);
if (!time_left)
handle_fifo_timeout(spi, NULL);
pm_runtime_put(mas->dev);
@ -485,7 +483,6 @@ static irqreturn_t geni_spi_isr(int irq, void *data)
struct geni_se *se = &mas->se;
u32 m_irq;
unsigned long flags;
irqreturn_t ret = IRQ_HANDLED;
if (mas->cur_mcmd == CMD_NONE)
return IRQ_NONE;
@ -533,16 +530,35 @@ static irqreturn_t geni_spi_isr(int irq, void *data)
writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
spin_unlock_irqrestore(&mas->lock, flags);
return ret;
return IRQ_HANDLED;
}
static int spi_geni_probe(struct platform_device *pdev)
{
int ret;
int ret, irq;
struct spi_master *spi;
struct spi_geni_master *mas;
struct resource *res;
struct geni_se *se;
void __iomem *base;
struct clk *clk;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Err getting IRQ %d\n", irq);
return irq;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
clk = devm_clk_get(&pdev->dev, "se");
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "Err getting SE Core clk %ld\n",
PTR_ERR(clk));
return PTR_ERR(clk);
}
spi = spi_alloc_master(&pdev->dev, sizeof(*mas));
if (!spi)
@ -550,27 +566,15 @@ static int spi_geni_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, spi);
mas = spi_master_get_devdata(spi);
mas->irq = irq;
mas->dev = &pdev->dev;
mas->se.dev = &pdev->dev;
mas->se.wrapper = dev_get_drvdata(pdev->dev.parent);
se = &mas->se;
mas->se.base = base;
mas->se.clk = clk;
spi->bus_num = -1;
spi->dev.of_node = pdev->dev.of_node;
mas->se.clk = devm_clk_get(&pdev->dev, "se");
if (IS_ERR(mas->se.clk)) {
ret = PTR_ERR(mas->se.clk);
dev_err(&pdev->dev, "Err getting SE Core clk %d\n", ret);
goto spi_geni_probe_err;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
se->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(se->base)) {
ret = PTR_ERR(se->base);
goto spi_geni_probe_err;
}
spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
spi->num_chipselect = 4;
@ -589,13 +593,6 @@ static int spi_geni_probe(struct platform_device *pdev)
if (ret)
goto spi_geni_probe_runtime_disable;
mas->irq = platform_get_irq(pdev, 0);
if (mas->irq < 0) {
ret = mas->irq;
dev_err(&pdev->dev, "Err getting IRQ %d\n", ret);
goto spi_geni_probe_runtime_disable;
}
ret = request_irq(mas->irq, geni_spi_isr,
IRQF_TRIGGER_HIGH, "spi_geni", spi);
if (ret)
@ -610,7 +607,6 @@ static int spi_geni_probe(struct platform_device *pdev)
free_irq(mas->irq, spi);
spi_geni_probe_runtime_disable:
pm_runtime_disable(&pdev->dev);
spi_geni_probe_err:
spi_master_put(spi);
return ret;
}

View File

@ -256,11 +256,29 @@ static int spi_gpio_setup(struct spi_device *spi)
static int spi_gpio_set_direction(struct spi_device *spi, bool output)
{
struct spi_gpio *spi_gpio = spi_to_spi_gpio(spi);
int ret;
if (output)
return gpiod_direction_output(spi_gpio->mosi, 1);
else
return gpiod_direction_input(spi_gpio->mosi);
ret = gpiod_direction_input(spi_gpio->mosi);
if (ret)
return ret;
/*
* Send a turnaround high impedance cycle when switching
* from output to input. Theoretically there should be
* a clock delay here, but as has been noted above, the
* nsec delay function for bit-banged GPIO is simply
* {} because bit-banging just doesn't get fast enough
* anyway.
*/
if (spi->mode & SPI_3WIRE_HIZ) {
gpiod_set_value_cansleep(spi_gpio->sck,
!(spi->mode & SPI_CPOL));
gpiod_set_value_cansleep(spi_gpio->sck,
!!(spi->mode & SPI_CPOL));
}
return 0;
}
static void spi_gpio_cleanup(struct spi_device *spi)
@ -410,7 +428,7 @@ static int spi_gpio_probe(struct platform_device *pdev)
return status;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
master->mode_bits = SPI_3WIRE | SPI_CPHA | SPI_CPOL;
master->mode_bits = SPI_3WIRE | SPI_3WIRE_HIZ | SPI_CPHA | SPI_CPOL;
master->flags = master_flags;
master->bus_num = pdev->id;
/* The master needs to think there is a chipselect even if not connected */

View File

@ -39,8 +39,8 @@
#define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
#define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
/* The maximum bytes that a sdma BD can transfer.*/
#define MAX_SDMA_BD_BYTES (1 << 15)
/* The maximum bytes that a sdma BD can transfer. */
#define MAX_SDMA_BD_BYTES (1 << 15)
#define MX51_ECSPI_CTRL_MAX_BURST 512
/* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
#define MX53_MAX_TRANSFER_BYTES 512
@ -59,7 +59,9 @@ struct spi_imx_data;
struct spi_imx_devtype_data {
void (*intctrl)(struct spi_imx_data *, int);
int (*config)(struct spi_device *);
int (*prepare_message)(struct spi_imx_data *, struct spi_message *);
int (*prepare_transfer)(struct spi_imx_data *, struct spi_device *,
struct spi_transfer *);
void (*trigger)(struct spi_imx_data *);
int (*rx_available)(struct spi_imx_data *);
void (*reset)(struct spi_imx_data *);
@ -85,7 +87,6 @@ struct spi_imx_data {
unsigned long spi_clk;
unsigned int spi_bus_clk;
unsigned int speed_hz;
unsigned int bits_per_word;
unsigned int spi_drctl;
@ -256,7 +257,7 @@ static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
#define MX51_ECSPI_INT_RREN (1 << 3)
#define MX51_ECSPI_INT_RDREN (1 << 4)
#define MX51_ECSPI_DMA 0x14
#define MX51_ECSPI_DMA 0x14
#define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
#define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
#define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
@ -486,11 +487,12 @@ static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
}
static int mx51_ecspi_config(struct spi_device *spi)
static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
struct spi_device *spi = msg->spi;
u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
u32 clk = spi_imx->speed_hz, delay, reg;
u32 testreg;
u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
/* set Master or Slave mode */
@ -505,19 +507,21 @@ static int mx51_ecspi_config(struct spi_device *spi)
if (spi->mode & SPI_READY)
ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
/* set clock speed */
ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->speed_hz, &clk);
spi_imx->spi_bus_clk = clk;
/* set chip select to use */
ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
ctrl |= (spi_imx->slave_burst * 8 - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
/*
* The ctrl register must be written first, with the EN bit set other
* registers must not be written to.
*/
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
if (spi->mode & SPI_LOOP)
testreg |= MX51_ECSPI_TESTREG_LBC;
else
ctrl |= (spi_imx->bits_per_word - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
testreg &= ~MX51_ECSPI_TESTREG_LBC;
writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
/*
* eCSPI burst completion by Chip Select signal in Slave mode
@ -541,26 +545,44 @@ static int mx51_ecspi_config(struct spi_device *spi)
cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
}
if (spi->mode & SPI_CS_HIGH)
cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
else
cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
return 0;
}
static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi,
struct spi_transfer *t)
{
u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
u32 clk = t->speed_hz, delay;
/* Clear BL field and set the right value */
ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
ctrl |= (spi_imx->slave_burst * 8 - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
else
ctrl |= (spi_imx->bits_per_word - 1)
<< MX51_ECSPI_CTRL_BL_OFFSET;
/* set clock speed */
ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
ctrl |= mx51_ecspi_clkdiv(spi_imx, t->speed_hz, &clk);
spi_imx->spi_bus_clk = clk;
if (spi_imx->usedma)
ctrl |= MX51_ECSPI_CTRL_SMC;
/* CTRL register always go first to bring out controller from reset */
writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
reg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
if (spi->mode & SPI_LOOP)
reg |= MX51_ECSPI_TESTREG_LBC;
else
reg &= ~MX51_ECSPI_TESTREG_LBC;
writel(reg, spi_imx->base + MX51_ECSPI_TESTREG);
writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
/*
* Wait until the changes in the configuration register CONFIGREG
* propagate into the hardware. It takes exactly one tick of the
@ -587,7 +609,6 @@ static void mx51_setup_wml(struct spi_imx_data *spi_imx)
* Configure the DMA register: setup the watermark
* and enable DMA request.
*/
writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
MX51_ECSPI_DMA_TX_WML(spi_imx->wml) |
MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
@ -659,13 +680,20 @@ static void mx31_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx31_config(struct spi_device *spi)
static int mx31_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
return 0;
}
static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi,
struct spi_transfer *t)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
unsigned int clk;
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, t->speed_hz, &clk) <<
MX31_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
@ -700,8 +728,10 @@ static int mx31_config(struct spi_device *spi)
writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
if (spi_imx->usedma) {
/* configure DMA requests when RXFIFO is half full and
when TXFIFO is half empty */
/*
* configure DMA requests when RXFIFO is half full and
* when TXFIFO is half empty
*/
writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
spi_imx->base + MX31_CSPI_DMAREG);
}
@ -755,14 +785,21 @@ static void mx21_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx21_config(struct spi_device *spi)
static int mx21_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
return 0;
}
static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi,
struct spi_transfer *t)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
unsigned int clk;
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->speed_hz, max, &clk)
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, t->speed_hz, max, &clk)
<< MX21_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
@ -824,13 +861,20 @@ static void mx1_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx1_config(struct spi_device *spi)
static int mx1_prepare_message(struct spi_imx_data *spi_imx,
struct spi_message *msg)
{
return 0;
}
static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
struct spi_device *spi,
struct spi_transfer *t)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
unsigned int clk;
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, t->speed_hz, &clk) <<
MX1_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
@ -858,7 +902,8 @@ static void mx1_reset(struct spi_imx_data *spi_imx)
static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
.intctrl = mx1_intctrl,
.config = mx1_config,
.prepare_message = mx1_prepare_message,
.prepare_transfer = mx1_prepare_transfer,
.trigger = mx1_trigger,
.rx_available = mx1_rx_available,
.reset = mx1_reset,
@ -871,7 +916,8 @@ static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
.intctrl = mx21_intctrl,
.config = mx21_config,
.prepare_message = mx21_prepare_message,
.prepare_transfer = mx21_prepare_transfer,
.trigger = mx21_trigger,
.rx_available = mx21_rx_available,
.reset = mx21_reset,
@ -885,7 +931,8 @@ static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
/* i.mx27 cspi shares the functions with i.mx21 one */
.intctrl = mx21_intctrl,
.config = mx21_config,
.prepare_message = mx21_prepare_message,
.prepare_transfer = mx21_prepare_transfer,
.trigger = mx21_trigger,
.rx_available = mx21_rx_available,
.reset = mx21_reset,
@ -898,7 +945,8 @@ static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
.intctrl = mx31_intctrl,
.config = mx31_config,
.prepare_message = mx31_prepare_message,
.prepare_transfer = mx31_prepare_transfer,
.trigger = mx31_trigger,
.rx_available = mx31_rx_available,
.reset = mx31_reset,
@ -912,7 +960,8 @@ static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
/* i.mx35 and later cspi shares the functions with i.mx31 one */
.intctrl = mx31_intctrl,
.config = mx31_config,
.prepare_message = mx31_prepare_message,
.prepare_transfer = mx31_prepare_transfer,
.trigger = mx31_trigger,
.rx_available = mx31_rx_available,
.reset = mx31_reset,
@ -925,7 +974,8 @@ static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
.intctrl = mx51_ecspi_intctrl,
.config = mx51_ecspi_config,
.prepare_message = mx51_ecspi_prepare_message,
.prepare_transfer = mx51_ecspi_prepare_transfer,
.trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset,
@ -940,7 +990,8 @@ static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
.intctrl = mx51_ecspi_intctrl,
.config = mx51_ecspi_config,
.prepare_message = mx51_ecspi_prepare_message,
.prepare_transfer = mx51_ecspi_prepare_transfer,
.trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset,
@ -1048,7 +1099,7 @@ static void spi_imx_push(struct spi_imx_data *spi_imx)
if (!spi_imx->count)
break;
if (spi_imx->dynamic_burst &&
spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder,
spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder,
fifo_words))
break;
spi_imx->tx(spi_imx);
@ -1142,7 +1193,6 @@ static int spi_imx_setupxfer(struct spi_device *spi,
return 0;
spi_imx->bits_per_word = t->bits_per_word;
spi_imx->speed_hz = t->speed_hz;
/*
* Initialize the functions for transfer. To transfer non byte-aligned
@ -1183,7 +1233,7 @@ static int spi_imx_setupxfer(struct spi_device *spi,
spi_imx->slave_burst = t->len;
}
spi_imx->devtype_data->config(spi);
spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t);
return 0;
}
@ -1492,7 +1542,13 @@ spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
return ret;
}
return 0;
ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
if (ret) {
clk_disable(spi_imx->clk_ipg);
clk_disable(spi_imx->clk_per);
}
return ret;
}
static int

