Merge 6.13-rc7 into driver-core-next

We need the debugfs / driver-core fixes in here as well for testing and
to build on top of.

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Greg Kroah-Hartman 2025-01-13 06:40:34 +01:00
commit dd19f4116e
830 changed files with 9193 additions and 4707 deletions

View File

@ -121,6 +121,8 @@ Ben Widawsky <bwidawsk@kernel.org> <benjamin.widawsky@intel.com>
Benjamin Poirier <benjamin.poirier@gmail.com> <bpoirier@suse.de>
Benjamin Tissoires <bentiss@kernel.org> <benjamin.tissoires@gmail.com>
Benjamin Tissoires <bentiss@kernel.org> <benjamin.tissoires@redhat.com>
Bingwu Zhang <xtex@aosc.io> <xtexchooser@duck.com>
Bingwu Zhang <xtex@aosc.io> <xtex@xtexx.eu.org>
Bjorn Andersson <andersson@kernel.org> <bjorn@kryo.se>
Bjorn Andersson <andersson@kernel.org> <bjorn.andersson@linaro.org>
Bjorn Andersson <andersson@kernel.org> <bjorn.andersson@sonymobile.com>
@ -435,7 +437,7 @@ Martin Kepplinger <martink@posteo.de> <martin.kepplinger@ginzinger.com>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@puri.sm>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@theobroma-systems.com>
Martyna Szapar-Mudlaw <martyna.szapar-mudlaw@linux.intel.com> <martyna.szapar-mudlaw@intel.com>
Mathieu Othacehe <m.othacehe@gmail.com> <othacehe@gnu.org>
Mathieu Othacehe <othacehe@gnu.org> <m.othacehe@gmail.com>
Mat Martineau <martineau@kernel.org> <mathew.j.martineau@linux.intel.com>
Mat Martineau <martineau@kernel.org> <mathewm@codeaurora.org>
Matthew Wilcox <willy@infradead.org> <matthew.r.wilcox@intel.com>
@ -735,6 +737,7 @@ Wolfram Sang <wsa@kernel.org> <w.sang@pengutronix.de>
Wolfram Sang <wsa@kernel.org> <wsa@the-dreams.de>
Yakir Yang <kuankuan.y@gmail.com> <ykk@rock-chips.com>
Yanteng Si <si.yanteng@linux.dev> <siyanteng@loongson.cn>
Ying Huang <huang.ying.caritas@gmail.com> <ying.huang@intel.com>
Yusuke Goda <goda.yusuke@renesas.com>
Zack Rusin <zack.rusin@broadcom.com> <zackr@vmware.com>
Zhu Yanjun <zyjzyj2000@gmail.com> <yanjunz@nvidia.com>

12
CREDITS
View File

@ -20,6 +20,10 @@ N: Thomas Abraham
E: thomas.ab@samsung.com
D: Samsung pin controller driver
N: Jose Abreu
E: jose.abreu@synopsys.com
D: Synopsys DesignWare XPCS MDIO/PCS driver.
N: Dragos Acostachioaie
E: dragos@iname.com
W: http://www.arbornet.org/~dragos
@ -1428,6 +1432,10 @@ S: 8124 Constitution Apt. 7
S: Sterling Heights, Michigan 48313
S: USA
N: Andy Gospodarek
E: andy@greyhouse.net
D: Maintenance and contributions to the network interface bonding driver.
N: Wolfgang Grandegger
E: wg@grandegger.com
D: Controller Area Network (device drivers)
@ -1812,6 +1820,10 @@ D: Author/maintainer of most DRM drivers (especially ATI, MGA)
D: Core DRM templates, general DRM and 3D-related hacking
S: No fixed address
N: Woojung Huh
E: woojung.huh@microchip.com
D: Microchip LAN78XX USB Ethernet driver
N: Kenn Humborg
E: kenn@wombat.ie
D: Mods to loop device to support sparse backing files

View File

@ -445,8 +445,10 @@ event code Key Notes
0x1008 0x07 FN+F8 IBM: toggle screen expand
Lenovo: configure UltraNav,
or toggle screen expand.
On newer platforms (2024+)
replaced by 0x131f (see below)
On 2024 platforms replaced by
0x131f (see below) and on newer
platforms (2025 +) keycode is
replaced by 0x1401 (see below).
0x1009 0x08 FN+F9 -
@ -506,9 +508,11 @@ event code Key Notes
0x1019 0x18 unknown
0x131f ... FN+F8 Platform Mode change.
0x131f ... FN+F8 Platform Mode change (2024 systems).
Implemented in driver.
0x1401 ... FN+F8 Platform Mode change (2025 + systems).
Implemented in driver.
... ... ...
0x1020 0x1F unknown

View File

@ -436,7 +436,7 @@ AnonHugePmdMapped).
The number of file transparent huge pages mapped to userspace is available
by reading ShmemPmdMapped and ShmemHugePages fields in ``/proc/meminfo``.
To identify what applications are mapping file transparent huge pages, it
is necessary to read ``/proc/PID/smaps`` and count the FileHugeMapped fields
is necessary to read ``/proc/PID/smaps`` and count the FilePmdMapped fields
for each mapping.
Note that reading the smaps file is expensive and reading it

View File

@ -251,9 +251,7 @@ performance supported in `AMD CPPC Performance Capability <perf_cap_>`_).
In some ASICs, the highest CPPC performance is not the one in the ``_CPC``
table, so we need to expose it to sysfs. If boost is not active, but
still supported, this maximum frequency will be larger than the one in
``cpuinfo``. On systems that support preferred core, the driver will have
different values for some cores than others and this will reflect the values
advertised by the platform at bootup.
``cpuinfo``.
This attribute is read-only.
``amd_pstate_lowest_nonlinear_freq``

View File

@ -114,8 +114,9 @@ patternProperties:
table that specifies the PPID to LIODN mapping. Needed if the PAMU is
used. Value is a 12 bit value where value is a LIODN ID for this JR.
This property is normally set by boot firmware.
$ref: /schemas/types.yaml#/definitions/uint32
maximum: 0xfff
$ref: /schemas/types.yaml#/definitions/uint32-array
items:
- maximum: 0xfff
'^rtic@[0-9a-f]+$':
type: object
@ -186,8 +187,9 @@ patternProperties:
Needed if the PAMU is used. Value is a 12 bit value where value
is a LIODN ID for this JR. This property is normally set by boot
firmware.
$ref: /schemas/types.yaml#/definitions/uint32
maximum: 0xfff
$ref: /schemas/types.yaml#/definitions/uint32-array
items:
- maximum: 0xfff
fsl,rtic-region:
description:

View File

@ -90,7 +90,7 @@ properties:
adi,dsi-lanes:
description: Number of DSI data lanes connected to the DSI host.
$ref: /schemas/types.yaml#/definitions/uint32
enum: [ 1, 2, 3, 4 ]
enum: [ 2, 3, 4 ]
"#sound-dai-cells":
const: 0

View File

@ -42,6 +42,9 @@ properties:
interrupts:
maxItems: 1
'#sound-dai-cells':
const: 0
ports:
$ref: /schemas/graph.yaml#/properties/ports
properties:
@ -85,7 +88,21 @@ required:
- ports
- max-linkrate-mhz
additionalProperties: false
allOf:
- $ref: /schemas/sound/dai-common.yaml#
- if:
not:
properties:
compatible:
contains:
enum:
- mediatek,mt8188-dp-tx
- mediatek,mt8195-dp-tx
then:
properties:
'#sound-dai-cells': false
unevaluatedProperties: false
examples:
- |

View File

@ -65,6 +65,7 @@ properties:
- st,lsm9ds0-gyro
- description: STMicroelectronics Magnetometers
enum:
- st,iis2mdc
- st,lis2mdl
- st,lis3mdl-magn
- st,lsm303agr-magn

View File

@ -82,7 +82,7 @@ examples:
uimage@100000 {
reg = <0x0100000 0x200000>;
compress = "lzma";
compression = "lzma";
};
};

View File

@ -81,7 +81,7 @@ properties:
List of phandles, each pointing to the power supply for the
corresponding pairset named in 'pairset-names'. This property
aligns with IEEE 802.3-2022, Section 33.2.3 and 145.2.4.
PSE Pinout Alternatives (as per IEEE 802.3-2022 Table 145\u20133)
PSE Pinout Alternatives (as per IEEE 802.3-2022 Table 145-3)
|-----------|---------------|---------------|---------------|---------------|
| Conductor | Alternative A | Alternative A | Alternative B | Alternative B |
| | (MDI-X) | (MDI) | (X) | (S) |

