mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 15:29:16 +00:00
mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU
A group of Linux kernel hackers reported chasing a bug that resulted from their assumption that SLAB_DESTROY_BY_RCU provided an existence guarantee, that is, that no block from such a slab would be reallocated during an RCU read-side critical section. Of course, that is not the case. Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire slab of blocks. However, there is a phrase for this, namely "type safety". This commit therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order to avoid future instances of this sort of confusion. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> [ paulmck: Add comments mentioning the old name, as requested by Eric Dumazet, in order to help people familiar with the old name find the new one. ] Acked-by: David Rientjes <rientjes@google.com>
This commit is contained in:
parent
4495c08e84
commit
5f0d5a3ae7
@ -17,7 +17,7 @@ rcu_dereference.txt
|
||||
rcubarrier.txt
|
||||
- RCU and Unloadable Modules
|
||||
rculist_nulls.txt
|
||||
- RCU list primitives for use with SLAB_DESTROY_BY_RCU
|
||||
- RCU list primitives for use with SLAB_TYPESAFE_BY_RCU
|
||||
rcuref.txt
|
||||
- Reference-count design for elements of lists/arrays protected by RCU
|
||||
rcu.txt
|
||||
|
@ -1,5 +1,5 @@
|
||||
Using hlist_nulls to protect read-mostly linked lists and
|
||||
objects using SLAB_DESTROY_BY_RCU allocations.
|
||||
objects using SLAB_TYPESAFE_BY_RCU allocations.
|
||||
|
||||
Please read the basics in Documentation/RCU/listRCU.txt
|
||||
|
||||
@ -7,7 +7,7 @@ Using special makers (called 'nulls') is a convenient way
|
||||
to solve following problem :
|
||||
|
||||
A typical RCU linked list managing objects which are
|
||||
allocated with SLAB_DESTROY_BY_RCU kmem_cache can
|
||||
allocated with SLAB_TYPESAFE_BY_RCU kmem_cache can
|
||||
use following algos :
|
||||
|
||||
1) Lookup algo
|
||||
@ -96,7 +96,7 @@ unlock_chain(); // typically a spin_unlock()
|
||||
3) Remove algo
|
||||
--------------
|
||||
Nothing special here, we can use a standard RCU hlist deletion.
|
||||
But thanks to SLAB_DESTROY_BY_RCU, beware a deleted object can be reused
|
||||
But thanks to SLAB_TYPESAFE_BY_RCU, beware a deleted object can be reused
|
||||
very very fast (before the end of RCU grace period)
|
||||
|
||||
if (put_last_reference_on(obj) {
|
||||
|
@ -925,7 +925,8 @@ d. Do you need RCU grace periods to complete even in the face
|
||||
|
||||
e. Is your workload too update-intensive for normal use of
|
||||
RCU, but inappropriate for other synchronization mechanisms?
|
||||
If so, consider SLAB_DESTROY_BY_RCU. But please be careful!
|
||||
If so, consider SLAB_TYPESAFE_BY_RCU (which was originally
|
||||
named SLAB_DESTROY_BY_RCU). But please be careful!