View File

@ -12,7 +12,7 @@
#include "internals.h"
#define SPI_MEM_MAX_BUSWIDTH 4
#define SPI_MEM_MAX_BUSWIDTH 8
/**
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
@ -121,6 +121,13 @@ static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
break;
case 8:
if ((tx && (mode & SPI_TX_OCTAL)) ||
(!tx && (mode & SPI_RX_OCTAL)))
return 0;
break;
default:
break;
}
@ -142,7 +149,7 @@ static bool spi_mem_default_supports_op(struct spi_mem *mem,
spi_check_buswidth_req(mem, op->dummy.buswidth, true))
return false;
if (op->data.nbytes &&
if (op->data.dir != SPI_MEM_NO_DATA &&
spi_check_buswidth_req(mem, op->data.buswidth,
op->data.dir == SPI_MEM_DATA_OUT))
return false;
@ -213,6 +220,44 @@ bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
}
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
static int spi_mem_access_start(struct spi_mem *mem)
{
struct spi_controller *ctlr = mem->spi->controller;
/*
* Flush the message queue before executing our SPI memory
* operation to prevent preemption of regular SPI transfers.
*/
spi_flush_queue(ctlr);
if (ctlr->auto_runtime_pm) {
int ret;
ret = pm_runtime_get_sync(ctlr->dev.parent);
if (ret < 0) {
dev_err(&ctlr->dev, "Failed to power device: %d\n",
ret);
return ret;
}
}
mutex_lock(&ctlr->bus_lock_mutex);
mutex_lock(&ctlr->io_mutex);
return 0;
}
static void spi_mem_access_end(struct spi_mem *mem)
{
struct spi_controller *ctlr = mem->spi->controller;
mutex_unlock(&ctlr->io_mutex);
mutex_unlock(&ctlr->bus_lock_mutex);
if (ctlr->auto_runtime_pm)
pm_runtime_put(ctlr->dev.parent);
}
/**
* spi_mem_exec_op() - Execute a memory operation
* @mem: the SPI memory
@ -242,30 +287,13 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
return -ENOTSUPP;
if (ctlr->mem_ops) {
/*
* Flush the message queue before executing our SPI memory
* operation to prevent preemption of regular SPI transfers.
*/
spi_flush_queue(ctlr);
ret = spi_mem_access_start(mem);
if (ret)
return ret;
if (ctlr->auto_runtime_pm) {
ret = pm_runtime_get_sync(ctlr->dev.parent);
if (ret < 0) {
dev_err(&ctlr->dev,
"Failed to power device: %d\n",
ret);
return ret;
}
}
mutex_lock(&ctlr->bus_lock_mutex);
mutex_lock(&ctlr->io_mutex);
ret = ctlr->mem_ops->exec_op(mem, op);
mutex_unlock(&ctlr->io_mutex);
mutex_unlock(&ctlr->bus_lock_mutex);
if (ctlr->auto_runtime_pm)
pm_runtime_put(ctlr->dev.parent);
spi_mem_access_end(mem);
/*
* Some controllers only optimize specific paths (typically the
@ -411,6 +439,210 @@ int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
}
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct spi_mem_op op = desc->info.op_tmpl;
int ret;
op.addr.val = desc->info.offset + offs;
op.data.buf.in = buf;
op.data.nbytes = len;
ret = spi_mem_adjust_op_size(desc->mem, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(desc->mem, &op);
if (ret)
return ret;
return op.data.nbytes;
}
static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, const void *buf)
{
struct spi_mem_op op = desc->info.op_tmpl;
int ret;
op.addr.val = desc->info.offset + offs;
op.data.buf.out = buf;
op.data.nbytes = len;
ret = spi_mem_adjust_op_size(desc->mem, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(desc->mem, &op);
if (ret)
return ret;
return op.data.nbytes;
}
/**
* spi_mem_dirmap_create() - Create a direct mapping descriptor
* @mem: SPI mem device this direct mapping should be created for
* @info: direct mapping information
*
* This function is creating a direct mapping descriptor which can then be used
* to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
* If the SPI controller driver does not support direct mapping, this function
* fallback to an implementation using spi_mem_exec_op(), so that the caller
* doesn't have to bother implementing a fallback on his own.
*
* Return: a valid pointer in case of success, and ERR_PTR() otherwise.
*/
struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem *mem,
const struct spi_mem_dirmap_info *info)
{
struct spi_controller *ctlr = mem->spi->controller;
struct spi_mem_dirmap_desc *desc;
int ret = -ENOTSUPP;
/* Make sure the number of address cycles is between 1 and 8 bytes. */
if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
return ERR_PTR(-EINVAL);
/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
return ERR_PTR(-EINVAL);
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return ERR_PTR(-ENOMEM);
desc->mem = mem;
desc->info = *info;
if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
ret = ctlr->mem_ops->dirmap_create(desc);
if (ret) {
desc->nodirmap = true;
if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
ret = -ENOTSUPP;
else
ret = 0;
}
if (ret) {
kfree(desc);
return ERR_PTR(ret);
}
return desc;
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
/**
* spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
* @desc: the direct mapping descriptor to destroy
* @info: direct mapping information
*
* This function destroys a direct mapping descriptor previously created by
* spi_mem_dirmap_create().
*/
void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
{
struct spi_controller *ctlr = desc->mem->spi->controller;
if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
ctlr->mem_ops->dirmap_destroy(desc);
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
/**
* spi_mem_dirmap_dirmap_read() - Read data through a direct mapping
* @desc: direct mapping descriptor
* @offs: offset to start reading from. Note that this is not an absolute
* offset, but the offset within the direct mapping which already has
* its own offset
* @len: length in bytes
* @buf: destination buffer. This buffer must be DMA-able
*
* This function reads data from a memory device using a direct mapping
* previously instantiated with spi_mem_dirmap_create().
*
* Return: the amount of data read from the memory device or a negative error
* code. Note that the returned size might be smaller than @len, and the caller
* is responsible for calling spi_mem_dirmap_read() again when that happens.
*/
ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct spi_controller *ctlr = desc->mem->spi->controller;
ssize_t ret;
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
return -EINVAL;
if (!len)
return 0;
if (desc->nodirmap) {
ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
ret = spi_mem_access_start(desc->mem);
if (ret)
return ret;
ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
spi_mem_access_end(desc->mem);
} else {
ret = -ENOTSUPP;
}
return ret;
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
/**
* spi_mem_dirmap_dirmap_write() - Write data through a direct mapping
* @desc: direct mapping descriptor
* @offs: offset to start writing from. Note that this is not an absolute
* offset, but the offset within the direct mapping which already has
* its own offset
* @len: length in bytes
* @buf: source buffer. This buffer must be DMA-able
*
* This function writes data to a memory device using a direct mapping
* previously instantiated with spi_mem_dirmap_create().
*
* Return: the amount of data written to the memory device or a negative error
* code. Note that the returned size might be smaller than @len, and the caller
* is responsible for calling spi_mem_dirmap_write() again when that happens.
*/
ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, const void *buf)
{
struct spi_controller *ctlr = desc->mem->spi->controller;
ssize_t ret;
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
return -EINVAL;
if (!len)
return 0;
if (desc->nodirmap) {
ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
ret = spi_mem_access_start(desc->mem);
if (ret)
return ret;
ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
spi_mem_access_end(desc->mem);
} else {
ret = -ENOTSUPP;
}
return ret;
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
{
return container_of(drv, struct spi_mem_driver, spidrv.driver);

View File

@ -120,6 +120,12 @@ static const struct mtk_spi_compatible mt8173_compat = {
.must_tx = true,
};
static const struct mtk_spi_compatible mt8183_compat = {
.need_pad_sel = true,
.must_tx = true,
.enhance_timing = true,
};
/*
* A piece of default chip info unless the platform
* supplies it.
@ -144,12 +150,18 @@ static const struct of_device_id mtk_spi_of_match[] = {
{ .compatible = "mediatek,mt7622-spi",
.data = (void *)&mt7622_compat,
},
{ .compatible = "mediatek,mt7629-spi",
.data = (void *)&mt7622_compat,
},
{ .compatible = "mediatek,mt8135-spi",
.data = (void *)&mtk_common_compat,
},
{ .compatible = "mediatek,mt8173-spi",
.data = (void *)&mt8173_compat,
},
{ .compatible = "mediatek,mt8183-spi",
.data = (void *)&mt8183_compat,
},
{}
};
MODULE_DEVICE_TABLE(of, mtk_spi_of_match);

