[PATCH] uml: file renaming

Move some foo_kern.c files to foo.c now that the old foo.c files are out
of the way.

Also cleaned up some whitespace and an emacs formatting comment.

Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
Jeff Dike 2006-09-27 01:50:40 -07:00 committed by Linus Torvalds
parent 3c91735099
commit 995473aec0
7 changed files with 697 additions and 226 deletions

View File

@ -7,7 +7,7 @@ extra-y := vmlinux.lds
clean-files := clean-files :=
obj-y = config.o exec.o exitcode.o init_task.o irq.o ksyms.o mem.o \ obj-y = config.o exec.o exitcode.o init_task.o irq.o ksyms.o mem.o \
physmem.o process_kern.o ptrace.o reboot.o resource.o sigio.o \ physmem.o process.o ptrace.o reboot.o resource.o sigio.o \
signal.o smp.o syscall.o sysrq.o time.o tlb.o trap.o uaccess.o \ signal.o smp.o syscall.o sysrq.o time.o tlb.o trap.o uaccess.o \
um_arch.o umid.o um_arch.o umid.o

View File

@ -1,10 +1,9 @@
/* /*
* Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com) * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
* Copyright 2003 PathScale, Inc. * Copyright 2003 PathScale, Inc.
* Licensed under the GPL * Licensed under the GPL
*/ */
#include "linux/config.h"
#include "linux/kernel.h" #include "linux/kernel.h"
#include "linux/sched.h" #include "linux/sched.h"
#include "linux/interrupt.h" #include "linux/interrupt.h"
@ -113,11 +112,11 @@ void set_current(void *t)
void *_switch_to(void *prev, void *next, void *last) void *_switch_to(void *prev, void *next, void *last)
{ {
struct task_struct *from = prev; struct task_struct *from = prev;
struct task_struct *to= next; struct task_struct *to= next;
to->thread.prev_sched = from; to->thread.prev_sched = from;
set_current(to); set_current(to);
do { do {
current->thread.saved_task = NULL ; current->thread.saved_task = NULL ;
@ -128,7 +127,7 @@ void *_switch_to(void *prev, void *next, void *last)
prev= current; prev= current;
} while(current->thread.saved_task); } while(current->thread.saved_task);
return(current->thread.prev_sched); return(current->thread.prev_sched);
} }
@ -142,19 +141,19 @@ void release_thread(struct task_struct *task)
{ {
CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task)); CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
} }
void exit_thread(void) void exit_thread(void)
{ {
unprotect_stack((unsigned long) current_thread); unprotect_stack((unsigned long) current_thread);
} }
void *get_current(void) void *get_current(void)
{ {
return(current); return(current);
} }
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long stack_top, struct task_struct * p, unsigned long stack_top, struct task_struct * p,
struct pt_regs *regs) struct pt_regs *regs)
{ {
int ret; int ret;
@ -183,11 +182,11 @@ void initial_thread_cb(void (*proc)(void *), void *arg)
int save_kmalloc_ok = kmalloc_ok; int save_kmalloc_ok = kmalloc_ok;
kmalloc_ok = 0; kmalloc_ok = 0;
CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc, CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
arg); arg);
kmalloc_ok = save_kmalloc_ok; kmalloc_ok = save_kmalloc_ok;
} }
unsigned long stack_sp(unsigned long page) unsigned long stack_sp(unsigned long page)
{ {
return(page + PAGE_SIZE - sizeof(void *)); return(page + PAGE_SIZE - sizeof(void *));
@ -211,7 +210,7 @@ void default_idle(void)
*/ */
if(need_resched()) if(need_resched())
schedule(); schedule();
idle_sleep(10); idle_sleep(10);
} }
} }
@ -226,7 +225,7 @@ int page_size(void)
return(PAGE_SIZE); return(PAGE_SIZE);
} }
void *um_virt_to_phys(struct task_struct *task, unsigned long addr, void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
pte_t *pte_out) pte_t *pte_out)
{ {
pgd_t *pgd; pgd_t *pgd;
@ -235,7 +234,7 @@ void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
pte_t *pte; pte_t *pte;
pte_t ptent; pte_t ptent;
if(task->mm == NULL) if(task->mm == NULL)
return(ERR_PTR(-EINVAL)); return(ERR_PTR(-EINVAL));
pgd = pgd_offset(task->mm, addr); pgd = pgd_offset(task->mm, addr);
if(!pgd_present(*pgd)) if(!pgd_present(*pgd))
@ -246,7 +245,7 @@ void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
return(ERR_PTR(-EINVAL)); return(ERR_PTR(-EINVAL));
pmd = pmd_offset(pud, addr); pmd = pmd_offset(pud, addr);
if(!pmd_present(*pmd)) if(!pmd_present(*pmd))
return(ERR_PTR(-EINVAL)); return(ERR_PTR(-EINVAL));
pte = pte_offset_kernel(pmd, addr); pte = pte_offset_kernel(pmd, addr);
@ -271,7 +270,7 @@ char *current_cmd(void)
void force_sigbus(void) void force_sigbus(void)
{ {
printk(KERN_ERR "Killing pid %d because of a lack of memory\n", printk(KERN_ERR "Killing pid %d because of a lack of memory\n",
current->pid); current->pid);
lock_kernel(); lock_kernel();
sigaddset(&current->pending.signal, SIGBUS); sigaddset(&current->pending.signal, SIGBUS);