View File

@ -35,6 +35,7 @@ properties:
fsl,liodn:
$ref: /schemas/types.yaml#/definitions/uint32-array
maxItems: 2
description: See pamu.txt. Two LIODN(s). DQRR LIODN (DLIODN) and Frame LIODN
(FLIODN)
@ -69,6 +70,7 @@ patternProperties:
type: object
properties:
fsl,liodn:
$ref: /schemas/types.yaml#/definitions/uint32-array
description: See pamu.txt, PAMU property used for static LIODN assignment
fsl,iommu-parent:

View File

@ -51,7 +51,7 @@ properties:
description: Power supply for AVDD, providing 1.8V.
cpvdd-supply:
description: Power supply for CPVDD, providing 3.5V.
description: Power supply for CPVDD, providing 1.8V.
hp-detect-gpios:
description:

View File

@ -3,3 +3,853 @@
=================
Process Addresses
=================
.. toctree::
:maxdepth: 3
Userland memory ranges are tracked by the kernel via Virtual Memory Areas or
'VMA's of type :c:struct:`!struct vm_area_struct`.
Each VMA describes a virtually contiguous memory range with identical
attributes, each described by a :c:struct:`!struct vm_area_struct`
object. Userland access outside of VMAs is invalid except in the case where an
adjacent stack VMA could be extended to contain the accessed address.
All VMAs are contained within one and only one virtual address space, described
by a :c:struct:`!struct mm_struct` object which is referenced by all tasks (that is,
threads) which share the virtual address space. We refer to this as the
:c:struct:`!mm`.
Each mm object contains a maple tree data structure which describes all VMAs
within the virtual address space.
.. note:: An exception to this is the 'gate' VMA which is provided by
architectures which use :c:struct:`!vsyscall` and is a global static
object which does not belong to any specific mm.
-------
Locking
-------
The kernel is designed to be highly scalable against concurrent read operations
on VMA **metadata** so a complicated set of locks are required to ensure memory
corruption does not occur.
.. note:: Locking VMAs for their metadata does not have any impact on the memory
they describe nor the page tables that map them.
Terminology
-----------
* **mmap locks** - Each MM has a read/write semaphore :c:member:`!mmap_lock`
which locks at a process address space granularity which can be acquired via
:c:func:`!mmap_read_lock`, :c:func:`!mmap_write_lock` and variants.
* **VMA locks** - The VMA lock is at VMA granularity (of course) which behaves
as a read/write semaphore in practice. A VMA read lock is obtained via
:c:func:`!lock_vma_under_rcu` (and unlocked via :c:func:`!vma_end_read`) and a
write lock via :c:func:`!vma_start_write` (all VMA write locks are unlocked
automatically when the mmap write lock is released). To take a VMA write lock
you **must** have already acquired an :c:func:`!mmap_write_lock`.
* **rmap locks** - When trying to access VMAs through the reverse mapping via a
:c:struct:`!struct address_space` or :c:struct:`!struct anon_vma` object
(reachable from a folio via :c:member:`!folio->mapping`). VMAs must be stabilised via
:c:func:`!anon_vma_[try]lock_read` or :c:func:`!anon_vma_[try]lock_write` for
anonymous memory and :c:func:`!i_mmap_[try]lock_read` or
:c:func:`!i_mmap_[try]lock_write` for file-backed memory. We refer to these
locks as the reverse mapping locks, or 'rmap locks' for brevity.
We discuss page table locks separately in the dedicated section below.
The first thing **any** of these locks achieve is to **stabilise** the VMA
within the MM tree. That is, guaranteeing that the VMA object will not be
deleted from under you nor modified (except for some specific fields
described below).
Stabilising a VMA also keeps the address space described by it around.
Lock usage
----------
If you want to **read** VMA metadata fields or just keep the VMA stable, you
must do one of the following:
* Obtain an mmap read lock at the MM granularity via :c:func:`!mmap_read_lock` (or a
suitable variant), unlocking it with a matching :c:func:`!mmap_read_unlock` when
you're done with the VMA, *or*
* Try to obtain a VMA read lock via :c:func:`!lock_vma_under_rcu`. This tries to
acquire the lock atomically so might fail, in which case fall-back logic is
required to instead obtain an mmap read lock if this returns :c:macro:`!NULL`,
*or*
* Acquire an rmap lock before traversing the locked interval tree (whether
anonymous or file-backed) to obtain the required VMA.
If you want to **write** VMA metadata fields, then things vary depending on the
field (we explore each VMA field in detail below). For the majority you must:
* Obtain an mmap write lock at the MM granularity via :c:func:`!mmap_write_lock` (or a
suitable variant), unlocking it with a matching :c:func:`!mmap_write_unlock` when
you're done with the VMA, *and*
* Obtain a VMA write lock via :c:func:`!vma_start_write` for each VMA you wish to
modify, which will be released automatically when :c:func:`!mmap_write_unlock` is
called.
* If you want to be able to write to **any** field, you must also hide the VMA
from the reverse mapping by obtaining an **rmap write lock**.
VMA locks are special in that you must obtain an mmap **write** lock **first**
in order to obtain a VMA **write** lock. A VMA **read** lock however can be
obtained without any other lock (:c:func:`!lock_vma_under_rcu` will acquire then
release an RCU lock to lookup the VMA for you).
This constrains the impact of writers on readers, as a writer can interact with
one VMA while a reader interacts with another simultaneously.
.. note:: The primary users of VMA read locks are page fault handlers, which
means that without a VMA write lock, page faults will run concurrent with
whatever you are doing.
Examining all valid lock states:
.. table::
========= ======== ========= ======= ===== =========== ==========
mmap lock VMA lock rmap lock Stable? Read? Write most? Write all?
========= ======== ========= ======= ===== =========== ==========
\- \- \- N N N N
\- R \- Y Y N N
\- \- R/W Y Y N N
R/W \-/R \-/R/W Y Y N N
W W \-/R Y Y Y N
W W W Y Y Y Y
========= ======== ========= ======= ===== =========== ==========
.. warning:: While it's possible to obtain a VMA lock while holding an mmap read lock,
attempting to do the reverse is invalid as it can result in deadlock - if
another task already holds an mmap write lock and attempts to acquire a VMA
write lock that will deadlock on the VMA read lock.
All of these locks behave as read/write semaphores in practice, so you can
obtain either a read or a write lock for each of these.
.. note:: Generally speaking, a read/write semaphore is a class of lock which
permits concurrent readers. However a write lock can only be obtained
once all readers have left the critical region (and pending readers
made to wait).
This renders read locks on a read/write semaphore concurrent with other
readers and write locks exclusive against all others holding the semaphore.
VMA fields
^^^^^^^^^^
We can subdivide :c:struct:`!struct vm_area_struct` fields by their purpose, which makes it
easier to explore their locking characteristics:
.. note:: We exclude VMA lock-specific fields here to avoid confusion, as these
are in effect an internal implementation detail.
.. table:: Virtual layout fields
===================== ======================================== ===========
Field Description Write lock
===================== ======================================== ===========
:c:member:`!vm_start` Inclusive start virtual address of range mmap write,
VMA describes. VMA write,
rmap write.
:c:member:`!vm_end` Exclusive end virtual address of range mmap write,
VMA describes. VMA write,
rmap write.
:c:member:`!vm_pgoff` Describes the page offset into the file, mmap write,
the original page offset within the VMA write,
virtual address space (prior to any rmap write.
:c:func:`!mremap`), or PFN if a PFN map
and the architecture does not support
:c:macro:`!CONFIG_ARCH_HAS_PTE_SPECIAL`.
===================== ======================================== ===========
These fields describes the size, start and end of the VMA, and as such cannot be
modified without first being hidden from the reverse mapping since these fields
are used to locate VMAs within the reverse mapping interval trees.
.. table:: Core fields
============================ ======================================== =========================
Field Description Write lock
============================ ======================================== =========================
:c:member:`!vm_mm` Containing mm_struct. None - written once on
initial map.
:c:member:`!vm_page_prot` Architecture-specific page table mmap write, VMA write.
protection bits determined from VMA
flags.
:c:member:`!vm_flags` Read-only access to VMA flags describing N/A
attributes of the VMA, in union with
private writable
:c:member:`!__vm_flags`.
:c:member:`!__vm_flags` Private, writable access to VMA flags mmap write, VMA write.
field, updated by
:c:func:`!vm_flags_*` functions.
:c:member:`!vm_file` If the VMA is file-backed, points to a None - written once on
struct file object describing the initial map.
underlying file, if anonymous then
:c:macro:`!NULL`.
:c:member:`!vm_ops` If the VMA is file-backed, then either None - Written once on
the driver or file-system provides a initial map by
:c:struct:`!struct vm_operations_struct` :c:func:`!f_ops->mmap()`.
object describing callbacks to be
invoked on VMA lifetime events.
:c:member:`!vm_private_data` A :c:member:`!void *` field for Handled by driver.
driver-specific metadata.
============================ ======================================== =========================
These are the core fields which describe the MM the VMA belongs to and its attributes.
.. table:: Config-specific fields
================================= ===================== ======================================== ===============