619
drivers/spi/spi-mxic.c Normal file
View File

@ -0,0 +1,619 @@
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2018 Macronix International Co., Ltd.
//
// Authors:
// Mason Yang <masonccyang@mxic.com.tw>
// zhengxunli <zhengxunli@mxic.com.tw>
// Boris Brezillon <boris.brezillon@bootlin.com>
//
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_DIR_READ BIT(31)
#define DMAS_CTRL_EN BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
struct mxic_spi {
struct clk *ps_clk;
struct clk *send_clk;
struct clk *send_dly_clk;
void __iomem *regs;
u32 cur_speed_hz;
};
static int mxic_spi_clk_enable(struct mxic_spi *mxic)
{
int ret;
ret = clk_prepare_enable(mxic->send_clk);
if (ret)
return ret;
ret = clk_prepare_enable(mxic->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(mxic->send_clk);
return ret;
}
static void mxic_spi_clk_disable(struct mxic_spi *mxic)
{
clk_disable_unprepare(mxic->send_clk);
clk_disable_unprepare(mxic->send_dly_clk);
}
static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
mxic->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
mxic->regs + IDLY_CODE(1));
}
static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
{
int ret;
ret = clk_set_rate(mxic->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(mxic->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_spi_set_input_delay_dqs(mxic, 0xf);
/*
* Phase degree = 360 * freq * output-delay
* where output-delay is a constant value 1 ns in FPGA.
*
* Get Phase degree = 360 * freq * 1 ns
* = 360 * freq * 1 sec / 1000000000
* = 9 * freq / 25000000
*/
ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
if (ret)
return ret;
return 0;
}
static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
{
int ret;
if (mxic->cur_speed_hz == freq)
return 0;
mxic_spi_clk_disable(mxic);
ret = mxic_spi_clk_setup(mxic, freq);
if (ret)
return ret;
ret = mxic_spi_clk_enable(mxic);
if (ret)
return ret;
mxic->cur_speed_hz = freq;
return 0;
}
static void mxic_spi_hw_init(struct mxic_spi *mxic)
{
writel(0, mxic->regs + DATA_STROB);
writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
writel(0, mxic->regs + HC_EN);
writel(0, mxic->regs + LRD_CFG);
writel(0, mxic->regs + LRD_CTRL);
writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NAND) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
mxic->regs + HC_CFG);
}
static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
writel(data, mxic->regs + TXD(nbytes % 4));
if (rxbuf) {
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
data = readl(mxic->regs + RXD);
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
} else {
readl(mxic->regs + RXD);
}
WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
pos += nbytes;
}
return 0;
}
static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->data.buswidth > 4 || op->addr.buswidth > 4 ||
op->dummy.buswidth > 4 || op->cmd.buswidth > 4)
return false;
if (op->data.nbytes && op->dummy.nbytes &&
op->data.buswidth != op->dummy.buswidth)
return false;
if (op->addr.nbytes > 7)
return false;
return true;
}
static int mxic_spi_mem_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
int nio = 1, i, ret;
u32 ss_ctrl;
u8 addr[8];
ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
if (ret)
return ret;
if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
nio = 4;
else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
nio = 2;
writel(HC_CFG_NIO(nio) |
HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
HC_CFG_MAN_CS_EN,
mxic->regs + HC_CFG);
writel(HC_EN_BIT, mxic->regs + HC_EN);
ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
if (op->addr.nbytes)
ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
if (op->dummy.nbytes)
ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
if (op->data.nbytes) {
ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
if (op->data.dir == SPI_MEM_DATA_IN)
ss_ctrl |= OP_READ;
}
writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
ret = mxic_spi_data_xfer(mxic, &op->cmd.opcode, NULL, 1);
if (ret)
goto out;
for (i = 0; i < op->addr.nbytes; i++)
addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(mxic,
op->data.dir == SPI_MEM_DATA_OUT ?
op->data.buf.out : NULL,
op->data.dir == SPI_MEM_DATA_IN ?
op->data.buf.in : NULL,
op->data.nbytes);
out:
writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
writel(0, mxic->regs + HC_EN);
return ret;
}
static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
.supports_op = mxic_spi_mem_supports_op,
.exec_op = mxic_spi_mem_exec_op,
};
static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
{
struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
if (!lvl) {
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
mxic->regs + HC_CFG);
writel(HC_EN_BIT, mxic->regs + HC_EN);
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
} else {
writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
writel(0, mxic->regs + HC_EN);
}
}
static int mxic_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct mxic_spi *mxic = spi_master_get_devdata(master);
unsigned int busw = OP_BUSW_1;
int ret;
if (t->rx_buf && t->tx_buf) {
if (((spi->mode & SPI_TX_QUAD) &&
!(spi->mode & SPI_RX_QUAD)) ||
((spi->mode & SPI_TX_DUAL) &&
!(spi->mode & SPI_RX_DUAL)))
return -ENOTSUPP;
}
ret = mxic_spi_set_freq(mxic, t->speed_hz);
if (ret)
return ret;
if (t->tx_buf) {
if (spi->mode & SPI_TX_QUAD)
busw = OP_BUSW_4;
else if (spi->mode & SPI_TX_DUAL)
busw = OP_BUSW_2;
} else if (t->rx_buf) {
if (spi->mode & SPI_RX_QUAD)
busw = OP_BUSW_4;
else if (spi->mode & SPI_RX_DUAL)
busw = OP_BUSW_2;
}
writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
mxic->regs + SS_CTRL(0));
ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
if (ret)
return ret;
spi_finalize_current_transfer(master);
return 0;
}
static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct mxic_spi *mxic = spi_master_get_devdata(master);
mxic_spi_clk_disable(mxic);
clk_disable_unprepare(mxic->ps_clk);
return 0;
}
static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct mxic_spi *mxic = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(mxic->ps_clk);
if (ret) {
dev_err(dev, "Cannot enable ps_clock.\n");
return ret;
}
return mxic_spi_clk_enable(mxic);
}
static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
mxic_spi_runtime_resume, NULL)
};
static int mxic_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct resource *res;
struct mxic_spi *mxic;
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
mxic = spi_master_get_devdata(master);
master->dev.of_node = pdev->dev.of_node;
mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
if (IS_ERR(mxic->ps_clk))
return PTR_ERR(mxic->ps_clk);
mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
if (IS_ERR(mxic->send_clk))
return PTR_ERR(mxic->send_clk);
mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
if (IS_ERR(mxic->send_dly_clk))
return PTR_ERR(mxic->send_dly_clk);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
mxic->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mxic->regs))
return PTR_ERR(mxic->regs);
pm_runtime_enable(&pdev->dev);
master->auto_runtime_pm = true;
master->num_chipselect = 1;
master->mem_ops = &mxic_spi_mem_ops;
master->set_cs = mxic_spi_set_cs;
master->transfer_one = mxic_spi_transfer_one;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->mode_bits = SPI_CPOL | SPI_CPHA |
SPI_RX_DUAL | SPI_TX_DUAL |
SPI_RX_QUAD | SPI_TX_QUAD;
mxic_spi_hw_init(mxic);
ret = spi_register_master(master);
if (ret) {
dev_err(&pdev->dev, "spi_register_master failed\n");
goto err_put_master;
}
return 0;
err_put_master:
spi_master_put(master);
pm_runtime_disable(&pdev->dev);
return ret;
}
static int mxic_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
spi_unregister_master(master);
return 0;
}
static const struct of_device_id mxic_spi_of_ids[] = {
{ .compatible = "mxicy,mx25f0a-spi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
static struct platform_driver mxic_spi_driver = {
.probe = mxic_spi_probe,
.remove = mxic_spi_remove,
.driver = {
.name = "mxic-spi",
.of_match_table = mxic_spi_of_ids,
.pm = &mxic_spi_dev_pm_ops,
},
};
module_platform_driver(mxic_spi_driver);
MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
MODULE_DESCRIPTION("MX25F0A SPI controller driver");
MODULE_LICENSE("GPL v2");