View File

@ -3,8 +3,7 @@
# Licensed under the GPL # Licensed under the GPL
# #
obj-y := clone.o exec_kern.o mem.o mmu.o process_kern.o \ obj-y := clone.o exec.o mem.o mmu.o process.o syscall.o tlb.o uaccess.o
syscall.o tlb.o uaccess.o
# clone.o is in the stub, so it can't be built with profiling # clone.o is in the stub, so it can't be built with profiling
# GCC hardened also auto-enables -fpic, but we need %ebx so it can't work -> # GCC hardened also auto-enables -fpic, but we need %ebx so it can't work ->

View File

@ -0,0 +1,30 @@
/*
* Copyright (C) 2002 Jeff Dike (jdike@karaya.com)
* Licensed under the GPL
*/
#include "linux/kernel.h"
#include "asm/current.h"
#include "asm/page.h"
#include "asm/signal.h"
#include "asm/ptrace.h"
#include "asm/uaccess.h"
#include "asm/mmu_context.h"
#include "tlb.h"
#include "skas.h"
#include "um_mmu.h"
#include "os.h"
void flush_thread_skas(void)
{
force_flush_all();
switch_mm_skas(&current->mm->context.skas.id);
}
void start_thread_skas(struct pt_regs *regs, unsigned long eip,
unsigned long esp)
{
set_fs(USER_DS);
PT_REGS_IP(regs) = eip;
PT_REGS_SP(regs) = esp;
}

View File

@ -1,41 +0,0 @@
/*
* Copyright (C) 2002 Jeff Dike (jdike@karaya.com)
* Licensed under the GPL
*/
#include "linux/kernel.h"
#include "asm/current.h"
#include "asm/page.h"
#include "asm/signal.h"
#include "asm/ptrace.h"
#include "asm/uaccess.h"
#include "asm/mmu_context.h"
#include "tlb.h"
#include "skas.h"
#include "um_mmu.h"
#include "os.h"
void flush_thread_skas(void)
{
force_flush_all();
switch_mm_skas(&current->mm->context.skas.id);
}
void start_thread_skas(struct pt_regs *regs, unsigned long eip,
unsigned long esp)
{
set_fs(USER_DS);
PT_REGS_IP(regs) = eip;
PT_REGS_SP(regs) = esp;
}
/*
* Overrides for Emacs so that we follow Linus's tabbing style.
* Emacs will notice this stuff at the end of the file and automatically
* adjust the settings for this buffer only. This must remain at the end
* of the file.
* ---------------------------------------------------------------------------
* Local variables:
* c-file-style: "linux"
* End:
*/

