RTC for 5.15

Subsystem:
  - Switch to Neri and Schneider time conversion algorithm
 
 Drivers:
  - rx8025: add rx8035 support
  - s5m: modernize driver and set range
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEBqsFVZXh8s/0O5JiY6TcMGxwOjIFAmE80KAACgkQY6TcMGxw
 OjLi8A/+LhzE8OGsawT5xxNu/SnXRu4hJEgLodlDgae8aDTFjp0Phx4XMJ3TBZYW
 7rMbFAEr5MXOdtZ8c3ec2ZUcFlObTiBdbiTWF6OgQd2U0Vr2z+ju6UhI22U9p2cy
 YVzW1HADgJJEzed89ksoQYRvB1J+L0w4LEUKQKsl4djEz0EWCUivHUAJOcO5iAXk
 sd27Y6SX9siltZyPxaCU2Klfaefe4CkSRWiYzOJTt2LJMxCkBj6TWy72CVEt9f4s
 1AWEHsM7QUMtd1yzS7vev8g5sKO+lvKgjDTji2P3h94UMuWmVKOZ2pO10uor9vRT
 zJ8SijaFczbTjcNSoUtvB82L1ygTf/xsPY35qoCWpJOKI8A33a4ypcHf5ldylpDC
 6LzCrlVybeJjLpimIGw1Jb3dBIswxG44MsnSc4JIAhJwq7MVnyr57lCSgfxuYaN4
 ScyGiG4WzRYvZdNya0zIczEaTLN99bsm4RPMiW1VGmN/wOo3VKbuxabEj5t2GlG9
 NNhd5alIddHZandzkFAzOajNce+eh5A2rAoI1ts32pnXepW4dVatdzHNSAepaUJV
 Rbi1nvKCp4DIXqIVWXzwHkm2CrWs3G7/+rKRPOGoqMysMueODix36pI1duXOmVDH
 iwfStQksNWyM5M+ZfkOJakqVDU8S0e0biQqV5gkYhuiChhDzW6k=
 =480a
 -----END PGP SIGNATURE-----

Merge tag 'rtc-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux

Pull RTC updates from Alexandre Belloni:
 "The broken down time conversion is similar to what is done in the time
  subsystem since v5.14. The rest is fairly straightforward.

  Subsystem:
   - Switch to Neri and Schneider time conversion algorithm

  Drivers:
   - rx8025: add rx8035 support
   - s5m: modernize driver and set range"

* tag 'rtc-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux:
  rtc: rx8010: select REGMAP_I2C
  dt-bindings: rtc: add Epson RX-8025 and RX-8035
  rtc: rx8025: implement RX-8035 support
  rtc: cmos: remove stale REVISIT comments
  rtc: tps65910: Correct driver module alias
  rtc: move RTC_LIB_KUNIT_TEST to proper location
  rtc: lib_test: add MODULE_LICENSE
  rtc: Improve performance of rtc_time64_to_tm(). Add tests.
  rtc: s5m: set range
  rtc: s5m: enable wakeup only when available
  rtc: s5m: signal the core when alarm are not available
  rtc: s5m: switch to devm_rtc_allocate_device
This commit is contained in:
Linus Torvalds 2021-09-11 09:54:53 -07:00
commit 107ccc45bb
9 changed files with 242 additions and 63 deletions

View File

@ -32,6 +32,9 @@ properties:
- dallas,ds3232
# I2C-BUS INTERFACE REAL TIME CLOCK MODULE
- epson,rx8010
# I2C-BUS INTERFACE REAL TIME CLOCK MODULE
- epson,rx8025
- epson,rx8035
# I2C-BUS INTERFACE REAL TIME CLOCK MODULE with Battery Backed RAM
- epson,rx8571
# I2C-BUS INTERFACE REAL TIME CLOCK MODULE

View File

@ -75,6 +75,15 @@ config RTC_DEBUG
Say yes here to enable debugging support in the RTC framework
and individual RTC drivers.
config RTC_LIB_KUNIT_TEST
tristate "KUnit test for RTC lib functions" if !KUNIT_ALL_TESTS
depends on KUNIT
default KUNIT_ALL_TESTS
help
Enable this option to test RTC library functions.
If unsure, say N.
config RTC_NVMEM
bool "RTC non volatile storage support"
select NVMEM
@ -624,6 +633,7 @@ config RTC_DRV_FM3130
config RTC_DRV_RX8010
tristate "Epson RX8010SJ"
select REGMAP_I2C
help
If you say yes here you get support for the Epson RX8010SJ RTC
chip.

