mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 07:23:14 +00:00
[PATCH] sched: fix smt nice lock contention and optimization
Initial report and lock contention fix from Chris Mason: Recent benchmarks showed some performance regressions between 2.6.16 and 2.6.5. We tracked down one of the regressions to lock contention in schedule heavy workloads (~70,000 context switches per second) kernel/sched.c:dependent_sleeper() was responsible for most of the lock contention, hammering on the run queue locks. The patch below is more of a discussion point than a suggested fix (although it does reduce lock contention significantly). The dependent_sleeper code looks very expensive to me, especially for using a spinlock to bounce control between two different siblings in the same cpu. It is further optimized: * perform dependent_sleeper check after next task is determined * convert wake_sleeping_dependent to use trylock * skip smt runqueue check if trylock fails * optimize double_rq_lock now that smt nice is converted to trylock * early exit in searching first SD_SHARE_CPUPOWER domain * speedup fast path of dependent_sleeper [akpm@osdl.org: cleanup] Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Con Kolivas <kernel@kolivas.org> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Chris Mason <mason@suse.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
7a8e2a5ea4
commit
c96d145e71
184
kernel/sched.c
184
kernel/sched.c
@ -239,7 +239,6 @@ struct runqueue {
|
||||
|
||||
task_t *migration_thread;
|
||||
struct list_head migration_queue;
|
||||
int cpu;
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
@ -1074,9 +1073,10 @@ static int sched_balance_self(int cpu, int flag)
|
||||
struct task_struct *t = current;
|
||||
struct sched_domain *tmp, *sd = NULL;
|
||||
|
||||
for_each_domain(cpu, tmp)
|
||||
for_each_domain(cpu, tmp) {
|
||||
if (tmp->flags & flag)
|
||||
sd = tmp;
|
||||
}
|
||||
|
||||
while (sd) {
|
||||
cpumask_t span;
|
||||
@ -1691,9 +1691,6 @@ unsigned long nr_active(void)
|
||||
/*
|
||||
* double_rq_lock - safely lock two runqueues
|
||||
*
|
||||
* We must take them in cpu order to match code in
|
||||
* dependent_sleeper and wake_dependent_sleeper.
|
||||
*
|
||||
* Note this does not disable interrupts like task_rq_lock,
|
||||
* you need to do so manually before calling.
|
||||
*/
|
||||
@ -1705,7 +1702,7 @@ static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
|
||||
spin_lock(&rq1->lock);
|
||||
__acquire(rq2->lock); /* Fake it out ;) */
|
||||
} else {
|
||||
if (rq1->cpu < rq2->cpu) {
|
||||
if (rq1 < rq2) {
|
||||
spin_lock(&rq1->lock);
|
||||
spin_lock(&rq2->lock);
|
||||
} else {
|
||||
@ -1741,7 +1738,7 @@ static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
|
||||
__acquires(this_rq->lock)
|
||||
{
|
||||
if (unlikely(!spin_trylock(&busiest->lock))) {
|
||||
if (busiest->cpu < this_rq->cpu) {
|
||||
if (busiest < this_rq) {
|
||||
spin_unlock(&this_rq->lock);
|
||||
spin_lock(&busiest->lock);
|
||||
spin_lock(&this_rq->lock);
|
||||
@ -2352,10 +2349,11 @@ static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
|
||||
double_lock_balance(busiest_rq, target_rq);
|
||||
|
||||
/* Search for an sd spanning us and the target CPU. */
|
||||
for_each_domain(target_cpu, sd)
|
||||
for_each_domain(target_cpu, sd) {
|
||||
if ((sd->flags & SD_LOAD_BALANCE) &&
|
||||
cpu_isset(busiest_cpu, sd->span))
|
||||
break;
|
||||
}
|
||||
|
||||
if (unlikely(sd == NULL))
|
||||
goto out;
|
||||
@ -2691,48 +2689,35 @@ static inline void wakeup_busy_runqueue(runqueue_t *rq)
|
||||
resched_task(rq->idle);
|
||||
}
|
||||
|
||||
static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
|
||||
/*
|
||||
* Called with interrupt disabled and this_rq's runqueue locked.
|
||||
*/
|
||||
static void wake_sleeping_dependent(int this_cpu)
|
||||
{
|
||||
struct sched_domain *tmp, *sd = NULL;
|
||||
cpumask_t sibling_map;
|
||||
int i;
|
||||
|
||||
for_each_domain(this_cpu, tmp)
|
||||
if (tmp->flags & SD_SHARE_CPUPOWER)
|
||||
for_each_domain(this_cpu, tmp) {
|
||||
if (tmp->flags & SD_SHARE_CPUPOWER) {
|
||||
sd = tmp;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!sd)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Unlock the current runqueue because we have to lock in
|
||||
* CPU order to avoid deadlocks. Caller knows that we might
|
||||
* unlock. We keep IRQs disabled.