Field Configuration option Description Write lock
================================= ===================== ======================================== ===============
:c:member:`!anon_name` CONFIG_ANON_VMA_NAME A field for storing a mmap write,
:c:struct:`!struct anon_vma_name` VMA write.
object providing a name for anonymous
mappings, or :c:macro:`!NULL` if none
is set or the VMA is file-backed. The
underlying object is reference counted
and can be shared across multiple VMAs
for scalability.
:c:member:`!swap_readahead_info` CONFIG_SWAP Metadata used by the swap mechanism mmap read,
to perform readahead. This field is swap-specific
accessed atomically. lock.
:c:member:`!vm_policy` CONFIG_NUMA :c:type:`!mempolicy` object which mmap write,
describes the NUMA behaviour of the VMA write.
VMA. The underlying object is reference
counted.
:c:member:`!numab_state` CONFIG_NUMA_BALANCING :c:type:`!vma_numab_state` object which mmap read,
describes the current state of numab-specific
NUMA balancing in relation to this VMA. lock.
Updated under mmap read lock by
:c:func:`!task_numa_work`.
:c:member:`!vm_userfaultfd_ctx` CONFIG_USERFAULTFD Userfaultfd context wrapper object of mmap write,
type :c:type:`!vm_userfaultfd_ctx`, VMA write.
either of zero size if userfaultfd is
disabled, or containing a pointer
to an underlying
:c:type:`!userfaultfd_ctx` object which
describes userfaultfd metadata.
================================= ===================== ======================================== ===============
These fields are present or not depending on whether the relevant kernel
configuration option is set.
.. table:: Reverse mapping fields
=================================== ========================================= ============================
Field Description Write lock
=================================== ========================================= ============================
:c:member:`!shared.rb` A red/black tree node used, if the mmap write, VMA write,
mapping is file-backed, to place the VMA i_mmap write.
in the
:c:member:`!struct address_space->i_mmap`
red/black interval tree.
:c:member:`!shared.rb_subtree_last` Metadata used for management of the mmap write, VMA write,
interval tree if the VMA is file-backed. i_mmap write.
:c:member:`!anon_vma_chain` List of pointers to both forked/CoWd mmap read, anon_vma write.
:c:type:`!anon_vma` objects and
:c:member:`!vma->anon_vma` if it is
non-:c:macro:`!NULL`.
:c:member:`!anon_vma` :c:type:`!anon_vma` object used by When :c:macro:`NULL` and
anonymous folios mapped exclusively to setting non-:c:macro:`NULL`:
this VMA. Initially set by mmap read, page_table_lock.
:c:func:`!anon_vma_prepare` serialised
by the :c:macro:`!page_table_lock`. This When non-:c:macro:`NULL` and
is set as soon as any page is faulted in. setting :c:macro:`NULL`:
mmap write, VMA write,
anon_vma write.
=================================== ========================================= ============================
These fields are used to both place the VMA within the reverse mapping, and for
anonymous mappings, to be able to access both related :c:struct:`!struct anon_vma` objects
and the :c:struct:`!struct anon_vma` in which folios mapped exclusively to this VMA should
reside.
.. note:: If a file-backed mapping is mapped with :c:macro:`!MAP_PRIVATE` set
then it can be in both the :c:type:`!anon_vma` and :c:type:`!i_mmap`
trees at the same time, so all of these fields might be utilised at
once.
Page tables
-----------
We won't speak exhaustively on the subject but broadly speaking, page tables map
virtual addresses to physical ones through a series of page tables, each of
which contain entries with physical addresses for the next page table level
(along with flags), and at the leaf level the physical addresses of the
underlying physical data pages or a special entry such as a swap entry,
migration entry or other special marker. Offsets into these pages are provided
by the virtual address itself.
In Linux these are divided into five levels - PGD, P4D, PUD, PMD and PTE. Huge
pages might eliminate one or two of these levels, but when this is the case we
typically refer to the leaf level as the PTE level regardless.
.. note:: In instances where the architecture supports fewer page tables than
five the kernel cleverly 'folds' page table levels, that is stubbing
out functions related to the skipped levels. This allows us to
conceptually act as if there were always five levels, even if the
compiler might, in practice, eliminate any code relating to missing
ones.
There are four key operations typically performed on page tables:
1. **Traversing** page tables - Simply reading page tables in order to traverse
them. This only requires that the VMA is kept stable, so a lock which
establishes this suffices for traversal (there are also lockless variants
which eliminate even this requirement, such as :c:func:`!gup_fast`).
2. **Installing** page table mappings - Whether creating a new mapping or
modifying an existing one in such a way as to change its identity. This
requires that the VMA is kept stable via an mmap or VMA lock (explicitly not
rmap locks).
3. **Zapping/unmapping** page table entries - This is what the kernel calls
clearing page table mappings at the leaf level only, whilst leaving all page
tables in place. This is a very common operation in the kernel performed on
file truncation, the :c:macro:`!MADV_DONTNEED` operation via
:c:func:`!madvise`, and others. This is performed by a number of functions
including :c:func:`!unmap_mapping_range` and :c:func:`!unmap_mapping_pages`.
The VMA need only be kept stable for this operation.
4. **Freeing** page tables - When finally the kernel removes page tables from a
userland process (typically via :c:func:`!free_pgtables`) extreme care must
be taken to ensure this is done safely, as this logic finally frees all page
tables in the specified range, ignoring existing leaf entries (it assumes the
caller has both zapped the range and prevented any further faults or
modifications within it).
.. note:: Modifying mappings for reclaim or migration is performed under rmap
lock as it, like zapping, does not fundamentally modify the identity
of what is being mapped.
**Traversing** and **zapping** ranges can be performed holding any one of the
locks described in the terminology section above - that is the mmap lock, the
VMA lock or either of the reverse mapping locks.
That is - as long as you keep the relevant VMA **stable** - you are good to go
ahead and perform these operations on page tables (though internally, kernel
operations that perform writes also acquire internal page table locks to
serialise - see the page table implementation detail section for more details).
When **installing** page table entries, the mmap or VMA lock must be held to
keep the VMA stable. We explore why this is in the page table locking details
section below.
.. warning:: Page tables are normally only traversed in regions covered by VMAs.
If you want to traverse page tables in areas that might not be
covered by VMAs, heavier locking is required.
See :c:func:`!walk_page_range_novma` for details.
**Freeing** page tables is an entirely internal memory management operation and
has special requirements (see the page freeing section below for more details).
.. warning:: When **freeing** page tables, it must not be possible for VMAs
containing the ranges those page tables map to be accessible via
the reverse mapping.
The :c:func:`!free_pgtables` function removes the relevant VMAs
from the reverse mappings, but no other VMAs can be permitted to be
accessible and span the specified range.
Lock ordering
-------------
As we have multiple locks across the kernel which may or may not be taken at the
same time as explicit mm or VMA locks, we have to be wary of lock inversion, and
the **order** in which locks are acquired and released becomes very important.
.. note:: Lock inversion occurs when two threads need to acquire multiple locks,
but in doing so inadvertently cause a mutual deadlock.
For example, consider thread 1 which holds lock A and tries to acquire lock B,
while thread 2 holds lock B and tries to acquire lock A.
Both threads are now deadlocked on each other. However, had they attempted to
acquire locks in the same order, one would have waited for the other to
complete its work and no deadlock would have occurred.
The opening comment in :c:macro:`!mm/rmap.c` describes in detail the required
ordering of locks within memory management code:
.. code-block::
inode->i_rwsem (while writing or truncating, not reading or faulting)
mm->mmap_lock
mapping->invalidate_lock (in filemap_fault)
folio_lock
hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
vma_start_write
mapping->i_mmap_rwsem
anon_vma->rwsem
mm->page_table_lock or pte_lock
swap_lock (in swap_duplicate, swap_info_get)
mmlist_lock (in mmput, drain_mmlist and others)
mapping->private_lock (in block_dirty_folio)
i_pages lock (widely used)
lruvec->lru_lock (in folio_lruvec_lock_irq)
inode->i_lock (in set_page_dirty's __mark_inode_dirty)
bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
sb_lock (within inode_lock in fs/fs-writeback.c)
i_pages lock (widely used, in set_page_dirty,
in arch-dependent flush_dcache_mmap_lock,
within bdi.wb->list_lock in __sync_single_inode)
There is also a file-system specific lock ordering comment located at the top of
:c:macro:`!mm/filemap.c`:
.. code-block::
->i_mmap_rwsem (truncate_pagecache)
->private_lock (__free_pte->block_dirty_folio)
->swap_lock (exclusive_swap_page, others)
->i_pages lock
->i_rwsem
->invalidate_lock (acquired by fs in truncate path)
->i_mmap_rwsem (truncate->unmap_mapping_range)
->mmap_lock
->i_mmap_rwsem
->page_table_lock or pte_lock (various, mainly in memory.c)
->i_pages lock (arch-dependent flush_dcache_mmap_lock)