View File

@ -0,0 +1,217 @@
/*
* Copyright (C) 2002 Jeff Dike (jdike@karaya.com)
* Licensed under the GPL
*/
#include "linux/sched.h"
#include "linux/slab.h"
#include "linux/ptrace.h"
#include "linux/proc_fs.h"
#include "linux/file.h"
#include "linux/errno.h"
#include "linux/init.h"
#include "asm/uaccess.h"
#include "asm/atomic.h"
#include "kern_util.h"
#include "skas.h"
#include "os.h"
#include "user_util.h"
#include "tlb.h"
#include "kern.h"
#include "mode.h"
#include "registers.h"
void switch_to_skas(void *prev, void *next)
{
struct task_struct *from, *to;
from = prev;
to = next;
/* XXX need to check runqueues[cpu].idle */
if(current->pid == 0)
switch_timers(0);
switch_threads(&from->thread.mode.skas.switch_buf,
&to->thread.mode.skas.switch_buf);
arch_switch_to_skas(current->thread.prev_sched, current);
if(current->pid == 0)
switch_timers(1);
}
extern void schedule_tail(struct task_struct *prev);
/* This is called magically, by its address being stuffed in a jmp_buf
* and being longjmp-d to.
*/
void new_thread_handler(void)
{
int (*fn)(void *), n;
void *arg;
if(current->thread.prev_sched != NULL)
schedule_tail(current->thread.prev_sched);
current->thread.prev_sched = NULL;
fn = current->thread.request.u.thread.proc;
arg = current->thread.request.u.thread.arg;
/* The return value is 1 if the kernel thread execs a process,
* 0 if it just exits
*/
n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
if(n == 1){
/* Handle any immediate reschedules or signals */
interrupt_end();
userspace(&current->thread.regs.regs);
}
else do_exit(0);
}
void release_thread_skas(struct task_struct *task)
{
}
/* Called magically, see new_thread_handler above */
void fork_handler(void)
{
force_flush_all();
if(current->thread.prev_sched == NULL)
panic("blech");
schedule_tail(current->thread.prev_sched);
/* XXX: if interrupt_end() calls schedule, this call to
* arch_switch_to_skas isn't needed. We could want to apply this to
* improve performance. -bb */
arch_switch_to_skas(current->thread.prev_sched, current);
current->thread.prev_sched = NULL;
/* Handle any immediate reschedules or signals */
interrupt_end();
userspace(&current->thread.regs.regs);
}
int copy_thread_skas(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long stack_top, struct task_struct * p,
struct pt_regs *regs)
{
void (*handler)(void);
if(current->thread.forking){
memcpy(&p->thread.regs.regs.skas, &regs->regs.skas,
sizeof(p->thread.regs.regs.skas));
REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.skas.regs, 0);
if(sp != 0) REGS_SP(p->thread.regs.regs.skas.regs) = sp;
handler = fork_handler;
arch_copy_thread(&current->thread.arch, &p->thread.arch);
}
else {
init_thread_registers(&p->thread.regs.regs);
p->thread.request.u.thread = current->thread.request.u.thread;
handler = new_thread_handler;
}
new_thread(task_stack_page(p), &p->thread.mode.skas.switch_buf,
handler);
return(0);
}
int new_mm(unsigned long stack)
{
int fd;
fd = os_open_file("/proc/mm", of_cloexec(of_write(OPENFLAGS())), 0);
if(fd < 0)
return(fd);
if(skas_needs_stub)
map_stub_pages(fd, CONFIG_STUB_CODE, CONFIG_STUB_DATA, stack);
return(fd);
}
void init_idle_skas(void)
{
cpu_tasks[current_thread->cpu].pid = os_getpid();
default_idle();
}
extern void start_kernel(void);
static int start_kernel_proc(void *unused)
{
int pid;
block_signals();
pid = os_getpid();
cpu_tasks[0].pid = pid;
cpu_tasks[0].task = current;
#ifdef CONFIG_SMP
cpu_online_map = cpumask_of_cpu(0);
#endif
start_kernel();
return(0);
}
extern int userspace_pid[];
int start_uml_skas(void)
{
if(proc_mm)
userspace_pid[0] = start_userspace(0);
init_new_thread_signals();
init_task.thread.request.u.thread.proc = start_kernel_proc;
init_task.thread.request.u.thread.arg = NULL;
return(start_idle_thread(task_stack_page(&init_task),
&init_task.thread.mode.skas.switch_buf));
}
int external_pid_skas(struct task_struct *task)
{
#warning Need to look up userspace_pid by cpu
return(userspace_pid[0]);
}
int thread_pid_skas(struct task_struct *task)
{
#warning Need to look up userspace_pid by cpu
return(userspace_pid[0]);
}
void kill_off_processes_skas(void)
{
if(proc_mm)
#warning need to loop over userspace_pids in kill_off_processes_skas
os_kill_ptraced_process(userspace_pid[0], 1);
else {
struct task_struct *p;
int pid, me;
me = os_getpid();
for_each_process(p){
if(p->mm == NULL)
continue;
pid = p->mm->context.skas.id.u.pid;
os_kill_ptraced_process(pid, 1);
}
}
}
unsigned long current_stub_stack(void)
{
if(current->mm == NULL)
return(0);
return(current->mm->context.skas.id.stack);
}

