genirq/affinity: Rename irq_build_affinity_masks as group_cpus_evenly

Map irq vector into group, which allows to abstract the algorithm for
a generic use case outside of the interrupt core.

Rename irq_build_affinity_masks as group_cpus_evenly, so the API can be
reused for blk-mq to make default queue mapping even though irq vectors
aren't involved.

No functional change, just rename vector as group.

Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>                                                                                                                                                                                                    
Link: https://lore.kernel.org/r/20221227022905.352674-5-ming.lei@redhat.com
This commit is contained in:
Ming Lei 2022-12-27 10:29:03 +08:00 committed by Thomas Gleixner
parent e7bdd7f0cb
commit 523f1ea76a

View File

@ -9,13 +9,13 @@
#include <linux/cpu.h>
#include <linux/sort.h>
static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
unsigned int cpus_per_vec)
static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
unsigned int cpus_per_grp)
{
const struct cpumask *siblmsk;
int cpu, sibl;
for ( ; cpus_per_vec > 0; ) {
for ( ; cpus_per_grp > 0; ) {
cpu = cpumask_first(nmsk);
/* Should not happen, but I'm too lazy to think about it */
@ -24,18 +24,18 @@ static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
cpumask_clear_cpu(cpu, nmsk);
cpumask_set_cpu(cpu, irqmsk);
cpus_per_vec--;
cpus_per_grp--;
/* If the cpu has siblings, use them first */
siblmsk = topology_sibling_cpumask(cpu);
for (sibl = -1; cpus_per_vec > 0; ) {
for (sibl = -1; cpus_per_grp > 0; ) {
sibl = cpumask_next(sibl, siblmsk);
if (sibl >= nr_cpu_ids)
break;
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
continue;
cpumask_set_cpu(sibl, irqmsk);
cpus_per_vec--;
cpus_per_grp--;
}
}
}
@ -95,48 +95,48 @@ static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
return nodes;
}
struct node_vectors {
struct node_groups {
unsigned id;
union {
unsigned nvectors;
unsigned ngroups;
unsigned ncpus;
};
};
static int ncpus_cmp_func(const void *l, const void *r)
{
const struct node_vectors *ln = l;
const struct node_vectors *rn = r;
const struct node_groups *ln = l;
const struct node_groups *rn = r;
return ln->ncpus - rn->ncpus;
}
/*
* Allocate vector number for each node, so that for each node:
* Allocate group number for each node, so that for each node:
*
* 1) the allocated number is >= 1
*
* 2) the allocated numbver is <= active CPU number of this node
* 2) the allocated number is <= active CPU number of this node
*
* The actual allocated total vectors may be less than @numvecs when
* active total CPU number is less than @numvecs.
* The actual allocated total groups may be less than @numgrps when
* active total CPU number is less than @numgrps.
*
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
* for each node.
*/
static void alloc_nodes_vectors(unsigned int numvecs,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
const nodemask_t nodemsk,
struct cpumask *nmsk,
struct node_vectors *node_vectors)
static void alloc_nodes_groups(unsigned int numgrps,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
const nodemask_t nodemsk,
struct cpumask *nmsk,
struct node_groups *node_groups)
{
unsigned n, remaining_ncpus = 0;
for (n = 0; n < nr_node_ids; n++) {
node_vectors[n].id = n;
node_vectors[n].ncpus = UINT_MAX;
node_groups[n].id = n;
node_groups[n].ncpus = UINT_MAX;
}
for_each_node_mask(n, nodemsk) {
@ -148,61 +148,61 @@ static void alloc_nodes_vectors(unsigned int numvecs,
if (!ncpus)
continue;
remaining_ncpus += ncpus;
node_vectors[n].ncpus = ncpus;
node_groups[n].ncpus = ncpus;
}
numvecs = min_t(unsigned, remaining_ncpus, numvecs);
numgrps = min_t(unsigned, remaining_ncpus, numgrps);
sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
ncpus_cmp_func, NULL);
/*
* Allocate vectors for each node according to the ratio of this
* node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
* Allocate groups for each node according to the ratio of this
* node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
* bigger than number of active numa nodes. Always start the
* allocation from the node with minimized nr_cpus.
*
* This way guarantees that each active node gets allocated at
* least one vector, and the theory is simple: over-allocation
* is only done when this node is assigned by one vector, so
* other nodes will be allocated >= 1 vector, since 'numvecs' is
* least one group, and the theory is simple: over-allocation
* is only done when this node is assigned by one group, so