View File

@ -15,6 +15,8 @@ rtc-core-$(CONFIG_RTC_INTF_DEV) += dev.o
rtc-core-$(CONFIG_RTC_INTF_PROC) += proc.o
rtc-core-$(CONFIG_RTC_INTF_SYSFS) += sysfs.o
obj-$(CONFIG_RTC_LIB_KUNIT_TEST) += lib_test.o
# Keep the list ordered.
obj-$(CONFIG_RTC_DRV_88PM80X) += rtc-88pm80x.o

View File

@ -6,6 +6,8 @@
* Author: Alessandro Zummo <a.zummo@towertech.it>
*
* based on arch/arm/common/rtctime.c and other bits
*
* Author: Cassio Neri <cassio.neri@gmail.com> (rtc_time64_to_tm)
*/
#include <linux/export.h>
@ -22,8 +24,6 @@ static const unsigned short rtc_ydays[2][13] = {
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
};
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
/*
* The number of days in the month.
*/
@ -42,42 +42,95 @@ int rtc_year_days(unsigned int day, unsigned int month, unsigned int year)
}
EXPORT_SYMBOL(rtc_year_days);
/*
* rtc_time64_to_tm - Converts time64_t to rtc_time.
* Convert seconds since 01-01-1970 00:00:00 to Gregorian date.
/**
* rtc_time64_to_tm - converts time64_t to rtc_time.
*
* @time: The number of seconds since 01-01-1970 00:00:00.
* (Must be positive.)
* @tm: Pointer to the struct rtc_time.
*/
void rtc_time64_to_tm(time64_t time, struct rtc_time *tm)
{
unsigned int month, year, secs;
unsigned int secs;
int days;
u64 u64tmp;
u32 u32tmp, udays, century, day_of_century, year_of_century, year,
day_of_year, month, day;
bool is_Jan_or_Feb, is_leap_year;
/* time must be positive */
days = div_s64_rem(time, 86400, &secs);
/* day of the week, 1970-01-01 was a Thursday */
tm->tm_wday = (days + 4) % 7;
year = 1970 + days / 365;
days -= (year - 1970) * 365
+ LEAPS_THRU_END_OF(year - 1)
- LEAPS_THRU_END_OF(1970 - 1);
while (days < 0) {
year -= 1;
days += 365 + is_leap_year(year);
}
tm->tm_year = year - 1900;
tm->tm_yday = days + 1;
/*
* The following algorithm is, basically, Proposition 6.3 of Neri
* and Schneider [1]. In a few words: it works on the computational
* (fictitious) calendar where the year starts in March, month = 2
* (*), and finishes in February, month = 13. This calendar is
* mathematically convenient because the day of the year does not
* depend on whether the year is leap or not. For instance:
*
* March 1st 0-th day of the year;
* ...
* April 1st 31-st day of the year;
* ...
* January 1st 306-th day of the year; (Important!)
* ...
* February 28th 364-th day of the year;
* February 29th 365-th day of the year (if it exists).
*
* After having worked out the date in the computational calendar
* (using just arithmetics) it's easy to convert it to the
* corresponding date in the Gregorian calendar.
*
* [1] "Euclidean Affine Functions and Applications to Calendar
* Algorithms". https://arxiv.org/abs/2102.06959
*
* (*) The numbering of months follows rtc_time more closely and
* thus, is slightly different from [1].
*/
for (month = 0; month < 11; month++) {
int newdays;
udays = ((u32) days) + 719468;
newdays = days - rtc_month_days(month, year);
if (newdays < 0)
break;
days = newdays;
}
tm->tm_mon = month;
tm->tm_mday = days + 1;
u32tmp = 4 * udays + 3;
century = u32tmp / 146097;
day_of_century = u32tmp % 146097 / 4;
u32tmp = 4 * day_of_century + 3;
u64tmp = 2939745ULL * u32tmp;
year_of_century = upper_32_bits(u64tmp);
day_of_year = lower_32_bits(u64tmp) / 2939745 / 4;
year = 100 * century + year_of_century;
is_leap_year = year_of_century != 0 ?
year_of_century % 4 == 0 : century % 4 == 0;
u32tmp = 2141 * day_of_year + 132377;
month = u32tmp >> 16;
day = ((u16) u32tmp) / 2141;
/*
* Recall that January 01 is the 306-th day of the year in the
* computational (not Gregorian) calendar.
*/
is_Jan_or_Feb = day_of_year >= 306;
/* Converts to the Gregorian calendar. */
year = year + is_Jan_or_Feb;
month = is_Jan_or_Feb ? month - 12 : month;
day = day + 1;
day_of_year = is_Jan_or_Feb ?
day_of_year - 306 : day_of_year + 31 + 28 + is_leap_year;
/* Converts to rtc_time's format. */
tm->tm_year = (int) (year - 1900);
tm->tm_mon = (int) month;
tm->tm_mday = (int) day;
tm->tm_yday = (int) day_of_year + 1;
tm->tm_hour = secs / 3600;
secs -= tm->tm_hour * 3600;