|
||||
|
||||
f. Do you need read-side critical sections that are respected
|
||||
even though they are in the middle of the idle loop, during
|
||||
|
@ -4552,7 +4552,7 @@ i915_gem_load_init(struct drm_i915_private *dev_priv)
|
||||
dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
|
||||
SLAB_HWCACHE_ALIGN |
|
||||
SLAB_RECLAIM_ACCOUNT |
|
||||
SLAB_DESTROY_BY_RCU);
|
||||
SLAB_TYPESAFE_BY_RCU);
|
||||
if (!dev_priv->requests)
|
||||
goto err_vmas;
|
||||
|
||||
|
@ -493,7 +493,7 @@ static inline struct drm_i915_gem_request *
|
||||
__i915_gem_active_get_rcu(const struct i915_gem_active *active)
|
||||
{
|
||||
/* Performing a lockless retrieval of the active request is super
|
||||
* tricky. SLAB_DESTROY_BY_RCU merely guarantees that the backing
|
||||
* tricky. SLAB_TYPESAFE_BY_RCU merely guarantees that the backing
|
||||
* slab of request objects will not be freed whilst we hold the
|
||||
* RCU read lock. It does not guarantee that the request itself
|
||||
* will not be freed and then *reused*. Viz,
|
||||
|
@ -1071,7 +1071,7 @@ int ldlm_init(void)
|
||||
ldlm_lock_slab = kmem_cache_create("ldlm_locks",
|
||||
sizeof(struct ldlm_lock), 0,
|
||||
SLAB_HWCACHE_ALIGN |
|
||||
SLAB_DESTROY_BY_RCU, NULL);
|
||||
SLAB_TYPESAFE_BY_RCU, NULL);
|
||||
if (!ldlm_lock_slab) {
|
||||
kmem_cache_destroy(ldlm_resource_slab);
|
||||
return -ENOMEM;
|
||||
|
@ -2340,7 +2340,7 @@ static int jbd2_journal_init_journal_head_cache(void)
|
||||
jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
|
||||
sizeof(struct journal_head),
|
||||
0, /* offset */
|
||||
SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
|
||||
SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
|
||||
NULL); /* ctor */
|
||||
retval = 0;
|
||||
if (!jbd2_journal_head_cache) {
|
||||
|
@ -38,7 +38,7 @@ void signalfd_cleanup(struct sighand_struct *sighand)
|
||||
/*
|
||||
* The lockless check can race with remove_wait_queue() in progress,
|
||||
* but in this case its caller should run under rcu_read_lock() and
|
||||
* sighand_cachep is SLAB_DESTROY_BY_RCU, we can safely return.
|
||||
* sighand_cachep is SLAB_TYPESAFE_BY_RCU, we can safely return.
|
||||
*/
|
||||
if (likely(!waitqueue_active(wqh)))
|
||||
return;
|
||||
|
@ -229,7 +229,7 @@ static inline struct dma_fence *dma_fence_get_rcu(struct dma_fence *fence)
|
||||
*
|
||||
* Function returns NULL if no refcount could be obtained, or the fence.
|
||||
* This function handles acquiring a reference to a fence that may be
|
||||
* reallocated within the RCU grace period (such as with SLAB_DESTROY_BY_RCU),
|
||||
* reallocated within the RCU grace period (such as with SLAB_TYPESAFE_BY_RCU),
|
||||
* so long as the caller is using RCU on the pointer to the fence.
|
||||
*
|
||||
* An alternative mechanism is to employ a seqlock to protect a bunch of
|
||||
@ -257,7 +257,7 @@ dma_fence_get_rcu_safe(struct dma_fence * __rcu *fencep)
|
||||
* have successfully acquire a reference to it. If it no
|
||||
* longer matches, we are holding a reference to some other
|
||||
* reallocated pointer. This is possible if the allocator
|
||||
* is using a freelist like SLAB_DESTROY_BY_RCU where the
|
||||
* is using a freelist like SLAB_TYPESAFE_BY_RCU where the
|
||||
* fence remains valid for the RCU grace period, but it
|
||||
* may be reallocated. When using such allocators, we are
|
||||
* responsible for ensuring the reference we get is to
|
||||
|
@ -28,7 +28,7 @@
|
||||
#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
|
||||
#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
|
||||
/*
|
||||
* SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
|
||||
* SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
|
||||
*
|
||||
* This delays freeing the SLAB page by a grace period, it does _NOT_
|
||||
* delay object freeing. This means that if you do kmem_cache_free()
|
||||
@ -61,8 +61,10 @@
|
||||
*
|
||||
* rcu_read_lock before reading the address, then rcu_read_unlock after
|
||||
* taking the spinlock within the structure expected at that address.
|
||||
*
|
||||
* Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
|
||||
*/
|
||||
#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
|
||||
#define SLAB_TYPESAFE_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
|
||||
#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
|
||||
#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
|
||||
|
||||
|
@ -993,7 +993,7 @@ struct smc_hashinfo;
|
||||
struct module;
|
||||
|
||||
/*
|
||||
* caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
|
||||
* caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
|
||||
* un-modified. Special care is taken when initializing object to zero.
|
||||
*/
|
||||
static inline void sk_prot_clear_nulls(struct sock *sk, int size)
|
||||
|
@ -1313,7 +1313,7 @@ void __cleanup_sighand(struct sighand_struct *sighand)
|
||||
if (atomic_dec_and_test(&sighand->count)) {
|
||||
signalfd_cleanup(sighand);
|
||||
/*
|
||||
* sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
|
||||
* sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
|
||||
* without an RCU grace period, see __lock_task_sighand().
