diff --git a/Documentation/networking/page_pool.rst b/Documentation/networking/page_pool.rst index 215ebc92752c..60993cb56b32 100644 --- a/Documentation/networking/page_pool.rst +++ b/Documentation/networking/page_pool.rst @@ -58,7 +58,9 @@ a page will cause no race conditions is enough. .. kernel-doc:: include/net/page_pool/helpers.h :identifiers: page_pool_put_page page_pool_put_full_page - page_pool_recycle_direct page_pool_dev_alloc_pages + page_pool_recycle_direct page_pool_free_va + page_pool_dev_alloc_pages page_pool_dev_alloc_frag + page_pool_dev_alloc page_pool_dev_alloc_va page_pool_get_dma_addr page_pool_get_dma_dir .. kernel-doc:: net/core/page_pool.c diff --git a/include/net/page_pool/helpers.h b/include/net/page_pool/helpers.h index 1b76e05dc4d2..4ebd544ae977 100644 --- a/include/net/page_pool/helpers.h +++ b/include/net/page_pool/helpers.h @@ -8,23 +8,46 @@ /** * DOC: page_pool allocator * - * The page_pool allocator is optimized for the XDP mode that - * uses one frame per-page, but it can fallback on the - * regular page allocator APIs. + * The page_pool allocator is optimized for recycling page or page fragment used + * by skb packet and xdp frame. * - * Basic use involves replacing alloc_pages() calls with the - * page_pool_alloc_pages() call. Drivers should use - * page_pool_dev_alloc_pages() replacing dev_alloc_pages(). + * Basic use involves replacing and alloc_pages() calls with page_pool_alloc(), + * which allocate memory with or without page splitting depending on the + * requested memory size. * - * The API keeps track of in-flight pages, in order to let API users know - * when it is safe to free a page_pool object. Thus, API users - * must call page_pool_put_page() to free the page, or attach - * the page to a page_pool-aware object like skbs marked with + * If the driver knows that it always requires full pages or its allocations are + * always smaller than half a page, it can use one of the more specific API + * calls: + * + * 1. page_pool_alloc_pages(): allocate memory without page splitting when + * driver knows that the memory it need is always bigger than half of the page + * allocated from page pool. There is no cache line dirtying for 'struct page' + * when a page is recycled back to the page pool. + * + * 2. page_pool_alloc_frag(): allocate memory with page splitting when driver + * knows that the memory it need is always smaller than or equal to half of the + * page allocated from page pool. Page splitting enables memory saving and thus + * avoids TLB/cache miss for data access, but there also is some cost to + * implement page splitting, mainly some cache line dirtying/bouncing for + * 'struct page' and atomic operation for page->pp_frag_count. + * + * The API keeps track of in-flight pages, in order to let API users know when + * it is safe to free a page_pool object, the API users must call + * page_pool_put_page() or page_pool_free_va() to free the page_pool object, or + * attach the page_pool object to a page_pool-aware object like skbs marked with * skb_mark_for_recycle(). * - * API users must call page_pool_put_page() once on a page, as it - * will either recycle the page, or in case of refcnt > 1, it will - * release the DMA mapping and in-flight state accounting. + * page_pool_put_page() may be called multi times on the same page if a page is + * split into multi fragments. For the last fragment, it will either recycle the + * page, or in case of page->_refcount > 1, it will release the DMA mapping and + * in-flight state accounting. + * + * dma_sync_single_range_for_device() is only called for the last fragment when + * page_pool is created with PP_FLAG_DMA_SYNC_DEV flag, so it depends on the + * last freed fragment to do the sync_for_device operation for all fragments in + * the same page when a page is split, the API user must setup pool->p.max_len + * and pool->p.offset correctly and ensure that page_pool_put_page() is called + * with dma_sync_size being -1 for fragment API. */ #ifndef _NET_PAGE_POOL_HELPERS_H #define _NET_PAGE_POOL_HELPERS_H @@ -73,6 +96,17 @@ static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) return page_pool_alloc_pages(pool, gfp); } +/** + * page_pool_dev_alloc_frag() - allocate a page fragment. + * @pool: pool from which to allocate + * @offset: offset to the allocated page + * @size: requested size + * + * Get a page fragment from the page allocator or page_pool caches. + * + * Return: + * Return allocated page fragment, otherwise return NULL. + */ static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool, unsigned int *offset, unsigned int size) @@ -111,6 +145,19 @@ static inline struct page *page_pool_alloc(struct page_pool *pool, return page; } +/** + * page_pool_dev_alloc() - allocate a page or a page fragment. + * @pool: pool from which to allocate + * @offset: offset to the allocated page + * @size: in as the requested size, out as the allocated size + * + * Get a page or a page fragment from the page allocator or page_pool caches + * depending on the requested size in order to allocate memory with least memory + * utilization and performance penalty. + * + * Return: + * Return allocated page or page fragment, otherwise return NULL. + */ static inline struct page *page_pool_dev_alloc(struct page_pool *pool, unsigned int *offset, unsigned int *size) @@ -134,6 +181,18 @@ static inline void *page_pool_alloc_va(struct page_pool *pool, return page_address(page) + offset; } +/** + * page_pool_dev_alloc_va() - allocate a page or a page fragment and return its + * va. + * @pool: pool from which to allocate + * @size: in as the requested size, out as the allocated size + * + * This is just a thin wrapper around the page_pool_alloc() API, and + * it returns va of the allocated page or page fragment. + * + * Return: + * Return the va for the allocated page or page fragment, otherwise return NULL. + */ static inline void *page_pool_dev_alloc_va(struct page_pool *pool, unsigned int *size) { @@ -281,6 +340,14 @@ static inline void page_pool_recycle_direct(struct page_pool *pool, #define PAGE_POOL_32BIT_ARCH_WITH_64BIT_DMA \ (sizeof(dma_addr_t) > sizeof(unsigned long)) +/** + * page_pool_free_va() - free a va into the page_pool + * @pool: pool from which va was allocated + * @va: va to be freed + * @allow_direct: freed by the consumer, allow lockless caching + * + * Free a va allocated from page_pool_allo_va(). + */ static inline void page_pool_free_va(struct page_pool *pool, void *va, bool allow_direct) {