View File

@ -1,217 +1,484 @@
/* /*
* Copyright (C) 2002 Jeff Dike (jdike@karaya.com) * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
* Copyright 2003 PathScale, Inc.
* Licensed under the GPL * Licensed under the GPL
*/ */
#include "linux/config.h"
#include "linux/kernel.h"
#include "linux/sched.h" #include "linux/sched.h"
#include "linux/interrupt.h"
#include "linux/string.h"
#include "linux/mm.h"
#include "linux/slab.h" #include "linux/slab.h"
#include "linux/ptrace.h" #include "linux/utsname.h"
#include "linux/proc_fs.h" #include "linux/fs.h"
#include "linux/file.h" #include "linux/utime.h"
#include "linux/errno.h" #include "linux/smp_lock.h"
#include "linux/module.h"
#include "linux/init.h" #include "linux/init.h"
#include "linux/capability.h"
#include "linux/vmalloc.h"
#include "linux/spinlock.h"
#include "linux/proc_fs.h"
#include "linux/ptrace.h"
#include "linux/random.h"
#include "linux/personality.h"
#include "asm/unistd.h"
#include "asm/mman.h"
#include "asm/segment.h"
#include "asm/stat.h"
#include "asm/pgtable.h"
#include "asm/processor.h"
#include "asm/tlbflush.h"
#include "asm/uaccess.h" #include "asm/uaccess.h"
#include "asm/atomic.h" #include "asm/user.h"
#include "kern_util.h"
#include "skas.h"
#include "os.h"
#include "user_util.h" #include "user_util.h"
#include "tlb.h" #include "kern_util.h"
#include "kern.h" #include "kern.h"
#include "signal_kern.h"
#include "init.h"
#include "irq_user.h"
#include "mem_user.h"
#include "tlb.h"
#include "frame_kern.h"
#include "sigcontext.h"
#include "os.h"
#include "mode.h" #include "mode.h"
#include "registers.h" #include "mode_kern.h"
#include "choose-mode.h"
void switch_to_skas(void *prev, void *next) /* This is a per-cpu array. A processor only modifies its entry and it only
{ * cares about its entry, so it's OK if another processor is modifying its
struct task_struct *from, *to; * entry.
from = prev;
to = next;
/* XXX need to check runqueues[cpu].idle */
if(current->pid == 0)
switch_timers(0);
switch_threads(&from->thread.mode.skas.switch_buf,
&to->thread.mode.skas.switch_buf);
arch_switch_to_skas(current->thread.prev_sched, current);
if(current->pid == 0)
switch_timers(1);
}
extern void schedule_tail(struct task_struct *prev);
/* This is called magically, by its address being stuffed in a jmp_buf
* and being longjmp-d to.
*/ */
void new_thread_handler(void) struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
int external_pid(void *t)
{ {
int (*fn)(void *), n; struct task_struct *task = t ? t : current;
void *arg;
if(current->thread.prev_sched != NULL) return(CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task));
schedule_tail(current->thread.prev_sched); }
current->thread.prev_sched = NULL;
fn = current->thread.request.u.thread.proc; int pid_to_processor_id(int pid)
arg = current->thread.request.u.thread.arg; {
int i;
/* The return value is 1 if the kernel thread execs a process, for(i = 0; i < ncpus; i++){
* 0 if it just exits if(cpu_tasks[i].pid == pid) return(i);
*/
n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
if(n == 1){
/* Handle any immediate reschedules or signals */
interrupt_end();
userspace(&current->thread.regs.regs);
} }
else do_exit(0); return(-1);
} }
void release_thread_skas(struct task_struct *task) void free_stack(unsigned long stack, int order)
{ {
free_pages(stack, order);
} }