495
drivers/spi/spi-npcm-pspi.c Normal file
View File

@ -0,0 +1,495 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2018 Nuvoton Technology corporation.
#include <linux/kernel.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <asm/unaligned.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
struct npcm_pspi {
struct completion xfer_done;
struct regmap *rst_regmap;
struct spi_master *master;
unsigned int tx_bytes;
unsigned int rx_bytes;
void __iomem *base;
bool is_save_param;
u8 bits_per_word;
const u8 *tx_buf;
struct clk *clk;
u32 speed_hz;
u8 *rx_buf;
u16 mode;
u32 id;
};
#define DRIVER_NAME "npcm-pspi"
#define NPCM_PSPI_DATA 0x00
#define NPCM_PSPI_CTL1 0x02
#define NPCM_PSPI_STAT 0x04
/* definitions for control and status register */
#define NPCM_PSPI_CTL1_SPIEN BIT(0)
#define NPCM_PSPI_CTL1_MOD BIT(2)
#define NPCM_PSPI_CTL1_EIR BIT(5)
#define NPCM_PSPI_CTL1_EIW BIT(6)
#define NPCM_PSPI_CTL1_SCM BIT(7)
#define NPCM_PSPI_CTL1_SCIDL BIT(8)
#define NPCM_PSPI_CTL1_SCDV6_0 GENMASK(15, 9)
#define NPCM_PSPI_STAT_BSY BIT(0)
#define NPCM_PSPI_STAT_RBF BIT(1)
/* general definitions */
#define NPCM_PSPI_TIMEOUT_MS 2000
#define NPCM_PSPI_MAX_CLK_DIVIDER 256
#define NPCM_PSPI_MIN_CLK_DIVIDER 4
#define NPCM_PSPI_DEFAULT_CLK 25000000
/* reset register */
#define NPCM7XX_IPSRST2_OFFSET 0x24
#define NPCM7XX_PSPI1_RESET BIT(22)
#define NPCM7XX_PSPI2_RESET BIT(23)
static inline unsigned int bytes_per_word(unsigned int bits)
{
return bits <= 8 ? 1 : 2;
}
static inline void npcm_pspi_irq_enable(struct npcm_pspi *priv, u16 mask)
{
u16 val;
val = ioread16(priv->base + NPCM_PSPI_CTL1);
val |= mask;
iowrite16(val, priv->base + NPCM_PSPI_CTL1);
}
static inline void npcm_pspi_irq_disable(struct npcm_pspi *priv, u16 mask)
{
u16 val;
val = ioread16(priv->base + NPCM_PSPI_CTL1);
val &= ~mask;
iowrite16(val, priv->base + NPCM_PSPI_CTL1);
}
static inline void npcm_pspi_enable(struct npcm_pspi *priv)
{
u16 val;
val = ioread16(priv->base + NPCM_PSPI_CTL1);
val |= NPCM_PSPI_CTL1_SPIEN;
iowrite16(val, priv->base + NPCM_PSPI_CTL1);
}
static inline void npcm_pspi_disable(struct npcm_pspi *priv)
{
u16 val;
val = ioread16(priv->base + NPCM_PSPI_CTL1);
val &= ~NPCM_PSPI_CTL1_SPIEN;
iowrite16(val, priv->base + NPCM_PSPI_CTL1);
}
static void npcm_pspi_set_mode(struct spi_device *spi)
{
struct npcm_pspi *priv = spi_master_get_devdata(spi->master);
u16 regtemp;
u16 mode_val;
switch (spi->mode & (SPI_CPOL | SPI_CPHA)) {
case SPI_MODE_0:
mode_val = 0;
break;
case SPI_MODE_1:
mode_val = NPCM_PSPI_CTL1_SCIDL;
break;
case SPI_MODE_2:
mode_val = NPCM_PSPI_CTL1_SCM;
break;
case SPI_MODE_3:
mode_val = NPCM_PSPI_CTL1_SCIDL | NPCM_PSPI_CTL1_SCM;
break;
}
regtemp = ioread16(priv->base + NPCM_PSPI_CTL1);
regtemp &= ~(NPCM_PSPI_CTL1_SCM | NPCM_PSPI_CTL1_SCIDL);
iowrite16(regtemp | mode_val, priv->base + NPCM_PSPI_CTL1);
}
static void npcm_pspi_set_transfer_size(struct npcm_pspi *priv, int size)
{
u16 regtemp;
regtemp = ioread16(NPCM_PSPI_CTL1 + priv->base);
switch (size) {
case 8:
regtemp &= ~NPCM_PSPI_CTL1_MOD;
break;
case 16:
regtemp |= NPCM_PSPI_CTL1_MOD;
break;
}
iowrite16(regtemp, NPCM_PSPI_CTL1 + priv->base);
}
static void npcm_pspi_set_baudrate(struct npcm_pspi *priv, unsigned int speed)
{
u32 ckdiv;
u16 regtemp;
/* the supported rates are numbers from 4 to 256. */
ckdiv = DIV_ROUND_CLOSEST(clk_get_rate(priv->clk), (2 * speed)) - 1;
regtemp = ioread16(NPCM_PSPI_CTL1 + priv->base);
regtemp &= ~NPCM_PSPI_CTL1_SCDV6_0;
iowrite16(regtemp | (ckdiv << 9), NPCM_PSPI_CTL1 + priv->base);
}
static void npcm_pspi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct npcm_pspi *priv = spi_master_get_devdata(spi->master);
priv->tx_buf = t->tx_buf;
priv->rx_buf = t->rx_buf;
priv->tx_bytes = t->len;
priv->rx_bytes = t->len;
if (!priv->is_save_param || priv->mode != spi->mode) {
npcm_pspi_set_mode(spi);
priv->mode = spi->mode;
}
if (!priv->is_save_param || priv->bits_per_word != t->bits_per_word) {
npcm_pspi_set_transfer_size(priv, t->bits_per_word);
priv->bits_per_word = t->bits_per_word;
}
if (!priv->is_save_param || priv->speed_hz != t->speed_hz) {
npcm_pspi_set_baudrate(priv, t->speed_hz);
priv->speed_hz = t->speed_hz;
}
if (!priv->is_save_param)
priv->is_save_param = true;
}
static void npcm_pspi_send(struct npcm_pspi *priv)
{
int wsize;
wsize = min(bytes_per_word(priv->bits_per_word), priv->tx_bytes);
priv->tx_bytes -= wsize;
if (!priv->tx_buf)
return;
switch (wsize) {
case 1:
iowrite8(*priv->tx_buf, NPCM_PSPI_DATA + priv->base);
break;
case 2:
iowrite16(*priv->tx_buf, NPCM_PSPI_DATA + priv->base);
break;
default:
WARN_ON_ONCE(1);
return;
}
priv->tx_buf += wsize;
}
static void npcm_pspi_recv(struct npcm_pspi *priv)
{
int rsize;
u16 val;
rsize = min(bytes_per_word(priv->bits_per_word), priv->rx_bytes);
priv->rx_bytes -= rsize;
if (!priv->rx_buf)
return;
switch (rsize) {
case 1:
val = ioread8(priv->base + NPCM_PSPI_DATA);
break;
case 2:
val = ioread16(priv->base + NPCM_PSPI_DATA);
break;
default:
WARN_ON_ONCE(1);
return;
}
*priv->rx_buf = val;
priv->rx_buf += rsize;
}
static int npcm_pspi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct npcm_pspi *priv = spi_master_get_devdata(master);
int status;
npcm_pspi_setup_transfer(spi, t);
reinit_completion(&priv->xfer_done);
npcm_pspi_enable(priv);
status = wait_for_completion_timeout(&priv->xfer_done,
msecs_to_jiffies
(NPCM_PSPI_TIMEOUT_MS));
if (status == 0) {
npcm_pspi_disable(priv);
return -ETIMEDOUT;
}
return 0;
}
static int npcm_pspi_prepare_transfer_hardware(struct spi_master *master)
{
struct npcm_pspi *priv = spi_master_get_devdata(master);
npcm_pspi_irq_enable(priv, NPCM_PSPI_CTL1_EIR | NPCM_PSPI_CTL1_EIW);
return 0;
}
static int npcm_pspi_unprepare_transfer_hardware(struct spi_master *master)
{
struct npcm_pspi *priv = spi_master_get_devdata(master);
npcm_pspi_irq_disable(priv, NPCM_PSPI_CTL1_EIR | NPCM_PSPI_CTL1_EIW);
return 0;
}
static void npcm_pspi_reset_hw(struct npcm_pspi *priv)
{
regmap_write(priv->rst_regmap, NPCM7XX_IPSRST2_OFFSET,
NPCM7XX_PSPI1_RESET << priv->id);
regmap_write(priv->rst_regmap, NPCM7XX_IPSRST2_OFFSET, 0x0);
}
static irqreturn_t npcm_pspi_handler(int irq, void *dev_id)
{
struct npcm_pspi *priv = dev_id;
u16 val;
u8 stat;
stat = ioread8(priv->base + NPCM_PSPI_STAT);
if (!priv->tx_buf && !priv->rx_buf)
return IRQ_NONE;
if (priv->tx_buf) {
if (stat & NPCM_PSPI_STAT_RBF) {
val = ioread8(NPCM_PSPI_DATA + priv->base);
if (priv->tx_bytes == 0) {
npcm_pspi_disable(priv);
complete(&priv->xfer_done);
return IRQ_HANDLED;
}
}
if ((stat & NPCM_PSPI_STAT_BSY) == 0)
if (priv->tx_bytes)
npcm_pspi_send(priv);
}
if (priv->rx_buf) {
if (stat & NPCM_PSPI_STAT_RBF) {
if (!priv->rx_bytes)
return IRQ_NONE;
npcm_pspi_recv(priv);
if (!priv->rx_bytes) {
npcm_pspi_disable(priv);
complete(&priv->xfer_done);
return IRQ_HANDLED;
}
}
if (((stat & NPCM_PSPI_STAT_BSY) == 0) && !priv->tx_buf)
iowrite8(0x0, NPCM_PSPI_DATA + priv->base);
}
return IRQ_HANDLED;
}
static int npcm_pspi_probe(struct platform_device *pdev)
{
struct npcm_pspi *priv;
struct spi_master *master;
struct resource *res;
unsigned long clk_hz;
struct device_node *np = pdev->dev.of_node;
int num_cs, i;
int csgpio;
int irq;
int ret;
num_cs = of_gpio_named_count(np, "cs-gpios");
if (num_cs < 0)
return num_cs;
pdev->id = of_alias_get_id(np, "spi");
if (pdev->id < 0)
pdev->id = 0;
master = spi_alloc_master(&pdev->dev, sizeof(*priv));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
priv = spi_master_get_devdata(master);
priv->master = master;
priv->is_save_param = false;
priv->id = pdev->id;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base);
goto out_master_put;
}
priv->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
ret = PTR_ERR(priv->clk);
goto out_master_put;
}
ret = clk_prepare_enable(priv->clk);
if (ret)
goto out_master_put;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to get IRQ\n");
ret = irq;
goto out_disable_clk;
}
priv->rst_regmap =
syscon_regmap_lookup_by_compatible("nuvoton,npcm750-rst");
if (IS_ERR(priv->rst_regmap)) {
dev_err(&pdev->dev, "failed to find nuvoton,npcm750-rst\n");
return PTR_ERR(priv->rst_regmap);
}
/* reset SPI-HW block */
npcm_pspi_reset_hw(priv);
ret = devm_request_irq(&pdev->dev, irq, npcm_pspi_handler, 0,
"npcm-pspi", priv);
if (ret) {
dev_err(&pdev->dev, "failed to request IRQ\n");
goto out_disable_clk;
}
init_completion(&priv->xfer_done);
clk_hz = clk_get_rate(priv->clk);
master->max_speed_hz = DIV_ROUND_UP(clk_hz, NPCM_PSPI_MIN_CLK_DIVIDER);
master->min_speed_hz = DIV_ROUND_UP(clk_hz, NPCM_PSPI_MAX_CLK_DIVIDER);
master->mode_bits = SPI_CPHA | SPI_CPOL;
master->dev.of_node = pdev->dev.of_node;
master->bus_num = pdev->id;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
master->transfer_one = npcm_pspi_transfer_one;
master->prepare_transfer_hardware =
npcm_pspi_prepare_transfer_hardware;
master->unprepare_transfer_hardware =
npcm_pspi_unprepare_transfer_hardware;
master->num_chipselect = num_cs;
for (i = 0; i < num_cs; i++) {
csgpio = of_get_named_gpio(np, "cs-gpios", i);
if (csgpio < 0) {
dev_err(&pdev->dev, "failed to get csgpio#%u\n", i);
goto out_disable_clk;
}
dev_dbg(&pdev->dev, "csgpio#%u = %d\n", i, csgpio);
ret = devm_gpio_request_one(&pdev->dev, csgpio,
GPIOF_OUT_INIT_HIGH, DRIVER_NAME);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to configure csgpio#%u %d\n"
, i, csgpio);
goto out_disable_clk;
}
}
/* set to default clock rate */
npcm_pspi_set_baudrate(priv, NPCM_PSPI_DEFAULT_CLK);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret)
goto out_disable_clk;
pr_info("NPCM Peripheral SPI %d probed\n", pdev->id);
return 0;
out_disable_clk:
clk_disable_unprepare(priv->clk);
out_master_put:
spi_master_put(master);
return ret;
}
static int npcm_pspi_remove(struct platform_device *pdev)
{
struct npcm_pspi *priv = platform_get_drvdata(pdev);
npcm_pspi_reset_hw(priv);
clk_disable_unprepare(priv->clk);
return 0;
}
static const struct of_device_id npcm_pspi_match[] = {
{ .compatible = "nuvoton,npcm750-pspi", .data = NULL },
{}
};
MODULE_DEVICE_TABLE(of, npcm_pspi_match);
static struct platform_driver npcm_pspi_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = npcm_pspi_match,
},
.probe = npcm_pspi_probe,
.remove = npcm_pspi_remove,
};
module_platform_driver(npcm_pspi_driver);
MODULE_DESCRIPTION("NPCM peripheral SPI Controller driver");
MODULE_AUTHOR("Tomer Maimon <tomer.maimon@nuvoton.com>");
MODULE_LICENSE("GPL v2");