* other nodes will be allocated >= 1 groups, since 'numgrps' is
* bigger than number of numa nodes.
*
* One perfect invariant is that number of allocated vectors for
* One perfect invariant is that number of allocated groups for
* each node is <= CPU count of this node:
*
* 1) suppose there are two nodes: A and B
* ncpu(X) is CPU count of node X
* vecs(X) is the vector count allocated to node X via this
* grps(X) is the group count allocated to node X via this
* algorithm
*
* ncpu(A) <= ncpu(B)
* ncpu(A) + ncpu(B) = N
* vecs(A) + vecs(B) = V
* grps(A) + grps(B) = G
*
* vecs(A) = max(1, round_down(V * ncpu(A) / N))
* vecs(B) = V - vecs(A)
* grps(A) = max(1, round_down(G * ncpu(A) / N))
* grps(B) = G - grps(A)
*
* both N and V are integer, and 2 <= V <= N, suppose
* V = N - delta, and 0 <= delta <= N - 2
* both N and G are integer, and 2 <= G <= N, suppose
* G = N - delta, and 0 <= delta <= N - 2
*
* 2) obviously vecs(A) <= ncpu(A) because:
* 2) obviously grps(A) <= ncpu(A) because:
*
* if vecs(A) is 1, then vecs(A) <= ncpu(A) given
* if grps(A) is 1, then grps(A) <= ncpu(A) given
* ncpu(A) >= 1
*
* otherwise,
* vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
* grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
*
* 3) prove how vecs(B) <= ncpu(B):
* 3) prove how grps(B) <= ncpu(B):
*
* if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
* over-allocated, so vecs(B) <= ncpu(B),
* if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
* over-allocated, so grps(B) <= ncpu(B),
*
* otherwise:
*
* vecs(A) =
* round_down(V * ncpu(A) / N) =
* grps(A) =
* round_down(G * ncpu(A) / N) =
* round_down((N - delta) * ncpu(A) / N) =
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
* round_down((N * ncpu(A) - delta * N) / N) =
@ -210,52 +210,50 @@ static void alloc_nodes_vectors(unsigned int numvecs,
*
* then:
*
* vecs(A) - V >= ncpu(A) - delta - V
* grps(A) - G >= ncpu(A) - delta - G
* =>
* V - vecs(A) <= V + delta - ncpu(A)
* G - grps(A) <= G + delta - ncpu(A)
* =>
* vecs(B) <= N - ncpu(A)
* grps(B) <= N - ncpu(A)
* =>
* vecs(B) <= cpu(B)
* grps(B) <= cpu(B)
*
* For nodes >= 3, it can be thought as one node and another big
* node given that is exactly what this algorithm is implemented,
* and we always re-calculate 'remaining_ncpus' & 'numvecs', and
* finally for each node X: vecs(X) <= ncpu(X).
* and we always re-calculate 'remaining_ncpus' & 'numgrps', and
* finally for each node X: grps(X) <= ncpu(X).
*
*/
for (n = 0; n < nr_node_ids; n++) {
unsigned nvectors, ncpus;
unsigned ngroups, ncpus;
if (node_vectors[n].ncpus == UINT_MAX)
if (node_groups[n].ncpus == UINT_MAX)
continue;
WARN_ON_ONCE(numvecs == 0);
WARN_ON_ONCE(numgrps == 0);
ncpus = node_vectors[n].ncpus;
nvectors = max_t(unsigned, 1,
numvecs * ncpus / remaining_ncpus);
WARN_ON_ONCE(nvectors > ncpus);
ncpus = node_groups[n].ncpus;
ngroups = max_t(unsigned, 1,
numgrps * ncpus / remaining_ncpus);
WARN_ON_ONCE(ngroups > ncpus);
node_vectors[n].nvectors = nvectors;
node_groups[n].ngroups = ngroups;
remaining_ncpus -= ncpus;
numvecs -= nvectors;
numgrps -= ngroups;
}
}
static int __irq_build_affinity_masks(unsigned int startvec,
unsigned int numvecs,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
struct cpumask *nmsk,
struct cpumask *masks)
static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
cpumask_var_t *node_to_cpumask,
const struct cpumask *cpu_mask,
struct cpumask *nmsk, struct cpumask *masks)
{
unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
unsigned int last_affv = numvecs;
unsigned int curvec = startvec;
unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
unsigned int last_grp = numgrps;
unsigned int curgrp = startgrp;
nodemask_t nodemsk = NODE_MASK_NONE;
struct node_vectors *node_vectors;
struct node_groups *node_groups;
if (cpumask_empty(cpu_mask))
return 0;
@ -264,34 +262,33 @@ static int __irq_build_affinity_masks(unsigned int startvec,
/*
* If the number of nodes in the mask is greater than or equal the
* number of vectors we just spread the vectors across the nodes.
* number of groups we just spread the groups across the nodes.
*/
if (numvecs <= nodes) {
if (numgrps <= nodes) {
for_each_node_mask(n, nodemsk) {
/* Ensure that only CPUs which are in both masks are set */
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
cpumask_or(&masks[curvec], &masks[curvec], nmsk);
if (++curvec == last_affv)
curvec = 0;
cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
if (++curgrp == last_grp)
curgrp = 0;
}
return numvecs;
return numgrps;
}
node_vectors = kcalloc(nr_node_ids,
sizeof(struct node_vectors),
node_groups = kcalloc(nr_node_ids,
sizeof(struct node_groups),
