Merge branches 'fixes' and 'misc' into for-next

This commit is contained in:
Russell King (Oracle) 2024-11-13 08:15:43 +00:00
commit 6139f79136
5 changed files with 102 additions and 26 deletions

View File

@ -25,6 +25,7 @@
#include <asm/tls.h> #include <asm/tls.h>
#include <asm/system_info.h> #include <asm/system_info.h>
#include <asm/uaccess-asm.h> #include <asm/uaccess-asm.h>
#include <asm/kasan_def.h>
#include "entry-header.S" #include "entry-header.S"
#include <asm/probes.h> #include <asm/probes.h>
@ -561,6 +562,13 @@ ENTRY(__switch_to)
@ entries covering the vmalloc region. @ entries covering the vmalloc region.
@ @
ldr r2, [ip] ldr r2, [ip]
#ifdef CONFIG_KASAN_VMALLOC
@ Also dummy read from the KASAN shadow memory for the new stack if we
@ are using KASAN
mov_l r2, KASAN_SHADOW_OFFSET
add r2, r2, ip, lsr #KASAN_SHADOW_SCALE_SHIFT
ldr r2, [r2]
#endif
#endif #endif
@ When CONFIG_THREAD_INFO_IN_TASK=n, the update of SP itself is what @ When CONFIG_THREAD_INFO_IN_TASK=n, the update of SP itself is what

View File

@ -23,6 +23,7 @@
*/ */
#include <linux/module.h> #include <linux/module.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/kasan.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/io.h> #include <linux/io.h>
@ -115,16 +116,40 @@ int ioremap_page(unsigned long virt, unsigned long phys,
} }
EXPORT_SYMBOL(ioremap_page); EXPORT_SYMBOL(ioremap_page);
#ifdef CONFIG_KASAN
static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
{
return (unsigned long)kasan_mem_to_shadow((void *)addr);
}
#else
static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
{
return 0;
}
#endif
static void memcpy_pgd(struct mm_struct *mm, unsigned long start,
unsigned long end)
{
end = ALIGN(end, PGDIR_SIZE);
memcpy(pgd_offset(mm, start), pgd_offset_k(start),
sizeof(pgd_t) * (pgd_index(end) - pgd_index(start)));
}
void __check_vmalloc_seq(struct mm_struct *mm) void __check_vmalloc_seq(struct mm_struct *mm)
{ {
int seq; int seq;
do { do {
seq = atomic_read(&init_mm.context.vmalloc_seq); seq = atomic_read_acquire(&init_mm.context.vmalloc_seq);
memcpy(pgd_offset(mm, VMALLOC_START), memcpy_pgd(mm, VMALLOC_START, VMALLOC_END);
pgd_offset_k(VMALLOC_START), if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) {
sizeof(pgd_t) * (pgd_index(VMALLOC_END) - unsigned long start =
pgd_index(VMALLOC_START))); arm_kasan_mem_to_shadow(VMALLOC_START);
unsigned long end =
arm_kasan_mem_to_shadow(VMALLOC_END);
memcpy_pgd(mm, start, end);
}
/* /*
* Use a store-release so that other CPUs that observe the * Use a store-release so that other CPUs that observe the
* counter's new value are guaranteed to see the results of the * counter's new value are guaranteed to see the results of the

