mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-11 16:29:05 +00:00
Merge branch 'bpf-verifier-fixes'
Edward Cree says: ==================== bpf: verifier fixes Fix a couple of bugs introduced in my recent verifier patches. Patch #2 does slightly increase the insn count on bpf_lxc.o, but only by about a hundred insns (i.e. 0.2%). v2: added test for write-marks bug (patch #1); reworded comment on propagate_liveness() for clarity. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
commit
81152518e9
@ -21,6 +21,19 @@
|
||||
*/
|
||||
#define BPF_MAX_VAR_SIZ INT_MAX
|
||||
|
||||
/* Liveness marks, used for registers and spilled-regs (in stack slots).
|
||||
* Read marks propagate upwards until they find a write mark; they record that
|
||||
* "one of this state's descendants read this reg" (and therefore the reg is
|
||||
* relevant for states_equal() checks).
|
||||
* Write marks collect downwards and do not propagate; they record that "the
|
||||
* straight-line code that reached this state (from its parent) wrote this reg"
|
||||
* (and therefore that reads propagated from this state or its descendants
|
||||
* should not propagate to its parent).
|
||||
* A state with a write mark can receive read marks; it just won't propagate
|
||||
* them to its parent, since the write mark is a property, not of the state,
|
||||
* but of the link between it and its parent. See mark_reg_read() and
|
||||
* mark_stack_slot_read() in kernel/bpf/verifier.c.
|
||||
*/
|
||||
enum bpf_reg_liveness {
|
||||
REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
|
||||
REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
|
||||
@ -125,7 +138,6 @@ struct bpf_verifier_env {
|
||||
u32 id_gen; /* used to generate unique reg IDs */
|
||||
bool allow_ptr_leaks;
|
||||
bool seen_direct_write;
|
||||
bool varlen_map_value_access;
|
||||
struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
|
||||
};
|
||||
|
||||
|
@ -832,11 +832,6 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno,
|
||||
*/
|
||||
if (log_level)
|
||||
print_verifier_state(state);
|
||||
/* If the offset is variable, we will need to be stricter in state
|
||||
* pruning from now on.
|
||||
*/
|
||||
if (!tnum_is_const(reg->var_off))
|
||||
env->varlen_map_value_access = true;
|
||||
/* The minimum value is only important with signed
|
||||
* comparisons where we can't assume the floor of a
|
||||
* value is 0. If we are using signed variables for our
|
||||
@ -3247,9 +3242,8 @@ static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
|
||||
}
|
||||
|
||||
/* Returns true if (rold safe implies rcur safe) */
|
||||
static bool regsafe(struct bpf_reg_state *rold,
|
||||
struct bpf_reg_state *rcur,
|
||||
bool varlen_map_access, struct idpair *idmap)
|
||||
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
|
||||
struct idpair *idmap)
|
||||
{
|
||||
if (!(rold->live & REG_LIVE_READ))
|
||||
/* explored state didn't use this */
|
||||
@ -3281,22 +3275,14 @@ static bool regsafe(struct bpf_reg_state *rold,
|
||||
tnum_is_unknown(rold->var_off);
|
||||
}
|
||||
case PTR_TO_MAP_VALUE:
|
||||
if (varlen_map_access) {
|
||||
/* If the new min/max/var_off satisfy the old ones and
|
||||
* everything else matches, we are OK.
|
||||
* We don't care about the 'id' value, because nothing
|
||||
* uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
|
||||
*/
|
||||
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
|
||||
range_within(rold, rcur) &&
|
||||
tnum_in(rold->var_off, rcur->var_off);
|
||||
} else {
|
||||
/* If the ranges/var_off were not the same, but
|
||||
* everything else was and we didn't do a variable
|
||||
* access into a map then we are a-ok.
|
||||
*/
|
||||
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0;
|
||||
}
|
||||
/* If the new min/max/var_off satisfy the old ones and
|
||||
* everything else matches, we are OK.