GFP_KERNEL);
if (!node_vectors)
if (!node_groups)
return -ENOMEM;
/* allocate vector number for each node */
alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
nodemsk, nmsk, node_vectors);
/* allocate group number for each node */
alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
nodemsk, nmsk, node_groups);
for (i = 0; i < nr_node_ids; i++) {
unsigned int ncpus, v;
struct node_vectors *nv = &node_vectors[i];
struct node_groups *nv = &node_groups[i];
if (nv->nvectors == UINT_MAX)
if (nv->ngroups == UINT_MAX)
continue;
/* Get the cpus on this node which are in the mask */
@ -300,44 +297,47 @@ static int __irq_build_affinity_masks(unsigned int startvec,
if (!ncpus)
continue;
WARN_ON_ONCE(nv->nvectors > ncpus);
WARN_ON_ONCE(nv->ngroups > ncpus);
/* Account for rounding errors */
extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
/* Spread allocated vectors on CPUs of the current node */
for (v = 0; v < nv->nvectors; v++, curvec++) {
cpus_per_vec = ncpus / nv->nvectors;
/* Spread allocated groups on CPUs of the current node */
for (v = 0; v < nv->ngroups; v++, curgrp++) {
cpus_per_grp = ncpus / nv->ngroups;
/* Account for extra vectors to compensate rounding errors */
if (extra_vecs) {
cpus_per_vec++;
--extra_vecs;
/* Account for extra groups to compensate rounding errors */
if (extra_grps) {
cpus_per_grp++;
--extra_grps;
}
/*
* wrapping has to be considered given 'startvec'
* wrapping has to be considered given 'startgrp'
* may start anywhere
*/
if (curvec >= last_affv)
curvec = 0;
irq_spread_init_one(&masks[curvec], nmsk,
cpus_per_vec);
if (curgrp >= last_grp)
curgrp = 0;
grp_spread_init_one(&masks[curgrp], nmsk,
cpus_per_grp);
}
done += nv->nvectors;
done += nv->ngroups;
}
kfree(node_vectors);
kfree(node_groups);
return done;
}
/*
* build affinity in two stages:
* 1) spread present CPU on these vectors
* 2) spread other possible CPUs on these vectors
* build affinity in two stages for each group, and try to put close CPUs
* in viewpoint of CPU and NUMA locality into same group, and we run
* two-stage grouping:
*
* 1) allocate present CPUs on these groups evenly first
* 2) allocate other possible CPUs on these groups evenly
*/
static struct cpumask *irq_build_affinity_masks(unsigned int numvecs)
static struct cpumask *group_cpus_evenly(unsigned int numgrps)
{
unsigned int curvec = 0, nr_present = 0, nr_others = 0;
unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
cpumask_var_t *node_to_cpumask;
cpumask_var_t nmsk, npresmsk;
int ret = -ENOMEM;
@ -353,7 +353,7 @@ static struct cpumask *irq_build_affinity_masks(unsigned int numvecs)
if (!node_to_cpumask)
goto fail_npresmsk;
masks = kcalloc(numvecs, sizeof(*masks), GFP_KERNEL);
masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
if (!masks)
goto fail_node_to_cpumask;
@ -361,26 +361,26 @@ static struct cpumask *irq_build_affinity_masks(unsigned int numvecs)
cpus_read_lock();
build_node_to_cpumask(node_to_cpumask);
/* Spread on present CPUs starting from affd->pre_vectors */
ret = __irq_build_affinity_masks(curvec, numvecs, node_to_cpumask,
cpu_present_mask, nmsk, masks);
/* grouping present CPUs first */
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
cpu_present_mask, nmsk, masks);
if (ret < 0)
goto fail_build_affinity;
nr_present = ret;
/*
* Spread on non present CPUs starting from the next vector to be
* handled. If the spreading of present CPUs already exhausted the
* vector space, assign the non present CPUs to the already spread
* out vectors.
* Allocate non present CPUs starting from the next group to be
* handled. If the grouping of present CPUs already exhausted the
* group space, assign the non present CPUs to the already
* allocated out groups.
*/
if (nr_present >= numvecs)
curvec = 0;
if (nr_present >= numgrps)
curgrp = 0;
else
curvec = nr_present;
curgrp = nr_present;
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
ret = __irq_build_affinity_masks(curvec, numvecs, node_to_cpumask,
npresmsk, nmsk, masks);
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
npresmsk, nmsk, masks);
if (ret >= 0)
nr_others = ret;
@ -388,7 +388,7 @@ static struct cpumask *irq_build_affinity_masks(unsigned int numvecs)
cpus_read_unlock();
if (ret >= 0)
WARN_ON(nr_present + nr_others < numvecs);
WARN_ON(nr_present + nr_others < numgrps);
fail_node_to_cpumask:
free_node_to_cpumask(node_to_cpumask);
@ -467,7 +467,7 @@ irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
unsigned int this_vecs = affd->set_size[i];
int j;
struct cpumask *result = irq_build_affinity_masks(this_vecs);
struct cpumask *result = group_cpus_evenly(this_vecs);
if (!result) {
kfree(masks);