->mmap_lock
->invalidate_lock (filemap_fault)
->lock_page (filemap_fault, access_process_vm)
->i_rwsem (generic_perform_write)
->mmap_lock (fault_in_readable->do_page_fault)
bdi->wb.list_lock
sb_lock (fs/fs-writeback.c)
->i_pages lock (__sync_single_inode)
->i_mmap_rwsem
->anon_vma.lock (vma_merge)
->anon_vma.lock
->page_table_lock or pte_lock (anon_vma_prepare and various)
->page_table_lock or pte_lock
->swap_lock (try_to_unmap_one)
->private_lock (try_to_unmap_one)
->i_pages lock (try_to_unmap_one)
->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
->private_lock (folio_remove_rmap_pte->set_page_dirty)
->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
bdi.wb->list_lock (zap_pte_range->set_page_dirty)
->inode->i_lock (zap_pte_range->set_page_dirty)
->private_lock (zap_pte_range->block_dirty_folio)
Please check the current state of these comments which may have changed since
the time of writing of this document.
------------------------------
Locking Implementation Details
------------------------------
.. warning:: Locking rules for PTE-level page tables are very different from
locking rules for page tables at other levels.
Page table locking details
--------------------------
In addition to the locks described in the terminology section above, we have
additional locks dedicated to page tables:
* **Higher level page table locks** - Higher level page tables, that is PGD, P4D
and PUD each make use of the process address space granularity
:c:member:`!mm->page_table_lock` lock when modified.
* **Fine-grained page table locks** - PMDs and PTEs each have fine-grained locks
either kept within the folios describing the page tables or allocated
separated and pointed at by the folios if :c:macro:`!ALLOC_SPLIT_PTLOCKS` is
set. The PMD spin lock is obtained via :c:func:`!pmd_lock`, however PTEs are
mapped into higher memory (if a 32-bit system) and carefully locked via
:c:func:`!pte_offset_map_lock`.
These locks represent the minimum required to interact with each page table
level, but there are further requirements.
Importantly, note that on a **traversal** of page tables, sometimes no such
locks are taken. However, at the PTE level, at least concurrent page table
deletion must be prevented (using RCU) and the page table must be mapped into
high memory, see below.
Whether care is taken on reading the page table entries depends on the
architecture, see the section on atomicity below.
Locking rules
^^^^^^^^^^^^^
We establish basic locking rules when interacting with page tables:
* When changing a page table entry the page table lock for that page table
**must** be held, except if you can safely assume nobody can access the page
tables concurrently (such as on invocation of :c:func:`!free_pgtables`).
* Reads from and writes to page table entries must be *appropriately*
atomic. See the section on atomicity below for details.
* Populating previously empty entries requires that the mmap or VMA locks are
held (read or write), doing so with only rmap locks would be dangerous (see
the warning below).
* As mentioned previously, zapping can be performed while simply keeping the VMA
stable, that is holding any one of the mmap, VMA or rmap locks.
.. warning:: Populating previously empty entries is dangerous as, when unmapping
VMAs, :c:func:`!vms_clear_ptes` has a window of time between
zapping (via :c:func:`!unmap_vmas`) and freeing page tables (via
:c:func:`!free_pgtables`), where the VMA is still visible in the
rmap tree. :c:func:`!free_pgtables` assumes that the zap has
already been performed and removes PTEs unconditionally (along with
all other page tables in the freed range), so installing new PTE
entries could leak memory and also cause other unexpected and
dangerous behaviour.
There are additional rules applicable when moving page tables, which we discuss
in the section on this topic below.
PTE-level page tables are different from page tables at other levels, and there
are extra requirements for accessing them:
* On 32-bit architectures, they may be in high memory (meaning they need to be
mapped into kernel memory to be accessible).
* When empty, they can be unlinked and RCU-freed while holding an mmap lock or
rmap lock for reading in combination with the PTE and PMD page table locks.
In particular, this happens in :c:func:`!retract_page_tables` when handling
:c:macro:`!MADV_COLLAPSE`.
So accessing PTE-level page tables requires at least holding an RCU read lock;
but that only suffices for readers that can tolerate racing with concurrent
page table updates such that an empty PTE is observed (in a page table that
has actually already been detached and marked for RCU freeing) while another
new page table has been installed in the same location and filled with
entries. Writers normally need to take the PTE lock and revalidate that the
PMD entry still refers to the same PTE-level page table.
To access PTE-level page tables, a helper like :c:func:`!pte_offset_map_lock` or
:c:func:`!pte_offset_map` can be used depending on stability requirements.
These map the page table into kernel memory if required, take the RCU lock, and
depending on variant, may also look up or acquire the PTE lock.
See the comment on :c:func:`!__pte_offset_map_lock`.
Atomicity
^^^^^^^^^
Regardless of page table locks, the MMU hardware concurrently updates accessed
and dirty bits (perhaps more, depending on architecture). Additionally, page
table traversal operations in parallel (though holding the VMA stable) and
functionality like GUP-fast locklessly traverses (that is reads) page tables,
without even keeping the VMA stable at all.
When performing a page table traversal and keeping the VMA stable, whether a
read must be performed once and only once or not depends on the architecture
(for instance x86-64 does not require any special precautions).
If a write is being performed, or if a read informs whether a write takes place
(on an installation of a page table entry say, for instance in
:c:func:`!__pud_install`), special care must always be taken. In these cases we
can never assume that page table locks give us entirely exclusive access, and
must retrieve page table entries once and only once.
If we are reading page table entries, then we need only ensure that the compiler
does not rearrange our loads. This is achieved via :c:func:`!pXXp_get`
functions - :c:func:`!pgdp_get`, :c:func:`!p4dp_get`, :c:func:`!pudp_get`,
:c:func:`!pmdp_get`, and :c:func:`!ptep_get`.
Each of these uses :c:func:`!READ_ONCE` to guarantee that the compiler reads
the page table entry only once.
However, if we wish to manipulate an existing page table entry and care about
the previously stored data, we must go further and use an hardware atomic
operation as, for example, in :c:func:`!ptep_get_and_clear`.
Equally, operations that do not rely on the VMA being held stable, such as
GUP-fast (see :c:func:`!gup_fast` and its various page table level handlers like
:c:func:`!gup_fast_pte_range`), must very carefully interact with page table
entries, using functions such as :c:func:`!ptep_get_lockless` and equivalent for
higher level page table levels.
Writes to page table entries must also be appropriately atomic, as established
by :c:func:`!set_pXX` functions - :c:func:`!set_pgd`, :c:func:`!set_p4d`,
:c:func:`!set_pud`, :c:func:`!set_pmd`, and :c:func:`!set_pte`.
Equally functions which clear page table entries must be appropriately atomic,
as in :c:func:`!pXX_clear` functions - :c:func:`!pgd_clear`,
:c:func:`!p4d_clear`, :c:func:`!pud_clear`, :c:func:`!pmd_clear`, and
:c:func:`!pte_clear`.
Page table installation
^^^^^^^^^^^^^^^^^^^^^^^
Page table installation is performed with the VMA held stable explicitly by an
mmap or VMA lock in read or write mode (see the warning in the locking rules
section for details as to why).
When allocating a P4D, PUD or PMD and setting the relevant entry in the above
PGD, P4D or PUD, the :c:member:`!mm->page_table_lock` must be held. This is
acquired in :c:func:`!__p4d_alloc`, :c:func:`!__pud_alloc` and
:c:func:`!__pmd_alloc` respectively.
.. note:: :c:func:`!__pmd_alloc` actually invokes :c:func:`!pud_lock` and
:c:func:`!pud_lockptr` in turn, however at the time of writing it ultimately
references the :c:member:`!mm->page_table_lock`.
Allocating a PTE will either use the :c:member:`!mm->page_table_lock` or, if
:c:macro:`!USE_SPLIT_PMD_PTLOCKS` is defined, a lock embedded in the PMD
physical page metadata in the form of a :c:struct:`!struct ptdesc`, acquired by
:c:func:`!pmd_ptdesc` called from :c:func:`!pmd_lock` and ultimately
:c:func:`!__pte_alloc`.
Finally, modifying the contents of the PTE requires special treatment, as the
PTE page table lock must be acquired whenever we want stable and exclusive
access to entries contained within a PTE, especially when we wish to modify
them.
This is performed via :c:func:`!pte_offset_map_lock` which carefully checks to
ensure that the PTE hasn't changed from under us, ultimately invoking
:c:func:`!pte_lockptr` to obtain a spin lock at PTE granularity contained within
the :c:struct:`!struct ptdesc` associated with the physical PTE page. The lock
must be released via :c:func:`!pte_unmap_unlock`.
.. note:: There are some variants on this, such as
:c:func:`!pte_offset_map_rw_nolock` when we know we hold the PTE stable but
for brevity we do not explore this. See the comment for
:c:func:`!__pte_offset_map_lock` for more details.
When modifying data in ranges we typically only wish to allocate higher page
tables as necessary, using these locks to avoid races or overwriting anything,
and set/clear data at the PTE level as required (for instance when page faulting
or zapping).
A typical pattern taken when traversing page table entries to install a new
mapping is to optimistically determine whether the page table entry in the table