81
drivers/rtc/lib_test.c Normal file
View File

@ -0,0 +1,81 @@
// SPDX-License-Identifier: LGPL-2.1+
#include <kunit/test.h>
#include <linux/rtc.h>
/*
* Advance a date by one day.
*/
static void advance_date(int *year, int *month, int *mday, int *yday)
{
if (*mday != rtc_month_days(*month - 1, *year)) {
++*mday;
++*yday;
return;
}
*mday = 1;
if (*month != 12) {
++*month;
++*yday;
return;
}
*month = 1;
*yday = 1;
++*year;
}
/*
* Checks every day in a 160000 years interval starting on 1970-01-01
* against the expected result.
*/
static void rtc_time64_to_tm_test_date_range(struct kunit *test)
{
/*
* 160000 years = (160000 / 400) * 400 years
* = (160000 / 400) * 146097 days
* = (160000 / 400) * 146097 * 86400 seconds
*/
time64_t total_secs = ((time64_t) 160000) / 400 * 146097 * 86400;
int year = 1970;
int month = 1;
int mday = 1;
int yday = 1;
struct rtc_time result;
time64_t secs;
s64 days;
for (secs = 0; secs <= total_secs; secs += 86400) {
rtc_time64_to_tm(secs, &result);
days = div_s64(secs, 86400);
#define FAIL_MSG "%d/%02d/%02d (%2d) : %ld", \
year, month, mday, yday, days
KUNIT_ASSERT_EQ_MSG(test, year - 1900, result.tm_year, FAIL_MSG);
KUNIT_ASSERT_EQ_MSG(test, month - 1, result.tm_mon, FAIL_MSG);
KUNIT_ASSERT_EQ_MSG(test, mday, result.tm_mday, FAIL_MSG);
KUNIT_ASSERT_EQ_MSG(test, yday, result.tm_yday, FAIL_MSG);
advance_date(&year, &month, &mday, &yday);
}
}
static struct kunit_case rtc_lib_test_cases[] = {
KUNIT_CASE(rtc_time64_to_tm_test_date_range),
{}
};
static struct kunit_suite rtc_lib_test_suite = {
.name = "rtc_lib_test_cases",
.test_cases = rtc_lib_test_cases,
};
kunit_test_suite(rtc_lib_test_suite);
MODULE_LICENSE("GPL");

View File

@ -229,19 +229,13 @@ static int cmos_read_time(struct device *dev, struct rtc_time *t)
if (!pm_trace_rtc_valid())
return -EIO;
/* REVISIT: if the clock has a "century" register, use
* that instead of the heuristic in mc146818_get_time().
* That'll make Y3K compatility (year > 2070) easy!
*/
mc146818_get_time(t);
return 0;
}
static int cmos_set_time(struct device *dev, struct rtc_time *t)
{
/* REVISIT: set the "century" register if available
*
* NOTE: this ignores the issue whereby updating the seconds
/* NOTE: this ignores the issue whereby updating the seconds
* takes effect exactly 500ms after we write the register.
* (Also queueing and other delays before we get this far.)
*/