|
||||
*/
|
||||
kmem_cache_free(sighand_cachep, sighand);
|
||||
@ -2144,7 +2144,7 @@ void __init proc_caches_init(void)
|
||||
{
|
||||
sighand_cachep = kmem_cache_create("sighand_cache",
|
||||
sizeof(struct sighand_struct), 0,
|
||||
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
|
||||
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
|
||||
SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
|
||||
signal_cachep = kmem_cache_create("signal_cache",
|
||||
sizeof(struct signal_struct), 0,
|
||||
|
@ -1237,7 +1237,7 @@ struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
|
||||
}
|
||||
/*
|
||||
* This sighand can be already freed and even reused, but
|
||||
* we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
|
||||
* we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
|
||||
* initializes ->siglock: this slab can't go away, it has
|
||||
* the same object type, ->siglock can't be reinitialized.
|
||||
*
|
||||
|
@ -413,7 +413,7 @@ void kasan_cache_create(struct kmem_cache *cache, size_t *size,
|
||||
*size += sizeof(struct kasan_alloc_meta);
|
||||
|
||||
/* Add free meta. */
|
||||
if (cache->flags & SLAB_DESTROY_BY_RCU || cache->ctor ||
|
||||
if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
|
||||
cache->object_size < sizeof(struct kasan_free_meta)) {
|
||||
cache->kasan_info.free_meta_offset = *size;
|
||||
*size += sizeof(struct kasan_free_meta);
|
||||
@ -561,7 +561,7 @@ static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
|
||||
unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
|
||||
|
||||
/* RCU slabs could be legally used after free within the RCU period */
|
||||
if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
|
||||
if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
|
||||
return;
|
||||
|
||||
kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
|
||||
@ -572,7 +572,7 @@ bool kasan_slab_free(struct kmem_cache *cache, void *object)
|
||||
s8 shadow_byte;
|
||||
|
||||
/* RCU slabs could be legally used after free within the RCU period */
|
||||
if (unlikely(cache->flags & SLAB_DESTROY_BY_RCU))
|
||||
if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
|
||||
return false;
|
||||
|
||||
shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
|
||||
|
@ -95,7 +95,7 @@ void kmemcheck_slab_alloc(struct kmem_cache *s, gfp_t gfpflags, void *object,
|
||||
void kmemcheck_slab_free(struct kmem_cache *s, void *object, size_t size)
|
||||
{
|
||||
/* TODO: RCU freeing is unsupported for now; hide false positives. */
|
||||
if (!s->ctor && !(s->flags & SLAB_DESTROY_BY_RCU))
|
||||
if (!s->ctor && !(s->flags & SLAB_TYPESAFE_BY_RCU))
|
||||
kmemcheck_mark_freed(object, size);
|
||||
}
|
||||
|
||||
|
@ -430,7 +430,7 @@ static void anon_vma_ctor(void *data)
|
||||
void __init anon_vma_init(void)
|
||||
{
|
||||
anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
|
||||
0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
|
||||
0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
|
||||
anon_vma_ctor);
|
||||
anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
|
||||
SLAB_PANIC|SLAB_ACCOUNT);
|
||||
@ -481,7 +481,7 @@ struct anon_vma *page_get_anon_vma(struct page *page)
|
||||
* If this page is still mapped, then its anon_vma cannot have been
|
||||
* freed. But if it has been unmapped, we have no security against the
|
||||
* anon_vma structure being freed and reused (for another anon_vma:
|
||||
* SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
|
||||
* SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
|
||||
* above cannot corrupt).