|
||||
*/
|
||||
spin_unlock(&this_rq->lock);
|
||||
|
||||
sibling_map = sd->span;
|
||||
|
||||
for_each_cpu_mask(i, sibling_map)
|
||||
spin_lock(&cpu_rq(i)->lock);
|
||||
/*
|
||||
* We clear this CPU from the mask. This both simplifies the
|
||||
* inner loop and keps this_rq locked when we exit:
|
||||
*/
|
||||
cpu_clear(this_cpu, sibling_map);
|
||||
|
||||
for_each_cpu_mask(i, sibling_map) {
|
||||
for_each_cpu_mask(i, sd->span) {
|
||||
runqueue_t *smt_rq = cpu_rq(i);
|
||||
|
||||
wakeup_busy_runqueue(smt_rq);
|
||||
}
|
||||
if (i == this_cpu)
|
||||
continue;
|
||||
if (unlikely(!spin_trylock(&smt_rq->lock)))
|
||||
continue;
|
||||
|
||||
for_each_cpu_mask(i, sibling_map)
|
||||
spin_unlock(&cpu_rq(i)->lock);
|
||||
/*
|
||||
* We exit with this_cpu's rq still held and IRQs
|
||||
* still disabled:
|
||||
*/
|
||||
wakeup_busy_runqueue(smt_rq);
|
||||
spin_unlock(&smt_rq->lock);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2745,52 +2730,46 @@ static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
|
||||
return p->time_slice * (100 - sd->per_cpu_gain) / 100;
|
||||
}
|
||||
|
||||
static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
|
||||
/*
|
||||
* To minimise lock contention and not have to drop this_rq's runlock we only
|
||||
* trylock the sibling runqueues and bypass those runqueues if we fail to
|
||||
* acquire their lock. As we only trylock the normal locking order does not
|
||||
* need to be obeyed.
|
||||
*/
|
||||
static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
|
||||
{
|
||||
struct sched_domain *tmp, *sd = NULL;
|
||||
cpumask_t sibling_map;
|
||||
prio_array_t *array;
|
||||
int ret = 0, i;
|
||||
task_t *p;
|
||||
|
||||
for_each_domain(this_cpu, tmp)
|
||||
if (tmp->flags & SD_SHARE_CPUPOWER)
|
||||
/* kernel/rt threads do not participate in dependent sleeping */
|
||||
if (!p->mm || rt_task(p))
|
||||
return 0;
|
||||
|
||||
for_each_domain(this_cpu, tmp) {
|
||||
if (tmp->flags & SD_SHARE_CPUPOWER) {
|
||||
sd = tmp;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!sd)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* The same locking rules and details apply as for
|
||||
* wake_sleeping_dependent():
|
||||
*/
|
||||
spin_unlock(&this_rq->lock);
|
||||
sibling_map = sd->span;
|
||||
for_each_cpu_mask(i, sibling_map)
|
||||
spin_lock(&cpu_rq(i)->lock);
|
||||
cpu_clear(this_cpu, sibling_map);
|
||||
for_each_cpu_mask(i, sd->span) {
|
||||
runqueue_t *smt_rq;
|
||||
task_t *smt_curr;
|
||||
|
||||
/*
|
||||
* Establish next task to be run - it might have gone away because
|
||||
* we released the runqueue lock above:
|
||||
*/
|
||||
if (!this_rq->nr_running)
|
||||
goto out_unlock;
|
||||
array = this_rq->active;
|
||||
if (!array->nr_active)
|
||||
array = this_rq->expired;
|
||||
BUG_ON(!array->nr_active);
|
||||
if (i == this_cpu)
|
||||
continue;
|
||||
|
||||
p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
|
||||
task_t, run_list);
|
||||
smt_rq = cpu_rq(i);
|
||||
if (unlikely(!spin_trylock(&smt_rq->lock)))
|
||||
continue;
|
||||
|
||||
for_each_cpu_mask(i, sibling_map) {
|
||||
runqueue_t *smt_rq = cpu_rq(i);
|
||||
task_t *smt_curr = smt_rq->curr;
|
||||
smt_curr = smt_rq->curr;
|
||||
|
||||
/* Kernel threads do not participate in dependent sleeping */
|
||||
if (!p->mm || !smt_curr->mm || rt_task(p))
|
||||
goto check_smt_task;
|
||||
if (!smt_curr->mm)
|
||||
goto unlock;
|
||||
|
||||
/*
|
||||
* If a user task with lower static priority than the
|
||||
@ -2808,49 +2787,24 @@ static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
|
||||
if ((jiffies % DEF_TIMESLICE) >
|
||||
(sd->per_cpu_gain * DEF_TIMESLICE / 100))
|
||||
ret = 1;
|
||||
} else
|
||||
} else {
|
||||
if (smt_curr->static_prio < p->static_prio &&
|
||||
!TASK_PREEMPTS_CURR(p, smt_rq) &&
|
||||
smt_slice(smt_curr, sd) > task_timeslice(p))
|
||||
ret = 1;
|
||||
|
||||
check_smt_task:
|
||||
if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
|
||||
rt_task(smt_curr))
|
||||
continue;
|
||||
if (!p->mm) {
|
||||
wakeup_busy_runqueue(smt_rq);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reschedule a lower priority task on the SMT sibling for
|
||||
* it to be put to sleep, or wake it up if it has been put to
|
||||
* sleep for priority reasons to see if it should run now.