|
||||
* We don't care about the 'id' value, because nothing
|
||||
* uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
|
||||
*/
|
||||
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
|
||||
range_within(rold, rcur) &&
|
||||
tnum_in(rold->var_off, rcur->var_off);
|
||||
case PTR_TO_MAP_VALUE_OR_NULL:
|
||||
/* a PTR_TO_MAP_VALUE could be safe to use as a
|
||||
* PTR_TO_MAP_VALUE_OR_NULL into the same map.
|
||||
@ -3380,7 +3366,6 @@ static bool states_equal(struct bpf_verifier_env *env,
|
||||
struct bpf_verifier_state *old,
|
||||
struct bpf_verifier_state *cur)
|
||||
{
|
||||
bool varlen_map_access = env->varlen_map_value_access;
|
||||
struct idpair *idmap;
|
||||
bool ret = false;
|
||||
int i;
|
||||
@ -3391,8 +3376,7 @@ static bool states_equal(struct bpf_verifier_env *env,
|
||||
return false;
|
||||
|
||||
for (i = 0; i < MAX_BPF_REG; i++) {
|
||||
if (!regsafe(&old->regs[i], &cur->regs[i], varlen_map_access,
|
||||
idmap))
|
||||
if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
@ -3412,7 +3396,7 @@ static bool states_equal(struct bpf_verifier_env *env,
|
||||
continue;
|
||||
if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
|
||||
&cur->spilled_regs[i / BPF_REG_SIZE],
|
||||
varlen_map_access, idmap))
|
||||
idmap))
|
||||
/* when explored and current stack slot are both storing
|
||||
* spilled registers, check that stored pointers types
|
||||
* are the same as well.
|
||||
@ -3433,9 +3417,16 @@ out_free:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* A write screens off any subsequent reads; but write marks come from the
|
||||
* straight-line code between a state and its parent. When we arrive at a
|
||||
* jump target (in the first iteration of the propagate_liveness() loop),
|
||||
* we didn't arrive by the straight-line code, so read marks in state must
|
||||
* propagate to parent regardless of state's write marks.
|
||||
*/
|
||||
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
|
||||
struct bpf_verifier_state *parent)
|
||||
{
|
||||
bool writes = parent == state->parent; /* Observe write marks */
|
||||
bool touched = false; /* any changes made? */
|
||||
int i;
|
||||
|
||||
@ -3447,7 +3438,9 @@ static bool do_propagate_liveness(const struct bpf_verifier_state *state,
|
||||
for (i = 0; i < BPF_REG_FP; i++) {
|
||||
if (parent->regs[i].live & REG_LIVE_READ)
|
||||
continue;
|
||||
if (state->regs[i].live == REG_LIVE_READ) {
|
||||
if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
|
||||
continue;
|
||||
if (state->regs[i].live & REG_LIVE_READ) {
|
||||
parent->regs[i].live |= REG_LIVE_READ;
|
||||
touched = true;
|
||||
}
|
||||
@ -3460,7 +3453,9 @@ static bool do_propagate_liveness(const struct bpf_verifier_state *state,
|
||||
continue;
|
||||
if (parent->spilled_regs[i].live & REG_LIVE_READ)
|
||||
continue;
|
||||
if (state->spilled_regs[i].live == REG_LIVE_READ) {
|
||||
if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
|
||||
continue;
|
||||
if (state->spilled_regs[i].live & REG_LIVE_READ) {
|
||||
parent->spilled_regs[i].live |= REG_LIVE_READ;
|
||||
touched = true;
|
||||
}
|
||||
@ -3468,6 +3463,15 @@ static bool do_propagate_liveness(const struct bpf_verifier_state *state,
|
||||
return touched;
|
||||
}
|
||||
|
||||
/* "parent" is "a state from which we reach the current state", but initially
|
||||
* it is not the state->parent (i.e. "the state whose straight-line code leads
|
||||
* to the current state"), instead it is the state that happened to arrive at
|
||||
* a (prunable) equivalent of the current state. See comment above
|
||||
* do_propagate_liveness() for consequences of this.
|
||||
* This function is just a more efficient way of calling mark_reg_read() or
|
||||
* mark_stack_slot_read() on each reg in "parent" that is read in "state",
|
||||
* though it requires that parent != state->parent in the call arguments.
