mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 15:29:16 +00:00
can: add broadcast manager documentation
This patch adds documentation about the broadcast manager. It's based on Brian Thorne's initial patch http://marc.info/?l=linux-can&m=138119382015496&w=2 and Daniele Venzano's work http://brownhat.org/docs/socketcan.html . Signed-off-by: Brian Thorne <hardbyte@gmail.com> Cc: Daniele Venzano <linux@brownhat.org> Cc: Andre Naujoks <nautsch2@gmail.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This commit is contained in:
parent
ba4865027c
commit
51b2f451b5
@ -25,6 +25,12 @@ This file contains
|
||||
4.1.5 RAW socket option CAN_RAW_FD_FRAMES
|
||||
4.1.6 RAW socket returned message flags
|
||||
4.2 Broadcast Manager protocol sockets (SOCK_DGRAM)
|
||||
4.2.1 Broadcast Manager operations
|
||||
4.2.2 Broadcast Manager message flags
|
||||
4.2.3 Broadcast Manager transmission timers
|
||||
4.2.4 Broadcast Manager message sequence transmission
|
||||
4.2.5 Broadcast Manager receive filter timers
|
||||
4.2.6 Broadcast Manager multiplex message receive filter
|
||||
4.3 connected transport protocols (SOCK_SEQPACKET)
|
||||
4.4 unconnected transport protocols (SOCK_DGRAM)
|
||||
|
||||
@ -593,6 +599,217 @@ solution for a couple of reasons:
|
||||
In order to receive such messages, CAN_RAW_RECV_OWN_MSGS must be set.
|
||||
|
||||
4.2 Broadcast Manager protocol sockets (SOCK_DGRAM)
|
||||
|
||||
The Broadcast Manager protocol provides a command based configuration
|
||||
interface to filter and send (e.g. cyclic) CAN messages in kernel space.
|
||||
|
||||
Receive filters can be used to down sample frequent messages; detect events
|
||||
such as message contents changes, packet length changes, and do time-out
|
||||
monitoring of received messages.
|
||||
|
||||
Periodic transmission tasks of CAN frames or a sequence of CAN frames can be
|
||||
created and modified at runtime; both the message content and the two
|
||||
possible transmit intervals can be altered.
|
||||
|
||||
A BCM socket is not intended for sending individual CAN frames using the
|
||||
struct can_frame as known from the CAN_RAW socket. Instead a special BCM
|
||||
configuration message is defined. The basic BCM configuration message used
|
||||
to communicate with the broadcast manager and the available operations are
|
||||
defined in the linux/can/bcm.h include. The BCM message consists of a
|
||||
message header with a command ('opcode') followed by zero or more CAN frames.
|
||||
The broadcast manager sends responses to user space in the same form:
|
||||
|
||||
struct bcm_msg_head {
|
||||
__u32 opcode; /* command */
|
||||
__u32 flags; /* special flags */
|
||||
__u32 count; /* run 'count' times with ival1 */
|
||||
struct timeval ival1, ival2; /* count and subsequent interval */
|
||||
canid_t can_id; /* unique can_id for task */
|
||||
__u32 nframes; /* number of can_frames following */
|
||||
struct can_frame frames[0];
|
||||
};
|
||||
|
||||
The aligned payload 'frames' uses the same basic CAN frame structure defined
|
||||
at the beginning of section 4 and in the include/linux/can.h include. All
|
||||
messages to the broadcast manager from user space have this structure.
|
||||
|
||||
Note a CAN_BCM socket must be connected instead of bound after socket
|
||||
creation (example without error checking):
|
||||
|
||||
int s;
|
||||
struct sockaddr_can addr;
|
||||
struct ifreq ifr;
|
||||
|
||||
s = socket(PF_CAN, SOCK_DGRAM, CAN_BCM);
|
||||
|
||||
strcpy(ifr.ifr_name, "can0");
|
||||
ioctl(s, SIOCGIFINDEX, &ifr);
|
||||
|
||||
addr.can_family = AF_CAN;
|
||||
addr.can_ifindex = ifr.ifr_ifindex;
|
||||
|
||||
connect(s, (struct sockaddr *)&addr, sizeof(addr))
|
||||
|
||||
(..)