|
||||
*/
|
||||
if (rt_task(p)) {
|
||||
if ((jiffies % DEF_TIMESLICE) >
|
||||
(sd->per_cpu_gain * DEF_TIMESLICE / 100))
|
||||
resched_task(smt_curr);
|
||||
} else {
|
||||
if (TASK_PREEMPTS_CURR(p, smt_rq) &&
|
||||
smt_slice(p, sd) > task_timeslice(smt_curr))
|
||||
resched_task(smt_curr);
|
||||
else
|
||||
wakeup_busy_runqueue(smt_rq);
|
||||
}
|
||||
unlock:
|
||||
spin_unlock(&smt_rq->lock);
|
||||
}
|
||||
out_unlock:
|
||||
for_each_cpu_mask(i, sibling_map)
|
||||
spin_unlock(&cpu_rq(i)->lock);
|
||||
return ret;
|
||||
}
|
||||
#else
|
||||
static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
|
||||
static inline void wake_sleeping_dependent(int this_cpu)
|
||||
{
|
||||
}
|
||||
|
||||
static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
|
||||
static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
|
||||
task_t *p)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
@ -2972,32 +2926,13 @@ asmlinkage void __sched schedule(void)
|
||||
|
||||
cpu = smp_processor_id();
|
||||
if (unlikely(!rq->nr_running)) {
|
||||
go_idle:
|
||||
idle_balance(cpu, rq);
|
||||
if (!rq->nr_running) {
|
||||
next = rq->idle;
|
||||
rq->expired_timestamp = 0;
|
||||
wake_sleeping_dependent(cpu, rq);
|
||||
/*
|
||||
* wake_sleeping_dependent() might have released
|
||||
* the runqueue, so break out if we got new
|
||||
* tasks meanwhile:
|
||||
*/
|
||||
if (!rq->nr_running)
|
||||
goto switch_tasks;
|
||||
}
|
||||
} else {
|
||||
if (dependent_sleeper(cpu, rq)) {
|
||||
next = rq->idle;
|
||||
wake_sleeping_dependent(cpu);
|
||||
goto switch_tasks;
|
||||
}
|
||||
/*
|
||||
* dependent_sleeper() releases and reacquires the runqueue
|
||||
* lock, hence go into the idle loop if the rq went
|
||||
* empty meanwhile:
|
||||
*/
|
||||
if (unlikely(!rq->nr_running))
|
||||
goto go_idle;
|
||||
}
|
||||
|
||||
array = rq->active;
|
||||
@ -3035,6 +2970,8 @@ asmlinkage void __sched schedule(void)
|
||||
}
|
||||
}
|
||||
next->sleep_type = SLEEP_NORMAL;
|
||||
if (dependent_sleeper(cpu, rq, next))
|
||||
next = rq->idle;
|
||||
switch_tasks:
|
||||
if (next == rq->idle)
|
||||
schedstat_inc(rq, sched_goidle);
|
||||
@ -6144,7 +6081,6 @@ void __init sched_init(void)
|
||||
rq->push_cpu = 0;
|
||||
rq->migration_thread = NULL;
|
||||
INIT_LIST_HEAD(&rq->migration_queue);
|
||||
rq->cpu = i;
|
||||
#endif
|
||||
atomic_set(&rq->nr_iowait, 0);
|
||||
|
||||
@ -6205,7 +6141,7 @@ void normalize_rt_tasks(void)
|
||||
runqueue_t *rq;
|
||||
|
||||
read_lock_irq(&tasklist_lock);
|
||||
for_each_process (p) {
|
||||
for_each_process(p) {
|
||||
if (!rt_task(p))
|
||||
continue;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user