View File

@ -55,6 +55,34 @@ extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
*/ */
union vfp_state *vfp_current_hw_state[NR_CPUS]; union vfp_state *vfp_current_hw_state[NR_CPUS];
/*
* Claim ownership of the VFP unit.
*
* The caller may change VFP registers until vfp_state_release() is called.
*
* local_bh_disable() is used to disable preemption and to disable VFP
* processing in softirq context. On PREEMPT_RT kernels local_bh_disable() is
* not sufficient because it only serializes soft interrupt related sections
* via a local lock, but stays preemptible. Disabling preemption is the right
* choice here as bottom half processing is always in thread context on RT
* kernels so it implicitly prevents bottom half processing as well.
*/
static void vfp_state_hold(void)
{
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_bh_disable();
else
preempt_disable();
}
static void vfp_state_release(void)
{
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_bh_enable();
else
preempt_enable();
}
/* /*
* Is 'thread's most up to date state stored in this CPUs hardware? * Is 'thread's most up to date state stored in this CPUs hardware?
* Must be called from non-preemptible context. * Must be called from non-preemptible context.
@ -240,7 +268,7 @@ static void vfp_panic(char *reason, u32 inst)
/* /*
* Process bitmask of exception conditions. * Process bitmask of exception conditions.
*/ */
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) static int vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr)
{ {
int si_code = 0; int si_code = 0;
@ -248,8 +276,7 @@ static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_
if (exceptions == VFP_EXCEPTION_ERROR) { if (exceptions == VFP_EXCEPTION_ERROR) {
vfp_panic("unhandled bounce", inst); vfp_panic("unhandled bounce", inst);
vfp_raise_sigfpe(FPE_FLTINV, regs); return FPE_FLTINV;
return;
} }
/* /*
@ -277,8 +304,7 @@ static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
if (si_code) return si_code;
vfp_raise_sigfpe(si_code, regs);
} }
/* /*
@ -324,6 +350,8 @@ static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
{ {
u32 fpscr, orig_fpscr, fpsid, exceptions; u32 fpscr, orig_fpscr, fpsid, exceptions;
int si_code2 = 0;
int si_code = 0;
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
@ -369,8 +397,8 @@ static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
* unallocated VFP instruction but with FPSCR.IXE set and not * unallocated VFP instruction but with FPSCR.IXE set and not
* on VFP subarch 1. * on VFP subarch 1.
*/ */
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); si_code = vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr);
return; goto exit;
} }
/* /*
@ -394,14 +422,14 @@ static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
*/ */
exceptions = vfp_emulate_instruction(trigger, fpscr, regs); exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
if (exceptions) if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); si_code2 = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
/* /*
* If there isn't a second FP instruction, exit now. Note that * If there isn't a second FP instruction, exit now. Note that
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
*/ */
if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V)) if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
return; goto exit;
/* /*
* The barrier() here prevents fpinst2 being read * The barrier() here prevents fpinst2 being read
@ -413,7 +441,13 @@ static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
emulate: emulate:
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
if (exceptions) if (exceptions)
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); si_code = vfp_raise_exceptions(exceptions, trigger, orig_fpscr);
exit:
vfp_state_release();
if (si_code2)
vfp_raise_sigfpe(si_code2, regs);
if (si_code)
vfp_raise_sigfpe(si_code, regs);
} }
static void vfp_enable(void *unused) static void vfp_enable(void *unused)
@ -512,11 +546,9 @@ static inline void vfp_pm_init(void) { }
*/ */
void vfp_sync_hwstate(struct thread_info *thread) void vfp_sync_hwstate(struct thread_info *thread)
{ {
unsigned int cpu = get_cpu(); vfp_state_hold();
local_bh_disable(); if (vfp_state_in_hw(raw_smp_processor_id(), thread)) {
if (vfp_state_in_hw(cpu, thread)) {
u32 fpexc = fmrx(FPEXC); u32 fpexc = fmrx(FPEXC);
/* /*
@ -527,8 +559,7 @@ void vfp_sync_hwstate(struct thread_info *thread)
fmxr(FPEXC, fpexc); fmxr(FPEXC, fpexc);
} }
local_bh_enable(); vfp_state_release();
put_cpu();
} }
/* Ensure that the thread reloads the hardware VFP state on the next use. */ /* Ensure that the thread reloads the hardware VFP state on the next use. */
@ -683,7 +714,7 @@ static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
if (!user_mode(regs)) if (!user_mode(regs))
return vfp_kmode_exception(regs, trigger); return vfp_kmode_exception(regs, trigger);
local_bh_disable(); vfp_state_hold();
fpexc = fmrx(FPEXC); fpexc = fmrx(FPEXC);
/* /*
@ -748,6 +779,7 @@ static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
* replay the instruction that trapped. * replay the instruction that trapped.
*/ */
fmxr(FPEXC, fpexc); fmxr(FPEXC, fpexc);
vfp_state_release();
} else { } else {
/* Check for synchronous or asynchronous exceptions */ /* Check for synchronous or asynchronous exceptions */
if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) { if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
@ -762,17 +794,17 @@ static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
if (!(fpscr & FPSCR_IXE)) { if (!(fpscr & FPSCR_IXE)) {
if (!(fpscr & FPSCR_LENGTH_MASK)) { if (!(fpscr & FPSCR_LENGTH_MASK)) {
pr_debug("not VFP\n"); pr_debug("not VFP\n");
local_bh_enable(); vfp_state_release();
return -ENOEXEC; return -ENOEXEC;
} }
fpexc |= FPEXC_DEX; fpexc |= FPEXC_DEX;
} }
} }
bounce: regs->ARM_pc += 4; bounce: regs->ARM_pc += 4;
/* VFP_bounce() will invoke vfp_state_release() */
VFP_bounce(trigger, fpexc, regs); VFP_bounce(trigger, fpexc, regs);
} }
local_bh_enable();
return 0; return 0;
} }
@ -837,7 +869,7 @@ void kernel_neon_begin(void)
unsigned int cpu; unsigned int cpu;
u32 fpexc; u32 fpexc;
local_bh_disable(); vfp_state_hold();
/* /*
* Kernel mode NEON is only allowed outside of hardirq context with * Kernel mode NEON is only allowed outside of hardirq context with
@ -868,7 +900,7 @@ void kernel_neon_end(void)
{ {
/* Disable the NEON/VFP unit. */ /* Disable the NEON/VFP unit. */
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
local_bh_enable(); vfp_state_release();
} }
EXPORT_SYMBOL(kernel_neon_end); EXPORT_SYMBOL(kernel_neon_end);

View File

@ -449,6 +449,12 @@ const struct bus_type amba_bustype = {
}; };
EXPORT_SYMBOL_GPL(amba_bustype); EXPORT_SYMBOL_GPL(amba_bustype);
bool dev_is_amba(const struct device *dev)
{
return dev->bus == &amba_bustype;
}
EXPORT_SYMBOL_GPL(dev_is_amba);
static int __init amba_init(void) static int __init amba_init(void)
{ {
return bus_register(&amba_bustype); return bus_register(&amba_bustype);

View File

@ -121,6 +121,7 @@ extern const struct bus_type amba_bustype;
#ifdef CONFIG_ARM_AMBA #ifdef CONFIG_ARM_AMBA
int __amba_driver_register(struct amba_driver *, struct module *); int __amba_driver_register(struct amba_driver *, struct module *);
void amba_driver_unregister(struct amba_driver *); void amba_driver_unregister(struct amba_driver *);
bool dev_is_amba(const struct device *dev);
#else #else
static inline int __amba_driver_register(struct amba_driver *drv, static inline int __amba_driver_register(struct amba_driver *drv,
struct module *owner) struct module *owner)
@ -130,6 +131,10 @@ static inline int __amba_driver_register(struct amba_driver *drv,
static inline void amba_driver_unregister(struct amba_driver *drv) static inline void amba_driver_unregister(struct amba_driver *drv)
{ {
} }
static inline bool dev_is_amba(const struct device *dev)
{
return false;
}
#endif #endif
struct amba_device *amba_device_alloc(const char *, resource_size_t, size_t); struct amba_device *amba_device_alloc(const char *, resource_size_t, size_t);