|
||||
|
||||
The broadcast manager socket is able to handle any number of in flight
|
||||
transmissions or receive filters concurrently. The different RX/TX jobs are
|
||||
distinguished by the unique can_id in each BCM message. However additional
|
||||
CAN_BCM sockets are recommended to communicate on multiple CAN interfaces.
|
||||
When the broadcast manager socket is bound to 'any' CAN interface (=> the
|
||||
interface index is set to zero) the configured receive filters apply to any
|
||||
CAN interface unless the sendto() syscall is used to overrule the 'any' CAN
|
||||
interface index. When using recvfrom() instead of read() to retrieve BCM
|
||||
socket messages the originating CAN interface is provided in can_ifindex.
|
||||
|
||||
4.2.1 Broadcast Manager operations
|
||||
|
||||
The opcode defines the operation for the broadcast manager to carry out,
|
||||
or details the broadcast managers response to several events, including
|
||||
user requests.
|
||||
|
||||
Transmit Operations (user space to broadcast manager):
|
||||
|
||||
TX_SETUP: Create (cyclic) transmission task.
|
||||
|
||||
TX_DELETE: Remove (cyclic) transmission task, requires only can_id.
|
||||
|
||||
TX_READ: Read properties of (cyclic) transmission task for can_id.
|
||||
|
||||
TX_SEND: Send one CAN frame.
|
||||
|
||||
Transmit Responses (broadcast manager to user space):
|
||||
|
||||
TX_STATUS: Reply to TX_READ request (transmission task configuration).
|
||||
|
||||
TX_EXPIRED: Notification when counter finishes sending at initial interval
|
||||
'ival1'. Requires the TX_COUNTEVT flag to be set at TX_SETUP.
|
||||
|
||||
Receive Operations (user space to broadcast manager):
|
||||
|
||||
RX_SETUP: Create RX content filter subscription.
|
||||
|
||||
RX_DELETE: Remove RX content filter subscription, requires only can_id.
|
||||
|
||||
RX_READ: Read properties of RX content filter subscription for can_id.
|
||||
|
||||
Receive Responses (broadcast manager to user space):
|
||||
|
||||
RX_STATUS: Reply to RX_READ request (filter task configuration).
|
||||
|
||||
RX_TIMEOUT: Cyclic message is detected to be absent (timer ival1 expired).
|
||||
|
||||
RX_CHANGED: BCM message with updated CAN frame (detected content change).
|
||||
Sent on first message received or on receipt of revised CAN messages.
|
||||
|
||||
4.2.2 Broadcast Manager message flags
|
||||
|
||||
When sending a message to the broadcast manager the 'flags' element may
|
||||
contain the following flag definitions which influence the behaviour:
|
||||
|
||||
SETTIMER: Set the values of ival1, ival2 and count
|
||||
|
||||
STARTTIMER: Start the timer with the actual values of ival1, ival2
|
||||
and count. Starting the timer leads simultaneously to emit a CAN frame.
|
||||
|
||||
TX_COUNTEVT: Create the message TX_EXPIRED when count expires
|
||||
|
||||
TX_ANNOUNCE: A change of data by the process is emitted immediately.
|
||||
|
||||
TX_CP_CAN_ID: Copies the can_id from the message header to each
|
||||
subsequent frame in frames. This is intended as usage simplification. For
|
||||
TX tasks the unique can_id from the message header may differ from the
|
||||
can_id(s) stored for transmission in the subsequent struct can_frame(s).
|
||||
|
||||
RX_FILTER_ID: Filter by can_id alone, no frames required (nframes=0).
|
||||
|
||||
RX_CHECK_DLC: A change of the DLC leads to an RX_CHANGED.
|
||||
|
||||
RX_NO_AUTOTIMER: Prevent automatically starting the timeout monitor.
|
||||
|
||||
RX_ANNOUNCE_RESUME: If passed at RX_SETUP and a receive timeout occured, a
|
||||
RX_CHANGED message will be generated when the (cyclic) receive restarts.
|
||||
|
||||
TX_RESET_MULTI_IDX: Reset the index for the multiple frame transmission.
|
||||
|
||||
RX_RTR_FRAME: Send reply for RTR-request (placed in op->frames[0]).
|
||||
|
||||
4.2.3 Broadcast Manager transmission timers
|
||||
|
||||
Periodic transmission configurations may use up to two interval timers.