above is empty, if so, only then acquiring the page table lock and checking
again to see if it was allocated underneath us.
This allows for a traversal with page table locks only being taken when
required. An example of this is :c:func:`!__pud_alloc`.
At the leaf page table, that is the PTE, we can't entirely rely on this pattern
as we have separate PMD and PTE locks and a THP collapse for instance might have
eliminated the PMD entry as well as the PTE from under us.
This is why :c:func:`!__pte_offset_map_lock` locklessly retrieves the PMD entry
for the PTE, carefully checking it is as expected, before acquiring the
PTE-specific lock, and then *again* checking that the PMD entry is as expected.
If a THP collapse (or similar) were to occur then the lock on both pages would
be acquired, so we can ensure this is prevented while the PTE lock is held.
Installing entries this way ensures mutual exclusion on write.
Page table freeing
^^^^^^^^^^^^^^^^^^
Tearing down page tables themselves is something that requires significant
care. There must be no way that page tables designated for removal can be
traversed or referenced by concurrent tasks.
It is insufficient to simply hold an mmap write lock and VMA lock (which will
prevent racing faults, and rmap operations), as a file-backed mapping can be
truncated under the :c:struct:`!struct address_space->i_mmap_rwsem` alone.
As a result, no VMA which can be accessed via the reverse mapping (either
through the :c:struct:`!struct anon_vma->rb_root` or the :c:member:`!struct
address_space->i_mmap` interval trees) can have its page tables torn down.
The operation is typically performed via :c:func:`!free_pgtables`, which assumes
either the mmap write lock has been taken (as specified by its
:c:member:`!mm_wr_locked` parameter), or that the VMA is already unreachable.
It carefully removes the VMA from all reverse mappings, however it's important
that no new ones overlap these or any route remain to permit access to addresses
within the range whose page tables are being torn down.
Additionally, it assumes that a zap has already been performed and steps have
been taken to ensure that no further page table entries can be installed between
the zap and the invocation of :c:func:`!free_pgtables`.
Since it is assumed that all such steps have been taken, page table entries are
cleared without page table locks (in the :c:func:`!pgd_clear`, :c:func:`!p4d_clear`,
:c:func:`!pud_clear`, and :c:func:`!pmd_clear` functions.
.. note:: It is possible for leaf page tables to be torn down independent of
the page tables above it as is done by
:c:func:`!retract_page_tables`, which is performed under the i_mmap
read lock, PMD, and PTE page table locks, without this level of care.
Page table moving
^^^^^^^^^^^^^^^^^
Some functions manipulate page table levels above PMD (that is PUD, P4D and PGD
page tables). Most notable of these is :c:func:`!mremap`, which is capable of
moving higher level page tables.
In these instances, it is required that **all** locks are taken, that is
the mmap lock, the VMA lock and the relevant rmap locks.
You can observe this in the :c:func:`!mremap` implementation in the functions
:c:func:`!take_rmap_locks` and :c:func:`!drop_rmap_locks` which perform the rmap
side of lock acquisition, invoked ultimately by :c:func:`!move_page_tables`.
VMA lock internals
------------------
Overview
^^^^^^^^
VMA read locking is entirely optimistic - if the lock is contended or a competing
write has started, then we do not obtain a read lock.
A VMA **read** lock is obtained by :c:func:`!lock_vma_under_rcu`, which first
calls :c:func:`!rcu_read_lock` to ensure that the VMA is looked up in an RCU
critical section, then attempts to VMA lock it via :c:func:`!vma_start_read`,
before releasing the RCU lock via :c:func:`!rcu_read_unlock`.
VMA read locks hold the read lock on the :c:member:`!vma->vm_lock` semaphore for
their duration and the caller of :c:func:`!lock_vma_under_rcu` must release it
via :c:func:`!vma_end_read`.
VMA **write** locks are acquired via :c:func:`!vma_start_write` in instances where a
VMA is about to be modified, unlike :c:func:`!vma_start_read` the lock is always
acquired. An mmap write lock **must** be held for the duration of the VMA write
lock, releasing or downgrading the mmap write lock also releases the VMA write
lock so there is no :c:func:`!vma_end_write` function.
Note that a semaphore write lock is not held across a VMA lock. Rather, a
sequence number is used for serialisation, and the write semaphore is only
acquired at the point of write lock to update this.
This ensures the semantics we require - VMA write locks provide exclusive write
access to the VMA.
Implementation details
^^^^^^^^^^^^^^^^^^^^^^
The VMA lock mechanism is designed to be a lightweight means of avoiding the use
of the heavily contended mmap lock. It is implemented using a combination of a
read/write semaphore and sequence numbers belonging to the containing
:c:struct:`!struct mm_struct` and the VMA.
Read locks are acquired via :c:func:`!vma_start_read`, which is an optimistic
operation, i.e. it tries to acquire a read lock but returns false if it is
unable to do so. At the end of the read operation, :c:func:`!vma_end_read` is
called to release the VMA read lock.
Invoking :c:func:`!vma_start_read` requires that :c:func:`!rcu_read_lock` has
been called first, establishing that we are in an RCU critical section upon VMA
read lock acquisition. Once acquired, the RCU lock can be released as it is only
required for lookup. This is abstracted by :c:func:`!lock_vma_under_rcu` which
is the interface a user should use.
Writing requires the mmap to be write-locked and the VMA lock to be acquired via
:c:func:`!vma_start_write`, however the write lock is released by the termination or
downgrade of the mmap write lock so no :c:func:`!vma_end_write` is required.
All this is achieved by the use of per-mm and per-VMA sequence counts, which are
used in order to reduce complexity, especially for operations which write-lock
multiple VMAs at once.
If the mm sequence count, :c:member:`!mm->mm_lock_seq` is equal to the VMA
sequence count :c:member:`!vma->vm_lock_seq` then the VMA is write-locked. If
they differ, then it is not.
Each time the mmap write lock is released in :c:func:`!mmap_write_unlock` or
:c:func:`!mmap_write_downgrade`, :c:func:`!vma_end_write_all` is invoked which
also increments :c:member:`!mm->mm_lock_seq` via
:c:func:`!mm_lock_seqcount_end`.
This way, we ensure that, regardless of the VMA's sequence number, a write lock
is never incorrectly indicated and that when we release an mmap write lock we
efficiently release **all** VMA write locks contained within the mmap at the
same time.
Since the mmap write lock is exclusive against others who hold it, the automatic
release of any VMA locks on its release makes sense, as you would never want to
keep VMAs locked across entirely separate write operations. It also maintains
correct lock ordering.
Each time a VMA read lock is acquired, we acquire a read lock on the
:c:member:`!vma->vm_lock` read/write semaphore and hold it, while checking that
the sequence count of the VMA does not match that of the mm.
If it does, the read lock fails. If it does not, we hold the lock, excluding
writers, but permitting other readers, who will also obtain this lock under RCU.
Importantly, maple tree operations performed in :c:func:`!lock_vma_under_rcu`
are also RCU safe, so the whole read lock operation is guaranteed to function
correctly.
On the write side, we acquire a write lock on the :c:member:`!vma->vm_lock`
read/write semaphore, before setting the VMA's sequence number under this lock,
also simultaneously holding the mmap write lock.
This way, if any read locks are in effect, :c:func:`!vma_start_write` will sleep
until these are finished and mutual exclusion is achieved.
After setting the VMA's sequence number, the lock is released, avoiding
complexity with a long-term held write lock.
This clever combination of a read/write semaphore and sequence count allows for
fast RCU-based per-VMA lock acquisition (especially on page fault, though
utilised elsewhere) with minimal complexity around lock ordering.
mmap write lock downgrading
---------------------------
When an mmap write lock is held one has exclusive access to resources within the
mmap (with the usual caveats about requiring VMA write locks to avoid races with
tasks holding VMA read locks).
It is then possible to **downgrade** from a write lock to a read lock via
:c:func:`!mmap_write_downgrade` which, similar to :c:func:`!mmap_write_unlock`,
implicitly terminates all VMA write locks via :c:func:`!vma_end_write_all`, but
importantly does not relinquish the mmap lock while downgrading, therefore
keeping the locked virtual address space stable.
An interesting consequence of this is that downgraded locks are exclusive
against any other task possessing a downgraded lock (since a racing task would
have to acquire a write lock first to downgrade it, and the downgraded lock
prevents a new write lock from being obtained until the original lock is
released).
For clarity, we map read (R)/downgraded write (D)/write (W) locks against one
another showing which locks exclude the others:
.. list-table:: Lock exclusivity
:widths: 5 5 5 5
:header-rows: 1
:stub-columns: 1
* -
- R
- D
- W
* - R
- N
- N
- Y
* - D
- N
- Y
- Y
* - W
- Y
- Y
- Y
Here a Y indicates the locks in the matching row/column are mutually exclusive,
and N indicates that they are not.
Stack expansion
---------------
Stack expansion throws up additional complexities in that we cannot permit there
to be racing page faults, as a result we invoke :c:func:`!vma_start_write` to
prevent this in :c:func:`!expand_downwards` or :c:func:`!expand_upwards`.