/* Called magically, see new_thread_handler above */ unsigned long alloc_stack(int order, int atomic)
void fork_handler(void)
{ {
force_flush_all(); unsigned long page;
if(current->thread.prev_sched == NULL) gfp_t flags = GFP_KERNEL;
panic("blech");
schedule_tail(current->thread.prev_sched); if (atomic)
flags = GFP_ATOMIC;
/* XXX: if interrupt_end() calls schedule, this call to page = __get_free_pages(flags, order);
* arch_switch_to_skas isn't needed. We could want to apply this to if(page == 0)
* improve performance. -bb */ return(0);
arch_switch_to_skas(current->thread.prev_sched, current); stack_protections(page);
return(page);
current->thread.prev_sched = NULL;
/* Handle any immediate reschedules or signals */
interrupt_end();
userspace(&current->thread.regs.regs);
} }
int copy_thread_skas(int nr, unsigned long clone_flags, unsigned long sp, int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
unsigned long stack_top, struct task_struct * p,
struct pt_regs *regs)
{
void (*handler)(void);
if(current->thread.forking){
memcpy(&p->thread.regs.regs.skas, &regs->regs.skas,
sizeof(p->thread.regs.regs.skas));
REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.skas.regs, 0);
if(sp != 0) REGS_SP(p->thread.regs.regs.skas.regs) = sp;
handler = fork_handler;
arch_copy_thread(&current->thread.arch, &p->thread.arch);
}
else {
init_thread_registers(&p->thread.regs.regs);
p->thread.request.u.thread = current->thread.request.u.thread;
handler = new_thread_handler;
}
new_thread(task_stack_page(p), &p->thread.mode.skas.switch_buf,
handler);
return(0);
}
int new_mm(unsigned long stack)
{
int fd;
fd = os_open_file("/proc/mm", of_cloexec(of_write(OPENFLAGS())), 0);
if(fd < 0)
return(fd);
if(skas_needs_stub)
map_stub_pages(fd, CONFIG_STUB_CODE, CONFIG_STUB_DATA, stack);
return(fd);
}
void init_idle_skas(void)
{
cpu_tasks[current_thread->cpu].pid = os_getpid();
default_idle();
}
extern void start_kernel(void);
static int start_kernel_proc(void *unused)
{ {
int pid; int pid;
block_signals(); current->thread.request.u.thread.proc = fn;
pid = os_getpid(); current->thread.request.u.thread.arg = arg;
pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
cpu_tasks[0].pid = pid; &current->thread.regs, 0, NULL, NULL);
cpu_tasks[0].task = current; if(pid < 0)
#ifdef CONFIG_SMP panic("do_fork failed in kernel_thread, errno = %d", pid);
cpu_online_map = cpumask_of_cpu(0); return(pid);
#endif
start_kernel();
return(0);
} }
extern int userspace_pid[]; void set_current(void *t)
int start_uml_skas(void)
{ {
if(proc_mm) struct task_struct *task = t;
userspace_pid[0] = start_userspace(0);
init_new_thread_signals(); cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
{ external_pid(task), task });
init_task.thread.request.u.thread.proc = start_kernel_proc;
init_task.thread.request.u.thread.arg = NULL;
return(start_idle_thread(task_stack_page(&init_task),
&init_task.thread.mode.skas.switch_buf));
} }
int external_pid_skas(struct task_struct *task) void *_switch_to(void *prev, void *next, void *last)
{ {
#warning Need to look up userspace_pid by cpu struct task_struct *from = prev;
return(userspace_pid[0]); struct task_struct *to= next;
to->thread.prev_sched = from;
set_current(to);
do {
current->thread.saved_task = NULL ;
CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
if(current->thread.saved_task)
show_regs(&(current->thread.regs));