View File

@ -60,14 +60,23 @@
#define RX8025_ADJ_DATA_MAX 62
#define RX8025_ADJ_DATA_MIN -62
enum rx_model {
model_rx_unknown,
model_rx_8025,
model_rx_8035,
model_last
};
static const struct i2c_device_id rx8025_id[] = {
{ "rx8025", 0 },
{ "rx8025", model_rx_8025 },
{ "rx8035", model_rx_8035 },
{ }
};
MODULE_DEVICE_TABLE(i2c, rx8025_id);
struct rx8025_data {
struct rtc_device *rtc;
enum rx_model model;
u8 ctrl1;
};
@ -100,10 +109,26 @@ static s32 rx8025_write_regs(const struct i2c_client *client,
length, values);
}
static int rx8025_is_osc_stopped(enum rx_model model, int ctrl2)
{
int xstp = ctrl2 & RX8025_BIT_CTRL2_XST;
/* XSTP bit has different polarity on RX-8025 vs RX-8035.
* RX-8025: 0 == oscillator stopped
* RX-8035: 1 == oscillator stopped
*/
if (model == model_rx_8025)
xstp = !xstp;
return xstp;
}
static int rx8025_check_validity(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct rx8025_data *drvdata = dev_get_drvdata(dev);
int ctrl2;
int xstp;
ctrl2 = rx8025_read_reg(client, RX8025_REG_CTRL2);
if (ctrl2 < 0)
@ -117,7 +142,8 @@ static int rx8025_check_validity(struct device *dev)
return -EINVAL;
}
if (!(ctrl2 & RX8025_BIT_CTRL2_XST)) {
xstp = rx8025_is_osc_stopped(drvdata->model, ctrl2);
if (xstp) {
dev_warn(dev, "crystal stopped, date is invalid\n");
return -EINVAL;
}
@ -127,6 +153,7 @@ static int rx8025_check_validity(struct device *dev)
static int rx8025_reset_validity(struct i2c_client *client)
{
struct rx8025_data *drvdata = i2c_get_clientdata(client);
int ctrl2 = rx8025_read_reg(client, RX8025_REG_CTRL2);
if (ctrl2 < 0)
@ -134,22 +161,28 @@ static int rx8025_reset_validity(struct i2c_client *client)
ctrl2 &= ~(RX8025_BIT_CTRL2_PON | RX8025_BIT_CTRL2_VDET);
if (drvdata->model == model_rx_8025)
ctrl2 |= RX8025_BIT_CTRL2_XST;
else
ctrl2 &= ~(RX8025_BIT_CTRL2_XST);
return rx8025_write_reg(client, RX8025_REG_CTRL2,
ctrl2 | RX8025_BIT_CTRL2_XST);
ctrl2);
}
static irqreturn_t rx8025_handle_irq(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
struct rx8025_data *rx8025 = i2c_get_clientdata(client);
int status;
int status, xstp;
rtc_lock(rx8025->rtc);
status = rx8025_read_reg(client, RX8025_REG_CTRL2);
if (status < 0)
goto out;
if (!(status & RX8025_BIT_CTRL2_XST))
xstp = rx8025_is_osc_stopped(rx8025->model, status);
if (xstp)
dev_warn(&client->dev, "Oscillation stop was detected,"
"you may have to readjust the clock\n");
@ -519,6 +552,9 @@ static int rx8025_probe(struct i2c_client *client,
i2c_set_clientdata(client, rx8025);
if (id)
rx8025->model = id->driver_data;
err = rx8025_init_client(client);
if (err)
return err;

View File

@ -204,15 +204,9 @@ static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
data[RTC_WEEKDAY] = 1 << tm->tm_wday;
data[RTC_DATE] = tm->tm_mday;
data[RTC_MONTH] = tm->tm_mon + 1;
data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
data[RTC_YEAR1] = tm->tm_year - 100;
if (tm->tm_year < 100) {
pr_err("RTC cannot handle the year %d\n",
1900 + tm->tm_year);
return -EINVAL;
} else {
return 0;
}
return 0;
}
/*
@ -786,29 +780,35 @@ static int s5m_rtc_probe(struct platform_device *pdev)
if (ret)
return ret;
device_init_wakeup(&pdev->dev, 1);
info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
&s5m_rtc_ops, THIS_MODULE);
info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(info->rtc_dev))
return PTR_ERR(info->rtc_dev);
info->rtc_dev->ops = &s5m_rtc_ops;
if (info->device_type == S5M8763X) {
info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_0000;
info->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
} else {
info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
info->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
}
if (!info->irq) {
dev_info(&pdev->dev, "Alarm IRQ not available\n");
return 0;
clear_bit(RTC_FEATURE_ALARM, info->rtc_dev->features);
} else {
ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
s5m_rtc_alarm_irq, 0, "rtc-alarm0",
info);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
info->irq, ret);
return ret;
}
device_init_wakeup(&pdev->dev, 1);
}
ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
s5m_rtc_alarm_irq, 0, "rtc-alarm0",
info);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
info->irq, ret);
return ret;
}
return 0;
return devm_rtc_register_device(info->rtc_dev);
}
#ifdef CONFIG_PM_SLEEP

View File

@ -467,6 +467,6 @@ static struct platform_driver tps65910_rtc_driver = {
};
module_platform_driver(tps65910_rtc_driver);
MODULE_ALIAS("platform:rtc-tps65910");
MODULE_ALIAS("platform:tps65910-rtc");
MODULE_AUTHOR("Venu Byravarasu <vbyravarasu@nvidia.com>");
MODULE_LICENSE("GPL");