View File

@ -22,65 +22,67 @@ definitions:
doc: unused event
-
name: created
doc:
token, family, saddr4 | saddr6, daddr4 | daddr6, sport, dport
doc: >-
A new MPTCP connection has been created. It is the good time to
allocate memory and send ADD_ADDR if needed. Depending on the
traffic-patterns it can take a long time until the
MPTCP_EVENT_ESTABLISHED is sent.
Attributes: token, family, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, server-side.
-
name: established
doc:
token, family, saddr4 | saddr6, daddr4 | daddr6, sport, dport
doc: >-
A MPTCP connection is established (can start new subflows).
Attributes: token, family, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, server-side.
-
name: closed
doc:
token
doc: >-
A MPTCP connection has stopped.
Attribute: token.
-
name: announced
value: 6
doc:
token, rem_id, family, daddr4 | daddr6 [, dport]
doc: >-
A new address has been announced by the peer.
Attributes: token, rem_id, family, daddr4 | daddr6 [, dport].
-
name: removed
doc:
token, rem_id
doc: >-
An address has been lost by the peer.
Attributes: token, rem_id.
-
name: sub-established
value: 10
doc:
token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, backup, if_idx [, error]
doc: >-
A new subflow has been established. 'error' should not be set.
Attributes: token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 |
daddr6, sport, dport, backup, if_idx [, error].
-
name: sub-closed
doc:
token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, backup, if_idx [, error]
doc: >-
A subflow has been closed. An error (copy of sk_err) could be set if an
error has been detected for this subflow.
Attributes: token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 |
daddr6, sport, dport, backup, if_idx [, error].
-
name: sub-priority
value: 13
doc:
token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, backup, if_idx [, error]
doc: >-
The priority of a subflow has changed. 'error' should not be set.
Attributes: token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 |
daddr6, sport, dport, backup, if_idx [, error].
-
name: listener-created
value: 15
doc:
family, sport, saddr4 | saddr6
doc: >-
A new PM listener is created.
Attributes: family, sport, saddr4 | saddr6.
-
name: listener-closed
doc:
family, sport, saddr4 | saddr6
doc: >-
A PM listener is closed.
Attributes: family, sport, saddr4 | saddr6.
attribute-sets:
-
@ -307,7 +309,7 @@ operations:
- addr
-
name: flush-addrs
doc: flush addresses
doc: Flush addresses
attribute-set: endpoint
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@ -351,7 +353,7 @@ operations:
- addr-remote
-
name: announce
doc: announce new sf
doc: Announce new address
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@ -362,7 +364,7 @@ operations:
- token
-
name: remove
doc: announce removal
doc: Announce removal
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@ -373,7 +375,7 @@ operations:
- loc-id
-
name: subflow-create
doc: todo
doc: Create subflow
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@ -385,7 +387,7 @@ operations:
- addr-remote
-
name: subflow-destroy
doc: todo
doc: Destroy subflow
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]

View File

@ -1914,6 +1914,9 @@ No flags are specified so far, the corresponding field must be set to zero.
#define KVM_IRQ_ROUTING_HV_SINT 4
#define KVM_IRQ_ROUTING_XEN_EVTCHN 5
On s390, adding a KVM_IRQ_ROUTING_S390_ADAPTER is rejected on ucontrol VMs with
error -EINVAL.
flags:
- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry

View File

@ -58,11 +58,15 @@ Groups:
Enables async page faults for the guest. So in case of a major page fault
the host is allowed to handle this async and continues the guest.
-EINVAL is returned when called on the FLIC of a ucontrol VM.
KVM_DEV_FLIC_APF_DISABLE_WAIT
Disables async page faults for the guest and waits until already pending
async page faults are done. This is necessary to trigger a completion interrupt
for every init interrupt before migrating the interrupt list.
-EINVAL is returned when called on the FLIC of a ucontrol VM.
KVM_DEV_FLIC_ADAPTER_REGISTER
Register an I/O adapter interrupt source. Takes a kvm_s390_io_adapter
describing the adapter to register::