|
||||
*/
|
||||
if (!page_mapped(page)) {
|
||||
|
@ -1728,7 +1728,7 @@ static void slab_destroy(struct kmem_cache *cachep, struct page *page)
|
||||
|
||||
freelist = page->freelist;
|
||||
slab_destroy_debugcheck(cachep, page);
|
||||
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
|
||||
if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
|
||||
call_rcu(&page->rcu_head, kmem_rcu_free);
|
||||
else
|
||||
kmem_freepages(cachep, page);
|
||||
@ -1924,7 +1924,7 @@ static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
|
||||
|
||||
cachep->num = 0;
|
||||
|
||||
if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
|
||||
if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
|
||||
return false;
|
||||
|
||||
left = calculate_slab_order(cachep, size,
|
||||
@ -2030,7 +2030,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
|
||||
if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
|
||||
2 * sizeof(unsigned long long)))
|
||||
flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
|
||||
if (!(flags & SLAB_DESTROY_BY_RCU))
|
||||
if (!(flags & SLAB_TYPESAFE_BY_RCU))
|
||||
flags |= SLAB_POISON;
|
||||
#endif
|
||||
#endif
|
||||
|
@ -126,7 +126,7 @@ static inline unsigned long kmem_cache_flags(unsigned long object_size,
|
||||
|
||||
/* Legal flag mask for kmem_cache_create(), for various configurations */
|
||||
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
|
||||
SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
|
||||
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
|
||||
|
||||
#if defined(CONFIG_DEBUG_SLAB)
|
||||
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
|
||||
@ -415,7 +415,7 @@ static inline size_t slab_ksize(const struct kmem_cache *s)
|
||||
* back there or track user information then we can
|
||||
* only use the space before that information.
|
||||
*/
|
||||
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
|
||||
if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
|
||||
return s->inuse;
|
||||
/*
|
||||
* Else we can use all the padding etc for the allocation
|
||||
|
@ -39,7 +39,7 @@ static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
|
||||
* Set of flags that will prevent slab merging
|
||||
*/
|
||||
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
|
||||
SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
|
||||
SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
|
||||
SLAB_FAILSLAB | SLAB_KASAN)
|
||||
|
||||
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
|
||||
@ -500,7 +500,7 @@ static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
|
||||
struct kmem_cache *s, *s2;
|
||||
|
||||
/*
|
||||
* On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
|
||||
* On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
|
||||
* @slab_caches_to_rcu_destroy list. The slab pages are freed
|
||||
* through RCU and and the associated kmem_cache are dereferenced
|
||||
* while freeing the pages, so the kmem_caches should be freed only
|
||||
@ -537,7 +537,7 @@ static int shutdown_cache(struct kmem_cache *s)
|
||||
memcg_unlink_cache(s);
|
||||
list_del(&s->list);
|
||||
|
||||
if (s->flags & SLAB_DESTROY_BY_RCU) {
|
||||
if (s->flags & SLAB_TYPESAFE_BY_RCU) {
|
||||
list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
|
||||
schedule_work(&slab_caches_to_rcu_destroy_work);
|
||||
} else {
|
||||
|
@ -126,7 +126,7 @@ static inline void clear_slob_page_free(struct page *sp)
|
||||
|
||||
/*
|
||||
* struct slob_rcu is inserted at the tail of allocated slob blocks, which
|
||||
* were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
|
||||
* were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
|
||||
* the block using call_rcu.
|
||||
*/
|
||||
struct slob_rcu {
|
||||
@ -524,7 +524,7 @@ EXPORT_SYMBOL(ksize);
|
||||
|
||||
int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
|
||||
{
|
||||
if (flags & SLAB_DESTROY_BY_RCU) {
|
||||
if (flags & SLAB_TYPESAFE_BY_RCU) {
|
||||
/* leave room for rcu footer at the end of object */
|
||||
c->size += sizeof(struct slob_rcu);
|
||||
}
|
||||
@ -598,7 +598,7 @@ static void kmem_rcu_free(struct rcu_head *head)
|
||||
void kmem_cache_free(struct kmem_cache *c, void *b)
|
||||
{
|
||||
kmemleak_free_recursive(b, c->flags);
|
||||
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
|
||||
if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
|
||||
struct slob_rcu *slob_rcu;
|
||||
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
|
||||
slob_rcu->size = c->size;
|
||||
|
12
mm/slub.c
12
mm/slub.c
@ -1687,7 +1687,7 @@ static void rcu_free_slab(struct rcu_head *h)
|
||||
|
||||
static void free_slab(struct kmem_cache *s, struct page *page)
|
||||
{
|
||||
if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
|
||||
if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
|
||||
struct rcu_head *head;
|
||||
|
||||
if (need_reserve_slab_rcu) {
|
||||
@ -2963,7 +2963,7 @@ static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
|
||||
* slab_free_freelist_hook() could have put the items into quarantine.