View File

@ -861,11 +861,10 @@ static void dma_callback(void *data)
/* Update total bytes transferred */
msg->actual_length += pl022->cur_transfer->len;
if (pl022->cur_transfer->cs_change)
pl022_cs_control(pl022, SSP_CHIP_DESELECT);
/* Move to next transfer */
msg->state = next_transfer(pl022);
if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
pl022_cs_control(pl022, SSP_CHIP_DESELECT);
tasklet_schedule(&pl022->pump_transfers);
}
@ -1333,10 +1332,10 @@ static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
}
/* Update total bytes transferred */
msg->actual_length += pl022->cur_transfer->len;
if (pl022->cur_transfer->cs_change)
pl022_cs_control(pl022, SSP_CHIP_DESELECT);
/* Move to next transfer */
msg->state = next_transfer(pl022);
if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
pl022_cs_control(pl022, SSP_CHIP_DESELECT);
tasklet_schedule(&pl022->pump_transfers);
return IRQ_HANDLED;
}
@ -1544,10 +1543,11 @@ static void do_polling_transfer(struct pl022 *pl022)
/* Update total byte transferred */
message->actual_length += pl022->cur_transfer->len;
if (pl022->cur_transfer->cs_change)
pl022_cs_control(pl022, SSP_CHIP_DESELECT);
/* Move to next transfer */
message->state = next_transfer(pl022);
if (message->state != STATE_DONE
&& pl022->cur_transfer->cs_change)
pl022_cs_control(pl022, SSP_CHIP_DESELECT);
}
out:
/* Handle end of message */

View File

@ -626,6 +626,11 @@ static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
return IRQ_HANDLED;
}
if (irq_status & SSSR_TUR) {
int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
return IRQ_HANDLED;
}
if (irq_status & SSSR_TINT) {
pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
if (drv_data->read(drv_data)) {
@ -1073,6 +1078,30 @@ static int pxa2xx_spi_transfer_one(struct spi_controller *master,
pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
}
if (drv_data->ssp_type == MMP2_SSP) {
u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
& SSSR_TFL_MASK) >> 8;
if (tx_level) {
/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
tx_level);
if (tx_level > transfer->len)
tx_level = transfer->len;
drv_data->tx += tx_level;
}
}
if (spi_controller_is_slave(master)) {
while (drv_data->write(drv_data))
;
if (drv_data->gpiod_ready) {
gpiod_set_value(drv_data->gpiod_ready, 1);
udelay(1);
gpiod_set_value(drv_data->gpiod_ready, 0);
}
}
/*
* Release the data by enabling service requests and interrupts,
* without changing any mode bits
@ -1082,6 +1111,27 @@ static int pxa2xx_spi_transfer_one(struct spi_controller *master,
return 1;
}
static int pxa2xx_spi_slave_abort(struct spi_master *master)
{
struct driver_data *drv_data = spi_controller_get_devdata(master);
/* Stop and reset SSP */
write_SSSR_CS(drv_data, drv_data->clear_sr);
reset_sccr1(drv_data);
if (!pxa25x_ssp_comp(drv_data))
pxa2xx_spi_write(drv_data, SSTO, 0);
pxa2xx_spi_flush(drv_data);
pxa2xx_spi_write(drv_data, SSCR0,
pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
drv_data->master->cur_msg->status = -EINTR;
spi_finalize_current_transfer(drv_data->master);
return 0;
}
static void pxa2xx_spi_handle_err(struct spi_controller *master,
struct spi_message *msg)
{
@ -1209,9 +1259,14 @@ static int setup(struct spi_device *spi)
rx_thres = config->rx_threshold;
break;
default:
tx_thres = TX_THRESH_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_DFLT;
if (spi_controller_is_slave(drv_data->master)) {
tx_thres = 1;
rx_thres = 2;
} else {
tx_thres = TX_THRESH_DFLT;
rx_thres = RX_THRESH_DFLT;
}
break;
}
@ -1255,6 +1310,12 @@ static int setup(struct spi_device *spi)
if (chip_info->enable_loopback)
chip->cr1 = SSCR1_LBM;
}
if (spi_controller_is_slave(drv_data->master)) {
chip->cr1 |= SSCR1_SCFR;
chip->cr1 |= SSCR1_SCLKDIR;
chip->cr1 |= SSCR1_SFRMDIR;
chip->cr1 |= SSCR1_SPH;
}
chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
@ -1500,6 +1561,7 @@ pxa2xx_spi_init_pdata(struct platform_device *pdev)
ssp->pdev = pdev;
ssp->port_id = pxa2xx_spi_get_port_id(adev);
pdata->is_slave = of_property_read_bool(pdev->dev.of_node, "spi-slave");
pdata->num_chipselect = 1;
pdata->enable_dma = true;
@ -1559,7 +1621,11 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
return -ENODEV;
}
master = spi_alloc_master(dev, sizeof(struct driver_data));
if (platform_info->is_slave)
master = spi_alloc_slave(dev, sizeof(struct driver_data));
else
master = spi_alloc_master(dev, sizeof(struct driver_data));
if (!master) {
dev_err(&pdev->dev, "cannot alloc spi_master\n");
pxa_ssp_free(ssp);
@ -1581,6 +1647,7 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
master->setup = setup;
master->set_cs = pxa2xx_spi_set_cs;
master->transfer_one = pxa2xx_spi_transfer_one;
master->slave_abort = pxa2xx_spi_slave_abort;
master->handle_err = pxa2xx_spi_handle_err;
master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
@ -1610,7 +1677,8 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
drv_data->dma_cr1 = DEFAULT_DMA_CR1;
drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
| SSSR_ROR | SSSR_TUR;
}
status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
@ -1658,10 +1726,22 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
pxa2xx_spi_write(drv_data, SSCR0, tmp);
break;
default:
tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
SSCR1_TxTresh(TX_THRESH_DFLT);
if (spi_controller_is_slave(master)) {
tmp = SSCR1_SCFR |
SSCR1_SCLKDIR |
SSCR1_SFRMDIR |
SSCR1_RxTresh(2) |
SSCR1_TxTresh(1) |
SSCR1_SPH;
} else {
tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
SSCR1_TxTresh(TX_THRESH_DFLT);
}
pxa2xx_spi_write(drv_data, SSCR1, tmp);
tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
tmp = SSCR0_Motorola | SSCR0_DataSize(8);
if (!spi_controller_is_slave(master))
tmp |= SSCR0_SCR(2);
pxa2xx_spi_write(drv_data, SSCR0, tmp);
break;
}
@ -1711,7 +1791,7 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
if (PTR_ERR(gpiod) == -ENOENT)
continue;
status = (int)PTR_ERR(gpiod);
status = PTR_ERR(gpiod);
goto out_error_clock_enabled;
} else {
drv_data->cs_gpiods[i] = gpiod;
@ -1719,6 +1799,15 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
}
}
if (platform_info->is_slave) {
drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
"ready", GPIOD_OUT_LOW);
if (IS_ERR(drv_data->gpiod_ready)) {
status = PTR_ERR(drv_data->gpiod_ready);
goto out_error_clock_enabled;
}
}
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
@ -1811,10 +1900,6 @@ static int pxa2xx_spi_resume(struct device *dev)
return status;
}
/* Restore LPSS private register bits */
if (is_lpss_ssp(drv_data))
lpss_ssp_setup(drv_data);
/* Start the queue running */
return spi_controller_resume(drv_data->master);
}

View File

@ -64,6 +64,9 @@ struct driver_data {
/* GPIOs for chip selects */
struct gpio_desc **cs_gpiods;
/* Optional slave FIFO ready signal */
struct gpio_desc *gpiod_ready;
};
struct chip_data {