next= current->thread.saved_task;
prev= current;
} while(current->thread.saved_task);
return(current->thread.prev_sched);
} }
int thread_pid_skas(struct task_struct *task) void interrupt_end(void)
{ {
#warning Need to look up userspace_pid by cpu if(need_resched()) schedule();
return(userspace_pid[0]); if(test_tsk_thread_flag(current, TIF_SIGPENDING)) do_signal();
} }
void kill_off_processes_skas(void) void release_thread(struct task_struct *task)
{ {
if(proc_mm) CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
#warning need to loop over userspace_pids in kill_off_processes_skas }
os_kill_ptraced_process(userspace_pid[0], 1);
else {
struct task_struct *p;
int pid, me;
me = os_getpid(); void exit_thread(void)
for_each_process(p){ {
if(p->mm == NULL) unprotect_stack((unsigned long) current_thread);
continue; }
pid = p->mm->context.skas.id.u.pid; void *get_current(void)
os_kill_ptraced_process(pid, 1); {
} return(current);
}
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long stack_top, struct task_struct * p,
struct pt_regs *regs)
{
int ret;
p->thread = (struct thread_struct) INIT_THREAD;
ret = CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
clone_flags, sp, stack_top, p, regs);
if (ret || !current->thread.forking)
goto out;
clear_flushed_tls(p);
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS)
ret = arch_copy_tls(p);
out:
return ret;
}
void initial_thread_cb(void (*proc)(void *), void *arg)
{
int save_kmalloc_ok = kmalloc_ok;
kmalloc_ok = 0;
CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
arg);
kmalloc_ok = save_kmalloc_ok;
}
unsigned long stack_sp(unsigned long page)
{
return(page + PAGE_SIZE - sizeof(void *));
}
int current_pid(void)
{
return(current->pid);
}
void default_idle(void)
{
CHOOSE_MODE(uml_idle_timer(), (void) 0);
while(1){
/* endless idle loop with no priority at all */
/*
* although we are an idle CPU, we do not want to
* get into the scheduler unnecessarily.
*/
if(need_resched())
schedule();
idle_sleep(10);
} }
} }
unsigned long current_stub_stack(void) void cpu_idle(void)
{ {
if(current->mm == NULL) CHOOSE_MODE(init_idle_tt(), init_idle_skas());
}
int page_size(void)
{
return(PAGE_SIZE);
}
void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
pte_t *pte_out)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pte_t ptent;
if(task->mm == NULL)
return(ERR_PTR(-EINVAL));
pgd = pgd_offset(task->mm, addr);
if(!pgd_present(*pgd))
return(ERR_PTR(-EINVAL));
pud = pud_offset(pgd, addr);
if(!pud_present(*pud))
return(ERR_PTR(-EINVAL));
pmd = pmd_offset(pud, addr);
if(!pmd_present(*pmd))
return(ERR_PTR(-EINVAL));
pte = pte_offset_kernel(pmd, addr);
ptent = *pte;
if(!pte_present(ptent))
return(ERR_PTR(-EINVAL));
if(pte_out != NULL)
*pte_out = ptent;
return((void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK));
}
char *current_cmd(void)
{
#if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
return("(Unknown)");
#else
void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
#endif
}
void force_sigbus(void)
{
printk(KERN_ERR "Killing pid %d because of a lack of memory\n",
current->pid);
lock_kernel();
sigaddset(&current->pending.signal, SIGBUS);
recalc_sigpending();
current->flags |= PF_SIGNALED;
do_exit(SIGBUS | 0x80);
}
void dump_thread(struct pt_regs *regs, struct user *u)
{
}
void enable_hlt(void)
{
panic("enable_hlt");
}