|
||||
* If so, no need to free them.
|
||||
*/
|
||||
if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
|
||||
if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
|
||||
return;
|
||||
do_slab_free(s, page, head, tail, cnt, addr);
|
||||
}
|
||||
@ -3433,7 +3433,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
||||
* the slab may touch the object after free or before allocation
|
||||
* then we should never poison the object itself.
|
||||
*/
|
||||
if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
|
||||
if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
|
||||
!s->ctor)
|
||||
s->flags |= __OBJECT_POISON;
|
||||
else
|
||||
@ -3455,7 +3455,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
||||
*/
|
||||
s->inuse = size;
|
||||
|
||||
if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
|
||||
if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
|
||||
s->ctor)) {
|
||||
/*
|
||||
* Relocate free pointer after the object if it is not
|
||||
@ -3537,7 +3537,7 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
|
||||
s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
|
||||
s->reserved = 0;
|
||||
|
||||
if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
|
||||
if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
|
||||
s->reserved = sizeof(struct rcu_head);
|
||||
|
||||
if (!calculate_sizes(s, -1))
|
||||
@ -5042,7 +5042,7 @@ SLAB_ATTR_RO(cache_dma);
|
||||
|
||||
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
|
||||
return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
|
||||
}
|
||||
SLAB_ATTR_RO(destroy_by_rcu);
|
||||
|
||||
|
@ -950,7 +950,7 @@ static struct proto dccp_v4_prot = {
|
||||
.orphan_count = &dccp_orphan_count,
|
||||
.max_header = MAX_DCCP_HEADER,
|
||||
.obj_size = sizeof(struct dccp_sock),
|
||||
.slab_flags = SLAB_DESTROY_BY_RCU,
|
||||
.slab_flags = SLAB_TYPESAFE_BY_RCU,
|
||||
.rsk_prot = &dccp_request_sock_ops,
|
||||
.twsk_prot = &dccp_timewait_sock_ops,
|
||||
.h.hashinfo = &dccp_hashinfo,
|
||||
|
@ -1012,7 +1012,7 @@ static struct proto dccp_v6_prot = {
|
||||
.orphan_count = &dccp_orphan_count,
|
||||
.max_header = MAX_DCCP_HEADER,
|
||||
.obj_size = sizeof(struct dccp6_sock),
|
||||
.slab_flags = SLAB_DESTROY_BY_RCU,
|
||||
.slab_flags = SLAB_TYPESAFE_BY_RCU,
|
||||
.rsk_prot = &dccp6_request_sock_ops,
|
||||
.twsk_prot = &dccp6_timewait_sock_ops,
|
||||
.h.hashinfo = &dccp_hashinfo,
|
||||
|
@ -2398,7 +2398,7 @@ struct proto tcp_prot = {
|
||||
.sysctl_rmem = sysctl_tcp_rmem,
|
||||
.max_header = MAX_TCP_HEADER,
|
||||
.obj_size = sizeof(struct tcp_sock),
|
||||
.slab_flags = SLAB_DESTROY_BY_RCU,
|
||||
.slab_flags = SLAB_TYPESAFE_BY_RCU,
|
||||
.twsk_prot = &tcp_timewait_sock_ops,
|
||||
.rsk_prot = &tcp_request_sock_ops,
|
||||
.h.hashinfo = &tcp_hashinfo,
|
||||
|
@ -1919,7 +1919,7 @@ struct proto tcpv6_prot = {
|
||||
.sysctl_rmem = sysctl_tcp_rmem,
|
||||
.max_header = MAX_TCP_HEADER,
|
||||
.obj_size = sizeof(struct tcp6_sock),
|
||||
.slab_flags = SLAB_DESTROY_BY_RCU,
|
||||
.slab_flags = SLAB_TYPESAFE_BY_RCU,
|
||||
.twsk_prot = &tcp6_timewait_sock_ops,
|
||||
.rsk_prot = &tcp6_request_sock_ops,
|
||||
.h.hashinfo = &tcp_hashinfo,
|
||||
|
@ -142,7 +142,7 @@ static struct proto llc_proto = {
|
||||
.name = "LLC",
|
||||