View File

@ -54,6 +54,9 @@
/* Bit fields in CTRLR0 */
#define CR0_DFS_OFFSET 0
#define CR0_DFS_4BIT 0x0
#define CR0_DFS_8BIT 0x1
#define CR0_DFS_16BIT 0x2
#define CR0_CFS_OFFSET 2
@ -94,6 +97,7 @@
#define CR0_BHT_8BIT 0x1
#define CR0_RSD_OFFSET 14
#define CR0_RSD_MAX 0x3
#define CR0_FRF_OFFSET 16
#define CR0_FRF_SPI 0x0
@ -115,6 +119,10 @@
/* Bit fields in SER, 2bit */
#define SER_MASK 0x3
/* Bit fields in BAUDR */
#define BAUDR_SCKDV_MIN 2
#define BAUDR_SCKDV_MAX 65534
/* Bit fields in SR, 5bit */
#define SR_MASK 0x1f
#define SR_BUSY (1 << 0)
@ -142,11 +150,12 @@
#define RF_DMA_EN (1 << 0)
#define TF_DMA_EN (1 << 1)
#define RXBUSY (1 << 0)
#define TXBUSY (1 << 1)
/* Driver state flags */
#define RXDMA (1 << 0)
#define TXDMA (1 << 1)
/* sclk_out: spi master internal logic in rk3x can support 50Mhz */
#define MAX_SCLK_OUT 50000000
#define MAX_SCLK_OUT 50000000U
/*
* SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
@ -156,72 +165,37 @@
#define ROCKCHIP_SPI_MAX_CS_NUM 2
enum rockchip_ssi_type {
SSI_MOTO_SPI = 0,
SSI_TI_SSP,
SSI_NS_MICROWIRE,
};
struct rockchip_spi_dma_data {
struct dma_chan *ch;
dma_addr_t addr;
};
struct rockchip_spi {
struct device *dev;
struct spi_master *master;
struct clk *spiclk;
struct clk *apb_pclk;
void __iomem *regs;
/*depth of the FIFO buffer */
u32 fifo_len;
/* max bus freq supported */
u32 max_freq;
/* supported slave numbers */
enum rockchip_ssi_type type;
u16 mode;
u8 tmode;
u8 bpw;
u8 n_bytes;
u32 rsd_nsecs;
unsigned len;
u32 speed;
dma_addr_t dma_addr_rx;
dma_addr_t dma_addr_tx;
const void *tx;
const void *tx_end;
void *rx;
void *rx_end;
unsigned int tx_left;
unsigned int rx_left;
u32 state;
/* protect state */
spinlock_t lock;
atomic_t state;
/*depth of the FIFO buffer */
u32 fifo_len;
/* frequency of spiclk */
u32 freq;
u8 n_bytes;
u8 rsd;
bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
bool use_dma;
struct sg_table tx_sg;
struct sg_table rx_sg;
struct rockchip_spi_dma_data dma_rx;
struct rockchip_spi_dma_data dma_tx;
};
static inline void spi_enable_chip(struct rockchip_spi *rs, int enable)
static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
{
writel_relaxed((enable ? 1 : 0), rs->regs + ROCKCHIP_SPI_SSIENR);
}
static inline void spi_set_clk(struct rockchip_spi *rs, u16 div)
{
writel_relaxed(div, rs->regs + ROCKCHIP_SPI_BAUDR);
}
static inline void flush_fifo(struct rockchip_spi *rs)
{
while (readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR))
readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
}
static inline void wait_for_idle(struct rockchip_spi *rs)
@ -251,24 +225,6 @@ static u32 get_fifo_len(struct rockchip_spi *rs)
return (fifo == 31) ? 0 : fifo;
}
static inline u32 tx_max(struct rockchip_spi *rs)
{
u32 tx_left, tx_room;
tx_left = (rs->tx_end - rs->tx) / rs->n_bytes;
tx_room = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
return min(tx_left, tx_room);
}
static inline u32 rx_max(struct rockchip_spi *rs)
{
u32 rx_left = (rs->rx_end - rs->rx) / rs->n_bytes;
u32 rx_room = (u32)readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
return min(rx_left, rx_room);
}
static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
{
struct spi_master *master = spi->master;
@ -296,64 +252,39 @@ static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
rs->cs_asserted[spi->chip_select] = cs_asserted;
}
static int rockchip_spi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct rockchip_spi *rs = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
rs->mode = spi->mode;
return 0;
}
static void rockchip_spi_handle_err(struct spi_master *master,
struct spi_message *msg)
{
unsigned long flags;
struct rockchip_spi *rs = spi_master_get_devdata(master);
spin_lock_irqsave(&rs->lock, flags);
/*
* For DMA mode, we need terminate DMA channel and flush
* fifo for the next transfer if DMA thansfer timeout.
* handle_err() was called by core if transfer failed.
* Maybe it is reasonable for error handling here.
/* stop running spi transfer
* this also flushes both rx and tx fifos
*/
if (rs->use_dma) {
if (rs->state & RXBUSY) {
dmaengine_terminate_async(rs->dma_rx.ch);
flush_fifo(rs);
}
spi_enable_chip(rs, false);
if (rs->state & TXBUSY)
dmaengine_terminate_async(rs->dma_tx.ch);
}
/* make sure all interrupts are masked */
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
spin_unlock_irqrestore(&rs->lock, flags);
}
if (atomic_read(&rs->state) & TXDMA)
dmaengine_terminate_async(master->dma_tx);
static int rockchip_spi_unprepare_message(struct spi_master *master,
struct spi_message *msg)
{
struct rockchip_spi *rs = spi_master_get_devdata(master);
spi_enable_chip(rs, 0);
return 0;
if (atomic_read(&rs->state) & RXDMA)
dmaengine_terminate_async(master->dma_rx);
}
static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
{
u32 max = tx_max(rs);
u32 txw = 0;
u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
u32 words = min(rs->tx_left, tx_free);
rs->tx_left -= words;
for (; words; words--) {
u32 txw;
while (max--) {
if (rs->n_bytes == 1)
txw = *(u8 *)(rs->tx);
txw = *(u8 *)rs->tx;
else
txw = *(u16 *)(rs->tx);
txw = *(u16 *)rs->tx;
writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
rs->tx += rs->n_bytes;
@ -362,229 +293,249 @@ static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
{
u32 max = rx_max(rs);
u32 rxw;
u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
u32 rx_left = rs->rx_left - words;
/* the hardware doesn't allow us to change fifo threshold
* level while spi is enabled, so instead make sure to leave
* enough words in the rx fifo to get the last interrupt
* exactly when all words have been received
*/
if (rx_left) {
u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
if (rx_left < ftl) {
rx_left = ftl;
words = rs->rx_left - rx_left;
}
}
rs->rx_left = rx_left;
for (; words; words--) {
u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
if (!rs->rx)
continue;
while (max--) {
rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
if (rs->n_bytes == 1)
*(u8 *)(rs->rx) = (u8)rxw;
*(u8 *)rs->rx = (u8)rxw;
else
*(u16 *)(rs->rx) = (u16)rxw;
*(u16 *)rs->rx = (u16)rxw;
rs->rx += rs->n_bytes;
}
}
static int rockchip_spi_pio_transfer(struct rockchip_spi *rs)
static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
{
int remain = 0;
struct spi_master *master = dev_id;
struct rockchip_spi *rs = spi_master_get_devdata(master);
spi_enable_chip(rs, 1);
if (rs->tx_left)
rockchip_spi_pio_writer(rs);
do {
if (rs->tx) {
remain = rs->tx_end - rs->tx;
rockchip_spi_pio_writer(rs);
}
rockchip_spi_pio_reader(rs);
if (!rs->rx_left) {
spi_enable_chip(rs, false);
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
spi_finalize_current_transfer(master);
}
if (rs->rx) {
remain = rs->rx_end - rs->rx;
rockchip_spi_pio_reader(rs);
}
return IRQ_HANDLED;
}
cpu_relax();
} while (remain);
static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
struct spi_transfer *xfer)
{
rs->tx = xfer->tx_buf;
rs->rx = xfer->rx_buf;
rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
rs->rx_left = xfer->len / rs->n_bytes;
/* If tx, wait until the FIFO data completely. */
if (rs->tx)
wait_for_idle(rs);
writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
spi_enable_chip(rs, true);
spi_enable_chip(rs, 0);
if (rs->tx_left)
rockchip_spi_pio_writer(rs);
return 0;
/* 1 means the transfer is in progress */
return 1;
}
static void rockchip_spi_dma_rxcb(void *data)
{
unsigned long flags;
struct rockchip_spi *rs = data;
struct spi_master *master = data;
struct rockchip_spi *rs = spi_master_get_devdata(master);
int state = atomic_fetch_andnot(RXDMA, &rs->state);
spin_lock_irqsave(&rs->lock, flags);
if (state & TXDMA)
return;
rs->state &= ~RXBUSY;
if (!(rs->state & TXBUSY)) {
spi_enable_chip(rs, 0);
spi_finalize_current_transfer(rs->master);
}
spin_unlock_irqrestore(&rs->lock, flags);
spi_enable_chip(rs, false);
spi_finalize_current_transfer(master);
}
static void rockchip_spi_dma_txcb(void *data)
{
unsigned long flags;
struct rockchip_spi *rs = data;
struct spi_master *master = data;
struct rockchip_spi *rs = spi_master_get_devdata(master);
int state = atomic_fetch_andnot(TXDMA, &rs->state);
if (state & RXDMA)
return;
/* Wait until the FIFO data completely. */
wait_for_idle(rs);
spin_lock_irqsave(&rs->lock, flags);
rs->state &= ~TXBUSY;
if (!(rs->state & RXBUSY)) {
spi_enable_chip(rs, 0);
spi_finalize_current_transfer(rs->master);
}
spin_unlock_irqrestore(&rs->lock, flags);
spi_enable_chip(rs, false);
spi_finalize_current_transfer(master);
}
static int rockchip_spi_prepare_dma(struct rockchip_spi *rs)
static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
struct spi_master *master, struct spi_transfer *xfer)
{
unsigned long flags;
struct dma_slave_config rxconf, txconf;
struct dma_async_tx_descriptor *rxdesc, *txdesc;
memset(&rxconf, 0, sizeof(rxconf));
memset(&txconf, 0, sizeof(txconf));
spin_lock_irqsave(&rs->lock, flags);
rs->state &= ~RXBUSY;
rs->state &= ~TXBUSY;
spin_unlock_irqrestore(&rs->lock, flags);
atomic_set(&rs->state, 0);
rxdesc = NULL;
if (rs->rx) {
rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = rs->dma_rx.addr;
rxconf.src_addr_width = rs->n_bytes;
rxconf.src_maxburst = 1;
dmaengine_slave_config(rs->dma_rx.ch, &rxconf);
if (xfer->rx_buf) {
struct dma_slave_config rxconf = {
.direction = DMA_DEV_TO_MEM,
.src_addr = rs->dma_addr_rx,
.src_addr_width = rs->n_bytes,
.src_maxburst = 1,
};
dmaengine_slave_config(master->dma_rx, &rxconf);
rxdesc = dmaengine_prep_slave_sg(
rs->dma_rx.ch,
rs->rx_sg.sgl, rs->rx_sg.nents,
master->dma_rx,
xfer->rx_sg.sgl, xfer->rx_sg.nents,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
if (!rxdesc)
return -EINVAL;
rxdesc->callback = rockchip_spi_dma_rxcb;
rxdesc->callback_param = rs;
rxdesc->callback_param = master;
}
txdesc = NULL;
if (rs->tx) {
txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = rs->dma_tx.addr;
txconf.dst_addr_width = rs->n_bytes;
txconf.dst_maxburst = rs->fifo_len / 2;
dmaengine_slave_config(rs->dma_tx.ch, &txconf);
if (xfer->tx_buf) {
struct dma_slave_config txconf = {
.direction = DMA_MEM_TO_DEV,
.dst_addr = rs->dma_addr_tx,
.dst_addr_width = rs->n_bytes,
.dst_maxburst = rs->fifo_len / 2,
};
dmaengine_slave_config(master->dma_tx, &txconf);
txdesc = dmaengine_prep_slave_sg(
rs->dma_tx.ch,
rs->tx_sg.sgl, rs->tx_sg.nents,
master->dma_tx,
xfer->tx_sg.sgl, xfer->tx_sg.nents,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!txdesc) {
if (rxdesc)
dmaengine_terminate_sync(rs->dma_rx.ch);
dmaengine_terminate_sync(master->dma_rx);
return -EINVAL;
}
txdesc->callback = rockchip_spi_dma_txcb;
txdesc->callback_param = rs;
txdesc->callback_param = master;
}
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
spin_lock_irqsave(&rs->lock, flags);