EXPORT_SYMBOL(enable_hlt);
void disable_hlt(void)
{
panic("disable_hlt");
}
EXPORT_SYMBOL(disable_hlt);
void *um_kmalloc(int size)
{
return kmalloc(size, GFP_KERNEL);
}
void *um_kmalloc_atomic(int size)
{
return kmalloc(size, GFP_ATOMIC);
}
void *um_vmalloc(int size)
{
return vmalloc(size);
}
void *um_vmalloc_atomic(int size)
{
return __vmalloc(size, GFP_ATOMIC | __GFP_HIGHMEM, PAGE_KERNEL);
}
int __cant_sleep(void) {
return in_atomic() || irqs_disabled() || in_interrupt();
/* Is in_interrupt() really needed? */
}
unsigned long get_fault_addr(void)
{
return((unsigned long) current->thread.fault_addr);
}
EXPORT_SYMBOL(get_fault_addr);
void not_implemented(void)
{
printk(KERN_DEBUG "Something isn't implemented in here\n");
}
EXPORT_SYMBOL(not_implemented);
int user_context(unsigned long sp)
{
unsigned long stack;
stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
return(stack != (unsigned long) current_thread);
}
extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
void do_uml_exitcalls(void)
{
exitcall_t *call;
call = &__uml_exitcall_end;
while (--call >= &__uml_exitcall_begin)
(*call)();
}
char *uml_strdup(char *string)
{
return kstrdup(string, GFP_KERNEL);
}
int copy_to_user_proc(void __user *to, void *from, int size)
{
return(copy_to_user(to, from, size));
}
int copy_from_user_proc(void *to, void __user *from, int size)
{
return(copy_from_user(to, from, size));
}
int clear_user_proc(void __user *buf, int size)
{
return(clear_user(buf, size));
}
int strlen_user_proc(char __user *str)
{
return(strlen_user(str));
}
int smp_sigio_handler(void)
{
#ifdef CONFIG_SMP
int cpu = current_thread->cpu;
IPI_handler(cpu);
if(cpu != 0)
return(1);
#endif
return(0);
}
int cpu(void)
{
return(current_thread->cpu);
}
static atomic_t using_sysemu = ATOMIC_INIT(0);
int sysemu_supported;
void set_using_sysemu(int value)
{
if (value > sysemu_supported)
return;
atomic_set(&using_sysemu, value);
}
int get_using_sysemu(void)
{
return atomic_read(&using_sysemu);
}
static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
{
if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
*eof = 1;
return strlen(buf);
}
static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
{
char tmp[2];
if (copy_from_user(tmp, buf, 1))
return -EFAULT;
if (tmp[0] >= '0' && tmp[0] <= '2')
set_using_sysemu(tmp[0] - '0');
return count; /*We use the first char, but pretend to write everything*/
}
int __init make_proc_sysemu(void)
{
struct proc_dir_entry *ent;
if (!sysemu_supported)
return 0;
ent = create_proc_entry("sysemu", 0600, &proc_root);
if (ent == NULL)
{
printk(KERN_WARNING "Failed to register /proc/sysemu\n");
return(0);
}
ent->read_proc = proc_read_sysemu;
ent->write_proc = proc_write_sysemu;
return 0;
}
late_initcall(make_proc_sysemu);
int singlestepping(void * t)
{
struct task_struct *task = t ? t : current;
if ( ! (task->ptrace & PT_DTRACE) )
return(0); return(0);
return(current->mm->context.skas.id.stack); if (task->thread.singlestep_syscall)
return(1);
return 2;
} }
/*
* Only x86 and x86_64 have an arch_align_stack().
* All other arches have "#define arch_align_stack(x) (x)"
* in their asm/system.h
* As this is included in UML from asm-um/system-generic.h,
* we can use it to behave as the subarch does.
*/
#ifndef arch_align_stack
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() % 8192;
return sp & ~0xf;
}
#endif