View File

@ -949,7 +949,6 @@ AMAZON ETHERNET DRIVERS
M: Shay Agroskin <shayagr@amazon.com>
M: Arthur Kiyanovski <akiyano@amazon.com>
R: David Arinzon <darinzon@amazon.com>
R: Noam Dagan <ndagan@amazon.com>
R: Saeed Bishara <saeedb@amazon.com>
L: netdev@vger.kernel.org
S: Supported
@ -1797,7 +1796,6 @@ F: include/uapi/linux/if_arcnet.h
ARM AND ARM64 SoC SUB-ARCHITECTURES (COMMON PARTS)
M: Arnd Bergmann <arnd@arndb.de>
M: Olof Johansson <olof@lixom.net>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
L: soc@lists.linux.dev
S: Maintained
@ -2691,7 +2689,6 @@ N: at91
N: atmel
ARM/Microchip Sparx5 SoC support
M: Lars Povlsen <lars.povlsen@microchip.com>
M: Steen Hegelund <Steen.Hegelund@microchip.com>
M: Daniel Machon <daniel.machon@microchip.com>
M: UNGLinuxDriver@microchip.com
@ -3608,6 +3605,7 @@ F: drivers/phy/qualcomm/phy-ath79-usb.c
ATHEROS ATH GENERIC UTILITIES
M: Kalle Valo <kvalo@kernel.org>
M: Jeff Johnson <jjohnson@kernel.org>
L: linux-wireless@vger.kernel.org
S: Supported
F: drivers/net/wireless/ath/*
@ -4058,7 +4056,6 @@ F: net/bluetooth/
BONDING DRIVER
M: Jay Vosburgh <jv@jvosburgh.net>
M: Andy Gospodarek <andy@greyhouse.net>
L: netdev@vger.kernel.org
S: Maintained
F: Documentation/networking/bonding.rst
@ -4131,7 +4128,6 @@ S: Odd Fixes
F: drivers/net/ethernet/netronome/nfp/bpf/
BPF JIT for POWERPC (32-BIT AND 64-BIT)
M: Michael Ellerman <mpe@ellerman.id.au>
M: Hari Bathini <hbathini@linux.ibm.com>
M: Christophe Leroy <christophe.leroy@csgroup.eu>
R: Naveen N Rao <naveen@kernel.org>
@ -7355,7 +7351,7 @@ F: drivers/gpu/drm/panel/panel-novatek-nt36672a.c
DRM DRIVER FOR NVIDIA GEFORCE/QUADRO GPUS
M: Karol Herbst <kherbst@redhat.com>
M: Lyude Paul <lyude@redhat.com>
M: Danilo Krummrich <dakr@redhat.com>
M: Danilo Krummrich <dakr@kernel.org>
L: dri-devel@lists.freedesktop.org
L: nouveau@lists.freedesktop.org
S: Supported
@ -8461,7 +8457,7 @@ F: include/video/s1d13xxxfb.h
EROFS FILE SYSTEM
M: Gao Xiang <xiang@kernel.org>
M: Chao Yu <chao@kernel.org>
R: Yue Hu <huyue2@coolpad.com>
R: Yue Hu <zbestahu@gmail.com>
R: Jeffle Xu <jefflexu@linux.alibaba.com>
R: Sandeep Dhavale <dhavale@google.com>
L: linux-erofs@lists.ozlabs.org
@ -8932,7 +8928,7 @@ F: include/linux/arm_ffa.h
FIRMWARE LOADER (request_firmware)
M: Luis Chamberlain <mcgrof@kernel.org>
M: Russ Weight <russ.weight@linux.dev>
M: Danilo Krummrich <dakr@redhat.com>
M: Danilo Krummrich <dakr@kernel.org>
L: linux-kernel@vger.kernel.org
S: Maintained
F: Documentation/firmware_class/
@ -12640,7 +12636,7 @@ F: arch/mips/include/uapi/asm/kvm*
F: arch/mips/kvm/
KERNEL VIRTUAL MACHINE FOR POWERPC (KVM/powerpc)
M: Michael Ellerman <mpe@ellerman.id.au>
M: Madhavan Srinivasan <maddy@linux.ibm.com>
R: Nicholas Piggin <npiggin@gmail.com>
L: linuxppc-dev@lists.ozlabs.org
L: kvm@vger.kernel.org
@ -13219,11 +13215,11 @@ X: drivers/macintosh/adb-iop.c
X: drivers/macintosh/via-macii.c
LINUX FOR POWERPC (32-BIT AND 64-BIT)
M: Madhavan Srinivasan <maddy@linux.ibm.com>
M: Michael Ellerman <mpe@ellerman.id.au>
R: Nicholas Piggin <npiggin@gmail.com>
R: Christophe Leroy <christophe.leroy@csgroup.eu>
R: Naveen N Rao <naveen@kernel.org>
M: Madhavan Srinivasan <maddy@linux.ibm.com>
L: linuxppc-dev@lists.ozlabs.org
S: Supported
W: https://github.com/linuxppc/wiki/wiki
@ -14574,7 +14570,6 @@ F: drivers/dma/mediatek/
MEDIATEK ETHERNET DRIVER
M: Felix Fietkau <nbd@nbd.name>
M: Sean Wang <sean.wang@mediatek.com>
M: Mark Lee <Mark-MC.Lee@mediatek.com>
M: Lorenzo Bianconi <lorenzo@kernel.org>
L: netdev@vger.kernel.org
S: Maintained
@ -14764,7 +14759,7 @@ F: drivers/memory/mtk-smi.c
F: include/soc/mediatek/smi.h
MEDIATEK SWITCH DRIVER
M: Arınç ÜNAL <arinc.unal@arinc9.com>
M: Chester A. Unal <chester.a.unal@arinc9.com>
M: Daniel Golle <daniel@makrotopia.org>
M: DENG Qingfang <dqfext@gmail.com>
M: Sean Wang <sean.wang@mediatek.com>
@ -18471,7 +18466,7 @@ F: Documentation/devicetree/bindings/pinctrl/mediatek,mt8183-pinctrl.yaml
F: drivers/pinctrl/mediatek/
PIN CONTROLLER - MEDIATEK MIPS
M: Arınç ÜNAL <arinc.unal@arinc9.com>
M: Chester A. Unal <chester.a.unal@arinc9.com>
M: Sergio Paracuellos <sergio.paracuellos@gmail.com>
L: linux-mediatek@lists.infradead.org (moderated for non-subscribers)
L: linux-mips@vger.kernel.org
@ -19515,7 +19510,7 @@ S: Maintained
F: arch/mips/ralink
RALINK MT7621 MIPS ARCHITECTURE
M: Arınç ÜNAL <arinc.unal@arinc9.com>
M: Chester A. Unal <chester.a.unal@arinc9.com>
M: Sergio Paracuellos <sergio.paracuellos@gmail.com>
L: linux-mips@vger.kernel.org
S: Maintained
@ -20919,6 +20914,8 @@ F: kernel/sched/
SCHEDULER - SCHED_EXT
R: Tejun Heo <tj@kernel.org>
R: David Vernet <void@manifault.com>
R: Andrea Righi <arighi@nvidia.com>
R: Changwoo Min <changwoo@igalia.com>
L: linux-kernel@vger.kernel.org
S: Maintained
W: https://github.com/sched-ext/scx
@ -22513,11 +22510,8 @@ F: Documentation/devicetree/bindings/phy/st,stm32mp25-combophy.yaml
F: drivers/phy/st/phy-stm32-combophy.c
STMMAC ETHERNET DRIVER
M: Alexandre Torgue <alexandre.torgue@foss.st.com>
M: Jose Abreu <joabreu@synopsys.com>
L: netdev@vger.kernel.org
S: Supported
W: http://www.stlinux.com
S: Orphan
F: Documentation/networking/device_drivers/ethernet/stmicro/
F: drivers/net/ethernet/stmicro/stmmac/
@ -22749,9 +22743,8 @@ S: Supported
F: drivers/net/ethernet/synopsys/
SYNOPSYS DESIGNWARE ETHERNET XPCS DRIVER
M: Jose Abreu <Jose.Abreu@synopsys.com>
L: netdev@vger.kernel.org
S: Supported
S: Orphan
F: drivers/net/pcs/pcs-xpcs.c
F: drivers/net/pcs/pcs-xpcs.h
F: include/linux/pcs/pcs-xpcs.h
@ -23659,7 +23652,6 @@ F: tools/testing/selftests/timers/
TIPC NETWORK LAYER
M: Jon Maloy <jmaloy@redhat.com>
M: Ying Xue <ying.xue@windriver.com>
L: netdev@vger.kernel.org (core kernel code)
L: tipc-discussion@lists.sourceforge.net (user apps, general discussion)
S: Maintained
@ -24265,7 +24257,8 @@ F: Documentation/devicetree/bindings/usb/nxp,isp1760.yaml
F: drivers/usb/isp1760/*
USB LAN78XX ETHERNET DRIVER
M: Woojung Huh <woojung.huh@microchip.com>
M: Thangaraj Samynathan <Thangaraj.S@microchip.com>
M: Rengarajan Sundararajan <Rengarajan.S@microchip.com>
M: UNGLinuxDriver@microchip.com
L: netdev@vger.kernel.org
S: Maintained

View File

@ -2,7 +2,7 @@
VERSION = 6
PATCHLEVEL = 13
SUBLEVEL = 0
EXTRAVERSION = -rc3
EXTRAVERSION = -rc7
NAME = Baby Opossum Posse
# *DOCUMENTATION*

View File

@ -6,6 +6,7 @@
config ARC
def_bool y
select ARC_TIMERS
select ARCH_HAS_CPU_CACHE_ALIASING
select ARCH_HAS_CACHE_LINE_SIZE
select ARCH_HAS_DEBUG_VM_PGTABLE
select ARCH_HAS_DMA_PREP_COHERENT

View File

@ -0,0 +1,8 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __ASM_ARC_CACHETYPE_H
#define __ASM_ARC_CACHETYPE_H
#define cpu_dcache_is_aliasing() false
#define cpu_icache_is_aliasing() true
#endif

View File

@ -87,7 +87,7 @@
reg = <0x402c0000 0x4000>;
interrupts = <110>;
clocks = <&clks IMXRT1050_CLK_IPG_PDOF>,
<&clks IMXRT1050_CLK_OSC>,
<&clks IMXRT1050_CLK_AHB_PODF>,
<&clks IMXRT1050_CLK_USDHC1>;
clock-names = "ipg", "ahb", "per";
bus-width = <4>;