rs->state |= RXBUSY;
spin_unlock_irqrestore(&rs->lock, flags);
atomic_or(RXDMA, &rs->state);
dmaengine_submit(rxdesc);
dma_async_issue_pending(rs->dma_rx.ch);
dma_async_issue_pending(master->dma_rx);
}
spi_enable_chip(rs, 1);
spi_enable_chip(rs, true);
if (txdesc) {
spin_lock_irqsave(&rs->lock, flags);
rs->state |= TXBUSY;
spin_unlock_irqrestore(&rs->lock, flags);
atomic_or(TXDMA, &rs->state);
dmaengine_submit(txdesc);
dma_async_issue_pending(rs->dma_tx.ch);
dma_async_issue_pending(master->dma_tx);
}
/* 1 means the transfer is in progress */
return 1;
}
static void rockchip_spi_config(struct rockchip_spi *rs)
static void rockchip_spi_config(struct rockchip_spi *rs,
struct spi_device *spi, struct spi_transfer *xfer,
bool use_dma)
{
u32 div = 0;
u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET
| CR0_BHT_8BIT << CR0_BHT_OFFSET
| CR0_SSD_ONE << CR0_SSD_OFFSET
| CR0_EM_BIG << CR0_EM_OFFSET;
u32 cr1;
u32 dmacr = 0;
int rsd = 0;
u32 cr0 = (CR0_BHT_8BIT << CR0_BHT_OFFSET)
| (CR0_SSD_ONE << CR0_SSD_OFFSET)
| (CR0_EM_BIG << CR0_EM_OFFSET);
cr0 |= rs->rsd << CR0_RSD_OFFSET;
cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
if (spi->mode & SPI_LSB_FIRST)
cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
cr0 |= (rs->n_bytes << CR0_DFS_OFFSET);
cr0 |= ((rs->mode & 0x3) << CR0_SCPH_OFFSET);
cr0 |= (rs->tmode << CR0_XFM_OFFSET);
cr0 |= (rs->type << CR0_FRF_OFFSET);
if (xfer->rx_buf && xfer->tx_buf)
cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
else if (xfer->rx_buf)
cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
else if (use_dma)
cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
if (rs->use_dma) {
if (rs->tx)
switch (xfer->bits_per_word) {
case 4:
cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
cr1 = xfer->len - 1;
break;
case 8:
cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
cr1 = xfer->len - 1;
break;
case 16:
cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
cr1 = xfer->len / 2 - 1;
break;
default:
/* we only whitelist 4, 8 and 16 bit words in
* master->bits_per_word_mask, so this shouldn't
* happen
*/
unreachable();
}
if (use_dma) {
if (xfer->tx_buf)
dmacr |= TF_DMA_EN;
if (rs->rx)
if (xfer->rx_buf)
dmacr |= RF_DMA_EN;
}
if (WARN_ON(rs->speed > MAX_SCLK_OUT))
rs->speed = MAX_SCLK_OUT;
/* the minimum divisor is 2 */
if (rs->max_freq < 2 * rs->speed) {
clk_set_rate(rs->spiclk, 2 * rs->speed);
rs->max_freq = clk_get_rate(rs->spiclk);
}
/* div doesn't support odd number */
div = DIV_ROUND_UP(rs->max_freq, rs->speed);
div = (div + 1) & 0xfffe;
/* Rx sample delay is expressed in parent clock cycles (max 3) */
rsd = DIV_ROUND_CLOSEST(rs->rsd_nsecs * (rs->max_freq >> 8),
1000000000 >> 8);
if (!rsd && rs->rsd_nsecs) {
pr_warn_once("rockchip-spi: %u Hz are too slow to express %u ns delay\n",
rs->max_freq, rs->rsd_nsecs);
} else if (rsd > 3) {
rsd = 3;
pr_warn_once("rockchip-spi: %u Hz are too fast to express %u ns delay, clamping at %u ns\n",
rs->max_freq, rs->rsd_nsecs,
rsd * 1000000000U / rs->max_freq);
}
cr0 |= rsd << CR0_RSD_OFFSET;
writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
if (rs->n_bytes == 1)
writel_relaxed(rs->len - 1, rs->regs + ROCKCHIP_SPI_CTRLR1);
else if (rs->n_bytes == 2)
writel_relaxed((rs->len / 2) - 1, rs->regs + ROCKCHIP_SPI_CTRLR1);
/* unfortunately setting the fifo threshold level to generate an
* interrupt exactly when the fifo is full doesn't seem to work,
* so we need the strict inequality here
*/
if (xfer->len < rs->fifo_len)
writel_relaxed(xfer->len - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
else
writel_relaxed((rs->len * 2) - 1, rs->regs + ROCKCHIP_SPI_CTRLR1);
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_TXFTLR);
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_DMARDLR);
writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
spi_set_clk(rs, div);
dev_dbg(rs->dev, "cr0 0x%x, div %d\n", cr0, div);
/* the hardware only supports an even clock divisor, so
* round divisor = spiclk / speed up to nearest even number
* so that the resulting speed is <= the requested speed
*/
writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
rs->regs + ROCKCHIP_SPI_BAUDR);
}
static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
@ -598,6 +549,7 @@ static int rockchip_spi_transfer_one(
struct spi_transfer *xfer)
{
struct rockchip_spi *rs = spi_master_get_devdata(master);
bool use_dma;
WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
@ -612,38 +564,16 @@ static int rockchip_spi_transfer_one(
return -EINVAL;
}
rs->speed = xfer->speed_hz;
rs->bpw = xfer->bits_per_word;
rs->n_bytes = rs->bpw >> 3;
rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
rs->tx = xfer->tx_buf;
rs->tx_end = rs->tx + xfer->len;
rs->rx = xfer->rx_buf;
rs->rx_end = rs->rx + xfer->len;
rs->len = xfer->len;
use_dma = master->can_dma ? master->can_dma(master, spi, xfer) : false;
rs->tx_sg = xfer->tx_sg;
rs->rx_sg = xfer->rx_sg;
rockchip_spi_config(rs, spi, xfer, use_dma);
if (rs->tx && rs->rx)
rs->tmode = CR0_XFM_TR;
else if (rs->tx)
rs->tmode = CR0_XFM_TO;
else if (rs->rx)
rs->tmode = CR0_XFM_RO;
if (use_dma)
return rockchip_spi_prepare_dma(rs, master, xfer);
/* we need prepare dma before spi was enabled */
if (master->can_dma && master->can_dma(master, spi, xfer))
rs->use_dma = true;
else
rs->use_dma = false;
rockchip_spi_config(rs);
if (rs->use_dma)
return rockchip_spi_prepare_dma(rs);
return rockchip_spi_pio_transfer(rs);
return rockchip_spi_prepare_irq(rs, xfer);
}
static bool rockchip_spi_can_dma(struct spi_master *master,
@ -651,8 +581,13 @@ static bool rockchip_spi_can_dma(struct spi_master *master,
struct spi_transfer *xfer)
{
struct rockchip_spi *rs = spi_master_get_devdata(master);
unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
return (xfer->len > rs->fifo_len);
/* if the numbor of spi words to transfer is less than the fifo
* length we can just fill the fifo and wait for a single irq,
* so don't bother setting up dma
*/
return xfer->len / bytes_per_word >= rs->fifo_len;
}
static int rockchip_spi_probe(struct platform_device *pdev)
@ -705,16 +640,36 @@ static int rockchip_spi_probe(struct platform_device *pdev)
goto err_disable_apbclk;
}
spi_enable_chip(rs, 0);
spi_enable_chip(rs, false);
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_disable_spiclk;
ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
IRQF_ONESHOT, dev_name(&pdev->dev), master);
if (ret)
goto err_disable_spiclk;
rs->type = SSI_MOTO_SPI;
rs->master = master;
rs->dev = &pdev->dev;
rs->max_freq = clk_get_rate(rs->spiclk);
rs->freq = clk_get_rate(rs->spiclk);
if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
&rsd_nsecs))
rs->rsd_nsecs = rsd_nsecs;
&rsd_nsecs)) {
/* rx sample delay is expressed in parent clock cycles (max 3) */
u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8),
1000000000 >> 8);
if (!rsd) {
dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
rs->freq, rsd_nsecs);
} else if (rsd > CR0_RSD_MAX) {
rsd = CR0_RSD_MAX;
dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
rs->freq, rsd_nsecs,
CR0_RSD_MAX * 1000000000U / rs->freq);
}
rs->rsd = rsd;
}
rs->fifo_len = get_fifo_len(rs);
if (!rs->fifo_len) {
@ -723,54 +678,49 @@ static int rockchip_spi_probe(struct platform_device *pdev)
goto err_disable_spiclk;
}
spin_lock_init(&rs->lock);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
master->auto_runtime_pm = true;
master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
master->num_chipselect = ROCKCHIP_SPI_MAX_CS_NUM;
master->dev.of_node = pdev->dev.of_node;
master->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
master->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
master->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
master->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
master->set_cs = rockchip_spi_set_cs;
master->prepare_message = rockchip_spi_prepare_message;
master->unprepare_message = rockchip_spi_unprepare_message;
master->transfer_one = rockchip_spi_transfer_one;
master->max_transfer_size = rockchip_spi_max_transfer_size;
master->handle_err = rockchip_spi_handle_err;
master->flags = SPI_MASTER_GPIO_SS;
rs->dma_tx.ch = dma_request_chan(rs->dev, "tx");
if (IS_ERR(rs->dma_tx.ch)) {
master->dma_tx = dma_request_chan(rs->dev, "tx");
if (IS_ERR(master->dma_tx)) {
/* Check tx to see if we need defer probing driver */
if (PTR_ERR(rs->dma_tx.ch) == -EPROBE_DEFER) {
if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_disable_pm_runtime;
}
dev_warn(rs->dev, "Failed to request TX DMA channel\n");
rs->dma_tx.ch = NULL;
master->dma_tx = NULL;
}
rs->dma_rx.ch = dma_request_chan(rs->dev, "rx");
if (IS_ERR(rs->dma_rx.ch)) {
if (PTR_ERR(rs->dma_rx.ch) == -EPROBE_DEFER) {
master->dma_rx = dma_request_chan(rs->dev, "rx");
if (IS_ERR(master->dma_rx)) {
if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_free_dma_tx;
}
dev_warn(rs->dev, "Failed to request RX DMA channel\n");
rs->dma_rx.ch = NULL;
master->dma_rx = NULL;
}
if (rs->dma_tx.ch && rs->dma_rx.ch) {
rs->dma_tx.addr = (dma_addr_t)(mem->start + ROCKCHIP_SPI_TXDR);
rs->dma_rx.addr = (dma_addr_t)(mem->start + ROCKCHIP_SPI_RXDR);
if (master->dma_tx && master->dma_rx) {
rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
master->can_dma = rockchip_spi_can_dma;
master->dma_tx = rs->dma_tx.ch;
master->dma_rx = rs->dma_rx.ch;
}
ret = devm_spi_register_master(&pdev->dev, master);
@ -782,11 +732,11 @@ static int rockchip_spi_probe(struct platform_device *pdev)
return 0;
err_free_dma_rx:
if (rs->dma_rx.ch)
dma_release_channel(rs->dma_rx.ch);
if (master->dma_rx)
dma_release_channel(master->dma_rx);
err_free_dma_tx:
if (rs->dma_tx.ch)
dma_release_channel(rs->dma_tx.ch);
if (master->dma_tx)
dma_release_channel(master->dma_tx);
err_disable_pm_runtime:
pm_runtime_disable(&pdev->dev);
err_disable_spiclk:
@ -813,10 +763,10 @@ static int rockchip_spi_remove(struct platform_device *pdev)
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
if (rs->dma_tx.ch)
dma_release_channel(rs->dma_tx.ch);
if (rs->dma_rx.ch)
dma_release_channel(rs->dma_rx.ch);
if (master->dma_tx)
dma_release_channel(master->dma_tx);
if (master->dma_rx)
dma_release_channel(master->dma_rx);
spi_master_put(master);
@ -828,9 +778,8 @@ static int rockchip_spi_suspend(struct device *dev)
{
int ret;
struct spi_master *master = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master);
ret = spi_master_suspend(rs->master);
ret = spi_master_suspend(master);
if (ret < 0)
return ret;
@ -855,7 +804,7 @@ static int rockchip_spi_resume(struct device *dev)
if (ret < 0)
return ret;
ret = spi_master_resume(rs->master);
ret = spi_master_resume(master);
if (ret < 0) {
clk_disable_unprepare(rs->spiclk);
clk_disable_unprepare(rs->apb_pclk);