|
||||
*/
|
||||
static void propagate_liveness(const struct bpf_verifier_state *state,
|
||||
struct bpf_verifier_state *parent)
|
||||
{
|
||||
@ -3496,6 +3500,12 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
/* reached equivalent register/stack state,
|
||||
* prune the search.
|
||||
* Registers read by the continuation are read by us.
|
||||
* If we have any write marks in env->cur_state, they
|
||||
* will prevent corresponding reads in the continuation
|
||||
* from reaching our parent (an explored_state). Our
|
||||
* own state will get the read marks recorded, but
|
||||
* they'll be immediately forgotten as we're pruning
|
||||
* this state and will pop a new one.
|
||||
*/
|
||||
propagate_liveness(&sl->state, &env->cur_state);
|
||||
return 1;
|
||||
@ -3519,7 +3529,12 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
|
||||
env->explored_states[insn_idx] = new_sl;
|
||||
/* connect new state to parentage chain */
|
||||
env->cur_state.parent = &new_sl->state;
|
||||
/* clear liveness marks in current state */
|
||||
/* clear write marks in current state: the writes we did are not writes
|
||||
* our child did, so they don't screen off its reads from us.
|
||||
* (There are no read marks in current state, because reads always mark
|
||||
* their parent and current state never has children yet. Only
|
||||
* explored_states can get read marks.)
|
||||
*/
|
||||
for (i = 0; i < BPF_REG_FP; i++)
|
||||
env->cur_state.regs[i].live = REG_LIVE_NONE;
|
||||
for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
|
||||
@ -3550,7 +3565,6 @@ static int do_check(struct bpf_verifier_env *env)
|
||||
init_reg_state(regs);
|
||||
state->parent = NULL;
|
||||
insn_idx = 0;
|
||||
env->varlen_map_value_access = false;
|
||||
for (;;) {
|
||||
struct bpf_insn *insn;
|
||||
u8 class;
|
||||
|
@ -6487,6 +6487,50 @@ static struct bpf_test tests[] = {
|
||||
.result = REJECT,
|
||||
.prog_type = BPF_PROG_TYPE_LWT_IN,
|
||||
},
|
||||
{
|
||||
"liveness pruning and write screening",
|
||||
.insns = {
|
||||
/* Get an unknown value */
|
||||
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
|
||||
/* branch conditions teach us nothing about R2 */
|
||||
BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
|
||||
BPF_MOV64_IMM(BPF_REG_0, 0),
|
||||
BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
|
||||
BPF_MOV64_IMM(BPF_REG_0, 0),
|
||||
BPF_EXIT_INSN(),
|
||||
},
|
||||
.errstr = "R0 !read_ok",
|
||||
.result = REJECT,
|
||||
.prog_type = BPF_PROG_TYPE_LWT_IN,
|
||||
},
|
||||
{
|
||||
"varlen_map_value_access pruning",
|
||||
.insns = {
|
||||
BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
|
||||
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
|
||||
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
|
||||
BPF_LD_MAP_FD(BPF_REG_1, 0),
|
||||
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
|
||||
BPF_FUNC_map_lookup_elem),
|
||||
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
|
||||
BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
|
||||
BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
|
||||
BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
|
||||
BPF_MOV32_IMM(BPF_REG_1, 0),
|
||||
BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
|
||||
BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
|
||||
BPF_JMP_IMM(BPF_JA, 0, 0, 0),
|
||||
BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
|
||||
offsetof(struct test_val, foo)),
|
||||
BPF_EXIT_INSN(),
|
||||
},
|
||||
.fixup_map2 = { 3 },
|
||||
.errstr_unpriv = "R0 leaks addr",
|
||||
.errstr = "R0 unbounded memory access",
|
||||
.result_unpriv = REJECT,
|
||||
.result = REJECT,
|
||||
.flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
|
||||
},
|
||||
};
|
||||
|
||||
static int probe_filter_length(const struct bpf_insn *fp)
|
||||
|
Loading…
x
Reference in New Issue
Block a user