|
||||
In this case the BCM sends a number of messages ('count') at an interval
|
||||
'ival1', then continuing to send at another given interval 'ival2'. When
|
||||
only one timer is needed 'count' is set to zero and only 'ival2' is used.
|
||||
When SET_TIMER and START_TIMER flag were set the timers are activated.
|
||||
The timer values can be altered at runtime when only SET_TIMER is set.
|
||||
|
||||
4.2.4 Broadcast Manager message sequence transmission
|
||||
|
||||
Up to 256 CAN frames can be transmitted in a sequence in the case of a cyclic
|
||||
TX task configuration. The number of CAN frames is provided in the 'nframes'
|
||||
element of the BCM message head. The defined number of CAN frames are added
|
||||
as array to the TX_SETUP BCM configuration message.
|
||||
|
||||
/* create a struct to set up a sequence of four CAN frames */
|
||||
struct {
|
||||
struct bcm_msg_head msg_head;
|
||||
struct can_frame frame[4];
|
||||
} mytxmsg;
|
||||
|
||||
(..)
|
||||
mytxmsg.nframes = 4;
|
||||
(..)
|
||||
|
||||
write(s, &mytxmsg, sizeof(mytxmsg));
|
||||
|
||||
With every transmission the index in the array of CAN frames is increased
|
||||
and set to zero at index overflow.
|
||||
|
||||
4.2.5 Broadcast Manager receive filter timers
|
||||
|
||||
The timer values ival1 or ival2 may be set to non-zero values at RX_SETUP.
|
||||
When the SET_TIMER flag is set the timers are enabled:
|
||||
|
||||
ival1: Send RX_TIMEOUT when a received message is not received again within
|
||||
the given time. When START_TIMER is set at RX_SETUP the timeout detection
|
||||
is activated directly - even without a former CAN frame reception.
|
||||
|
||||
ival2: Throttle the received message rate down to the value of ival2. This
|
||||
is useful to reduce messages for the application when the signal inside the
|
||||
CAN frame is stateless as state changes within the ival2 periode may get
|
||||
lost.
|
||||
|
||||
4.2.6 Broadcast Manager multiplex message receive filter
|
||||
|
||||
To filter for content changes in multiplex message sequences an array of more
|
||||
than one CAN frames can be passed in a RX_SETUP configuration message. The
|
||||
data bytes of the first CAN frame contain the mask of relevant bits that
|
||||
have to match in the subsequent CAN frames with the received CAN frame.
|
||||
If one of the subsequent CAN frames is matching the bits in that frame data
|
||||
mark the relevant content to be compared with the previous received content.
|
||||
Up to 257 CAN frames (multiplex filter bit mask CAN frame plus 256 CAN
|
||||
filters) can be added as array to the TX_SETUP BCM configuration message.
|
||||
|
||||
/* usually used to clear CAN frame data[] - beware of endian problems! */
|
||||
#define U64_DATA(p) (*(unsigned long long*)(p)->data)
|
||||
|
||||
struct {
|
||||
struct bcm_msg_head msg_head;
|
||||
struct can_frame frame[5];
|
||||
} msg;
|
||||
|
||||
msg.msg_head.opcode = RX_SETUP;
|
||||
msg.msg_head.can_id = 0x42;
|
||||
msg.msg_head.flags = 0;
|
||||
msg.msg_head.nframes = 5;
|
||||
U64_DATA(&msg.frame[0]) = 0xFF00000000000000ULL; /* MUX mask */
|
||||
U64_DATA(&msg.frame[1]) = 0x01000000000000FFULL; /* data mask (MUX 0x01) */
|
||||
U64_DATA(&msg.frame[2]) = 0x0200FFFF000000FFULL; /* data mask (MUX 0x02) */
|
||||
U64_DATA(&msg.frame[3]) = 0x330000FFFFFF0003ULL; /* data mask (MUX 0x33) */
|
||||
U64_DATA(&msg.frame[4]) = 0x4F07FC0FF0000000ULL; /* data mask (MUX 0x4F) */
|
||||
|
||||
write(s, &msg, sizeof(msg));
|
||||
|
||||
4.3 connected transport protocols (SOCK_SEQPACKET)
|
||||
4.4 unconnected transport protocols (SOCK_DGRAM)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user