.owner = THIS_MODULE,
|
||||
.obj_size = sizeof(struct llc_sock),
|
||||
.slab_flags = SLAB_DESTROY_BY_RCU,
|
||||
.slab_flags = SLAB_TYPESAFE_BY_RCU,
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -506,7 +506,7 @@ static struct sock *__llc_lookup_established(struct llc_sap *sap,
|
||||
again:
|
||||
sk_nulls_for_each_rcu(rc, node, laddr_hb) {
|
||||
if (llc_estab_match(sap, daddr, laddr, rc)) {
|
||||
/* Extra checks required by SLAB_DESTROY_BY_RCU */
|
||||
/* Extra checks required by SLAB_TYPESAFE_BY_RCU */
|
||||
if (unlikely(!atomic_inc_not_zero(&rc->sk_refcnt)))
|
||||
goto again;
|
||||
if (unlikely(llc_sk(rc)->sap != sap ||
|
||||
@ -565,7 +565,7 @@ static struct sock *__llc_lookup_listener(struct llc_sap *sap,
|
||||
again:
|
||||
sk_nulls_for_each_rcu(rc, node, laddr_hb) {
|
||||
if (llc_listener_match(sap, laddr, rc)) {
|
||||
/* Extra checks required by SLAB_DESTROY_BY_RCU */
|
||||
/* Extra checks required by SLAB_TYPESAFE_BY_RCU */
|
||||
if (unlikely(!atomic_inc_not_zero(&rc->sk_refcnt)))
|
||||
goto again;
|
||||
if (unlikely(llc_sk(rc)->sap != sap ||
|
||||
|
@ -328,7 +328,7 @@ static struct sock *llc_lookup_dgram(struct llc_sap *sap,
|
||||
again:
|
||||
sk_nulls_for_each_rcu(rc, node, laddr_hb) {
|
||||
if (llc_dgram_match(sap, laddr, rc)) {
|
||||
/* Extra checks required by SLAB_DESTROY_BY_RCU */
|
||||
/* Extra checks required by SLAB_TYPESAFE_BY_RCU */
|
||||
if (unlikely(!atomic_inc_not_zero(&rc->sk_refcnt)))
|
||||
goto again;
|
||||
if (unlikely(llc_sk(rc)->sap != sap ||
|
||||
|
@ -914,7 +914,7 @@ static unsigned int early_drop_list(struct net *net,
|
||||
continue;
|
||||
|
||||
/* kill only if still in same netns -- might have moved due to
|
||||
* SLAB_DESTROY_BY_RCU rules.
|
||||
* SLAB_TYPESAFE_BY_RCU rules.
|
||||
*
|
||||
* We steal the timer reference. If that fails timer has
|
||||
* already fired or someone else deleted it. Just drop ref
|
||||
@ -1069,7 +1069,7 @@ __nf_conntrack_alloc(struct net *net,
|
||||
|
||||
/*
|
||||
* Do not use kmem_cache_zalloc(), as this cache uses
|
||||
* SLAB_DESTROY_BY_RCU.
|
||||
* SLAB_TYPESAFE_BY_RCU.
|
||||
*/
|
||||
ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
|
||||
if (ct == NULL)
|
||||
@ -1114,7 +1114,7 @@ void nf_conntrack_free(struct nf_conn *ct)
|
||||
struct net *net = nf_ct_net(ct);
|
||||
|
||||
/* A freed object has refcnt == 0, that's
|
||||
* the golden rule for SLAB_DESTROY_BY_RCU
|
||||
* the golden rule for SLAB_TYPESAFE_BY_RCU
|
||||
*/
|
||||
NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
|
||||
|
||||
@ -1878,7 +1878,7 @@ int nf_conntrack_init_start(void)
|
||||
nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
|
||||
sizeof(struct nf_conn),
|
||||
NFCT_INFOMASK + 1,
|
||||
SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
|
||||
SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
|
||||
if (!nf_conntrack_cachep)
|
||||
goto err_cachep;
|
||||
|
||||
|
@ -101,7 +101,7 @@ struct proto smc_proto = {
|
||||
.unhash = smc_unhash_sk,
|
||||
.obj_size = sizeof(struct smc_sock),
|
||||
.h.smc_hash = &smc_v4_hashinfo,
|
||||
.slab_flags = SLAB_DESTROY_BY_RCU,
|
||||
.slab_flags = SLAB_TYPESAFE_BY_RCU,
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(smc_proto);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user