View File

@ -1347,16 +1347,14 @@ MODULE_DEVICE_TABLE(platform, spi_driver_ids);
#ifdef CONFIG_PM_SLEEP
static int rspi_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rspi_data *rspi = platform_get_drvdata(pdev);
struct rspi_data *rspi = dev_get_drvdata(dev);
return spi_master_suspend(rspi->master);
}
static int rspi_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rspi_data *rspi = platform_get_drvdata(pdev);
struct rspi_data *rspi = dev_get_drvdata(dev);
return spi_master_resume(rspi->master);
}

View File

@ -977,7 +977,7 @@ static int sh_msiof_transfer_one(struct spi_master *master,
return 0;
}
if (bits <= 8 && len > 15 && !(len & 3)) {
if (bits <= 8 && len > 15) {
bits = 32;
swab = true;
} else {
@ -1038,6 +1038,14 @@ static int sh_msiof_transfer_one(struct spi_master *master,
if (rx_buf)
rx_buf += n * bytes_per_word;
words -= n;
if (words == 0 && (len % bytes_per_word)) {
words = len % bytes_per_word;
bits = t->bits_per_word;
bytes_per_word = 1;
tx_fifo = sh_msiof_spi_write_fifo_8;
rx_fifo = sh_msiof_spi_read_fifo_8;
}
}
return 0;
@ -1426,16 +1434,14 @@ MODULE_DEVICE_TABLE(platform, spi_driver_ids);
#ifdef CONFIG_PM_SLEEP
static int sh_msiof_spi_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
return spi_master_suspend(p->master);
}
static int sh_msiof_spi_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
return spi_master_resume(p->master);
}

View File

@ -960,8 +960,7 @@ static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
*/
static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct spi_master *master = dev_get_drvdata(dev);
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
clk_disable(xqspi->refclk);
@ -980,8 +979,7 @@ static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
*/
static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct spi_master *master = dev_get_drvdata(dev);
struct zynqmp_qspi *xqspi = spi_master_get_devdata(master);
int ret;

View File

@ -1,10 +1,8 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SPI init/core code
*
* Copyright (C) 2005 David Brownell
* Copyright (C) 2008 Secret Lab Technologies Ltd.
*/
// SPI init/core code
//
// Copyright (C) 2005 David Brownell
// Copyright (C) 2008 Secret Lab Technologies Ltd.
#include <linux/kernel.h>
#include <linux/device.h>
@ -1037,6 +1035,42 @@ static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
return __spi_map_msg(ctlr, msg);
}
static int spi_transfer_wait(struct spi_controller *ctlr,
struct spi_message *msg,
struct spi_transfer *xfer)
{
struct spi_statistics *statm = &ctlr->statistics;
struct spi_statistics *stats = &msg->spi->statistics;
unsigned long long ms = 1;
if (spi_controller_is_slave(ctlr)) {
if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
return -EINTR;
}
} else {
ms = 8LL * 1000LL * xfer->len;
do_div(ms, xfer->speed_hz);
ms += ms + 200; /* some tolerance */
if (ms > UINT_MAX)
ms = UINT_MAX;
ms = wait_for_completion_timeout(&ctlr->xfer_completion,
msecs_to_jiffies(ms));
if (ms == 0) {
SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
dev_err(&msg->spi->dev,
"SPI transfer timed out\n");
return -ETIMEDOUT;
}
}
return 0;
}
/*
* spi_transfer_one_message - Default implementation of transfer_one_message()
*
@ -1050,7 +1084,6 @@ static int spi_transfer_one_message(struct spi_controller *ctlr,
struct spi_transfer *xfer;
bool keep_cs = false;
int ret = 0;
unsigned long long ms = 1;
struct spi_statistics *statm = &ctlr->statistics;
struct spi_statistics *stats = &msg->spi->statistics;
@ -1080,26 +1113,9 @@ static int spi_transfer_one_message(struct spi_controller *ctlr,
}
if (ret > 0) {
ret = 0;
ms = 8LL * 1000LL * xfer->len;
do_div(ms, xfer->speed_hz);
ms += ms + 200; /* some tolerance */
if (ms > UINT_MAX)
ms = UINT_MAX;
ms = wait_for_completion_timeout(&ctlr->xfer_completion,
msecs_to_jiffies(ms));
}
if (ms == 0) {
SPI_STATISTICS_INCREMENT_FIELD(statm,
timedout);
SPI_STATISTICS_INCREMENT_FIELD(stats,
timedout);
dev_err(&msg->spi->dev,
"SPI transfer timed out\n");
msg->status = -ETIMEDOUT;
ret = spi_transfer_wait(ctlr, msg, xfer);
if (ret < 0)
msg->status = ret;
}
} else {
if (xfer->len)
@ -1617,6 +1633,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
case 4:
spi->mode |= SPI_TX_QUAD;
break;
case 8:
spi->mode |= SPI_TX_OCTAL;
break;
default:
dev_warn(&ctlr->dev,
"spi-tx-bus-width %d not supported\n",
@ -1635,6 +1654,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
case 4:
spi->mode |= SPI_RX_QUAD;
break;
case 8:
spi->mode |= SPI_RX_OCTAL;
break;
default:
dev_warn(&ctlr->dev,
"spi-rx-bus-width %d not supported\n",
@ -1644,7 +1666,7 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
}
if (spi_controller_is_slave(ctlr)) {
if (strcmp(nc->name, "slave")) {
if (!of_node_name_eq(nc, "slave")) {
dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
nc);
return -EINVAL;
@ -2823,7 +2845,8 @@ int spi_setup(struct spi_device *spi)
/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
*/
if ((spi->mode & SPI_3WIRE) && (spi->mode &
(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
return -EINVAL;
/* help drivers fail *cleanly* when they need options
* that aren't supported with their current controller
@ -2832,7 +2855,8 @@ int spi_setup(struct spi_device *spi)
*/
bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
ugly_bits = bad_bits &
(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
if (ugly_bits) {
dev_warn(&spi->dev,
"setup: ignoring unsupported mode bits %x\n",

View File

@ -25,6 +25,7 @@ struct dma_chan;
struct pxa2xx_spi_master {
u16 num_chipselect;
u8 enable_dma;
bool is_slave;
/* DMA engine specific config */
bool (*dma_filter)(struct dma_chan *chan, void *param);

View File

@ -57,10 +57,12 @@
/**
* enum spi_mem_data_dir - describes the direction of a SPI memory data
* transfer from the controller perspective
* @SPI_MEM_NO_DATA: no data transferred
* @SPI_MEM_DATA_IN: data coming from the SPI memory
* @SPI_MEM_DATA_OUT: data sent the SPI memory
* @SPI_MEM_DATA_OUT: data sent to the SPI memory
*/
enum spi_mem_data_dir {
SPI_MEM_NO_DATA,
SPI_MEM_DATA_IN,
SPI_MEM_DATA_OUT,
};
@ -122,6 +124,49 @@ struct spi_mem_op {
.data = __data, \
}
/**
* struct spi_mem_dirmap_info - Direct mapping information
* @op_tmpl: operation template that should be used by the direct mapping when
* the memory device is accessed
* @offset: absolute offset this direct mapping is pointing to
* @length: length in byte of this direct mapping
*
* These information are used by the controller specific implementation to know
* the portion of memory that is directly mapped and the spi_mem_op that should
* be used to access the device.
* A direct mapping is only valid for one direction (read or write) and this
* direction is directly encoded in the ->op_tmpl.data.dir field.
*/
struct spi_mem_dirmap_info {
struct spi_mem_op op_tmpl;
u64 offset;
u64 length;
};
/**
* struct spi_mem_dirmap_desc - Direct mapping descriptor
* @mem: the SPI memory device this direct mapping is attached to
* @info: information passed at direct mapping creation time
* @nodirmap: set to 1 if the SPI controller does not implement
* ->mem_ops->dirmap_create() or when this function returned an
* error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
* calls will use spi_mem_exec_op() to access the memory. This is a
* degraded mode that allows spi_mem drivers to use the same code
* no matter whether the controller supports direct mapping or not
* @priv: field pointing to controller specific data
*
* Common part of a direct mapping descriptor. This object is created by
* spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
* can create/attach direct mapping resources to the descriptor in the ->priv
* field.
*/
struct spi_mem_dirmap_desc {
struct spi_mem *mem;
struct spi_mem_dirmap_info info;
unsigned int nodirmap;
void *priv;
};
/**
* struct spi_mem - describes a SPI memory device
* @spi: the underlying SPI device
@ -177,10 +222,32 @@ static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
* Note that if the implementation of this function allocates memory
* dynamically, then it should do so with devm_xxx(), as we don't
* have a ->free_name() function.
* @dirmap_create: create a direct mapping descriptor that can later be used to
* access the memory device. This method is optional
* @dirmap_destroy: destroy a memory descriptor previous created by
* ->dirmap_create()
* @dirmap_read: read data from the memory device using the direct mapping
* created by ->dirmap_create(). The function can return less
* data than requested (for example when the request is crossing
* the currently mapped area), and the caller of
* spi_mem_dirmap_read() is responsible for calling it again in
* this case.
* @dirmap_write: write data to the memory device using the direct mapping
* created by ->dirmap_create(). The function can return less
* data than requested (for example when the request is crossing
* the currently mapped area), and the caller of
* spi_mem_dirmap_write() is responsible for calling it again in
* this case.
*
* This interface should be implemented by SPI controllers providing an
* high-level interface to execute SPI memory operation, which is usually the
* case for QSPI controllers.
*
* Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
* mapping from the CPU because doing that can stall the CPU waiting for the
* SPI mem transaction to finish, and this will make real-time maintainers
* unhappy and might make your system less reactive. Instead, drivers should
* use DMA to access this direct mapping.
*/
struct spi_controller_mem_ops {
int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
@ -189,6 +256,12 @@ struct spi_controller_mem_ops {
int (*exec_op)(struct spi_mem *mem,
const struct spi_mem_op *op);
const char *(*get_name)(struct spi_mem *mem);
int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf);
ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, const void *buf);
};
/**
@ -249,6 +322,15 @@ int spi_mem_exec_op(struct spi_mem *mem,
const char *spi_mem_get_name(struct spi_mem *mem);
struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem *mem,
const struct spi_mem_dirmap_info *info);
void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf);
ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, const void *buf);
int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
struct module *owner);

View File

@ -154,7 +154,10 @@ struct spi_device {
#define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
#define SPI_RX_DUAL 0x400 /* receive with 2 wires */
#define SPI_RX_QUAD 0x800 /* receive with 4 wires */
#define SPI_CS_WORD 0x1000 /* toggle cs after each word */
#define SPI_CS_WORD 0x1000 /* toggle cs after each word */
#define SPI_TX_OCTAL 0x2000 /* transmit with 8 wires */
#define SPI_RX_OCTAL 0x4000 /* receive with 8 wires */
#define SPI_3WIRE_HIZ 0x8000 /* high impedance turnaround */
int irq;
void *controller_state;
void *controller_data;