View File

@ -323,6 +323,7 @@ CONFIG_SND_SOC_IMX_SGTL5000=y
CONFIG_SND_SOC_FSL_ASOC_CARD=y
CONFIG_SND_SOC_AC97_CODEC=y
CONFIG_SND_SOC_CS42XX8_I2C=y
CONFIG_SND_SOC_SPDIF=y
CONFIG_SND_SOC_TLV320AIC3X_I2C=y
CONFIG_SND_SOC_WM8960=y
CONFIG_SND_SOC_WM8962=y

View File

@ -6,6 +6,7 @@ menuconfig ARCH_MXC
select CLKSRC_IMX_GPT
select GENERIC_IRQ_CHIP
select GPIOLIB
select PINCTRL
select PM_OPP if PM
select SOC_BUS
select SRAM

View File

@ -233,7 +233,7 @@
#interrupt-cells = <0x1>;
compatible = "pci-host-ecam-generic";
device_type = "pci";
bus-range = <0x0 0x1>;
bus-range = <0x0 0xff>;
reg = <0x0 0x40000000 0x0 0x10000000>;
ranges = <0x2000000 0x0 0x50000000 0x0 0x50000000 0x0 0x10000000>;
interrupt-map = <0 0 0 1 &gic 0 0 GIC_SPI 168 IRQ_TYPE_LEVEL_HIGH>,

View File

@ -67,7 +67,7 @@
l2_cache_l0: l2-cache-l0 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;
@ -91,7 +91,7 @@
l2_cache_l1: l2-cache-l1 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;
@ -115,7 +115,7 @@
l2_cache_l2: l2-cache-l2 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;
@ -139,7 +139,7 @@
l2_cache_l3: l2-cache-l3 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;

View File

@ -165,7 +165,7 @@ audio_subsys: bus@59000000 {
};
esai0: esai@59010000 {
compatible = "fsl,imx8qm-esai";
compatible = "fsl,imx8qm-esai", "fsl,imx6ull-esai";
reg = <0x59010000 0x10000>;
interrupts = <GIC_SPI 409 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&esai0_lpcg IMX_LPCG_CLK_4>,

View File

@ -134,7 +134,7 @@
};
esai1: esai@59810000 {
compatible = "fsl,imx8qm-esai";
compatible = "fsl,imx8qm-esai", "fsl,imx6ull-esai";
reg = <0x59810000 0x10000>;
interrupts = <GIC_SPI 411 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&esai1_lpcg IMX_LPCG_CLK_0>,

View File

@ -1673,7 +1673,7 @@
netcmix_blk_ctrl: syscon@4c810000 {
compatible = "nxp,imx95-netcmix-blk-ctrl", "syscon";
reg = <0x0 0x4c810000 0x0 0x10000>;
reg = <0x0 0x4c810000 0x0 0x8>;
#clock-cells = <1>;
clocks = <&scmi_clk IMX95_CLK_BUSNETCMIX>;
assigned-clocks = <&scmi_clk IMX95_CLK_BUSNETCMIX>;

View File

@ -2440,6 +2440,7 @@
qcom,cmb-element-bits = <32>;
qcom,cmb-msrs-num = <32>;
status = "disabled";
out-ports {
port {
@ -6092,7 +6093,7 @@
<0x0 0x40000000 0x0 0xf20>,
<0x0 0x40000f20 0x0 0xa8>,
<0x0 0x40001000 0x0 0x4000>,
<0x0 0x40200000 0x0 0x100000>,
<0x0 0x40200000 0x0 0x1fe00000>,
<0x0 0x01c03000 0x0 0x1000>,
<0x0 0x40005000 0x0 0x2000>;
reg-names = "parf", "dbi", "elbi", "atu", "addr_space",
@ -6250,7 +6251,7 @@
<0x0 0x60000000 0x0 0xf20>,
<0x0 0x60000f20 0x0 0xa8>,
<0x0 0x60001000 0x0 0x4000>,
<0x0 0x60200000 0x0 0x100000>,
<0x0 0x60200000 0x0 0x1fe00000>,
<0x0 0x01c13000 0x0 0x1000>,
<0x0 0x60005000 0x0 0x2000>;
reg-names = "parf", "dbi", "elbi", "atu", "addr_space",

View File

@ -773,6 +773,10 @@
status = "okay";
};
&usb_1_ss0_dwc3 {
dr_mode = "host";
};
&usb_1_ss0_dwc3_hs {
remote-endpoint = <&pmic_glink_ss0_hs_in>;
};
@ -801,6 +805,10 @@
status = "okay";
};
&usb_1_ss1_dwc3 {
dr_mode = "host";
};
&usb_1_ss1_dwc3_hs {
remote-endpoint = <&pmic_glink_ss1_hs_in>;
};

View File

@ -1197,6 +1197,10 @@
status = "okay";
};
&usb_1_ss0_dwc3 {
dr_mode = "host";
};
&usb_1_ss0_dwc3_hs {
remote-endpoint = <&pmic_glink_ss0_hs_in>;
};
@ -1225,6 +1229,10 @@
status = "okay";
};
&usb_1_ss1_dwc3 {
dr_mode = "host";
};
&usb_1_ss1_dwc3_hs {
remote-endpoint = <&pmic_glink_ss1_hs_in>;
};
@ -1253,6 +1261,10 @@
status = "okay";
};
&usb_1_ss2_dwc3 {
dr_mode = "host";
};
&usb_1_ss2_dwc3_hs {
remote-endpoint = <&pmic_glink_ss2_hs_in>;
};

View File

@ -2924,7 +2924,7 @@
#address-cells = <3>;
#size-cells = <2>;
ranges = <0x01000000 0x0 0x00000000 0x0 0x70200000 0x0 0x100000>,
<0x02000000 0x0 0x70300000 0x0 0x70300000 0x0 0x1d00000>;
<0x02000000 0x0 0x70300000 0x0 0x70300000 0x0 0x3d00000>;
bus-range = <0x00 0xff>;
dma-coherent;
@ -4066,8 +4066,6 @@
dma-coherent;
usb-role-switch;
ports {
#address-cells = <1>;
#size-cells = <0>;
@ -4321,8 +4319,6 @@
dma-coherent;
usb-role-switch;
ports {
#address-cells = <1>;
#size-cells = <0>;
@ -4421,8 +4417,6 @@
dma-coherent;
usb-role-switch;
ports {
#address-cells = <1>;
#size-cells = <0>;

View File

@ -333,6 +333,7 @@
power-domain@RK3328_PD_HEVC {
reg = <RK3328_PD_HEVC>;
clocks = <&cru SCLK_VENC_CORE>;
#power-domain-cells = <0>;
};
power-domain@RK3328_PD_VIDEO {

View File

@ -350,6 +350,7 @@
assigned-clocks = <&pmucru CLK_PCIEPHY0_REF>;
assigned-clock-rates = <100000000>;
resets = <&cru SRST_PIPEPHY0>;
reset-names = "phy";
rockchip,pipe-grf = <&pipegrf>;
rockchip,pipe-phy-grf = <&pipe_phy_grf0>;
#phy-cells = <1>;

View File

@ -1681,6 +1681,7 @@
assigned-clocks = <&pmucru CLK_PCIEPHY1_REF>;
assigned-clock-rates = <100000000>;
resets = <&cru SRST_PIPEPHY1>;
reset-names = "phy";
rockchip,pipe-grf = <&pipegrf>;
rockchip,pipe-phy-grf = <&pipe_phy_grf1>;
#phy-cells = <1>;
@ -1697,6 +1698,7 @@
assigned-clocks = <&pmucru CLK_PCIEPHY2_REF>;
assigned-clock-rates = <100000000>;
resets = <&cru SRST_PIPEPHY2>;
reset-names = "phy";
rockchip,pipe-grf = <&pipegrf>;
rockchip,pipe-phy-grf = <&pipe_phy_grf2>;
#phy-cells = <1>;

View File

@ -72,7 +72,7 @@
rfkill {
compatible = "rfkill-gpio";
label = "rfkill-pcie-wlan";
label = "rfkill-m2-wlan";
radio-type = "wlan";
shutdown-gpios = <&gpio4 RK_PA2 GPIO_ACTIVE_HIGH>;
};

View File

@ -434,6 +434,7 @@
&sdmmc {
bus-width = <4>;
cap-sd-highspeed;
cd-gpios = <&gpio0 RK_PA4 GPIO_ACTIVE_LOW>;
disable-wp;
max-frequency = <150000000>;
no-mmc;

View File

@ -36,15 +36,8 @@
#include <asm/traps.h>
#include <asm/vdso.h>
#ifdef CONFIG_ARM64_GCS
#define GCS_SIGNAL_CAP(addr) (((unsigned long)addr) & GCS_CAP_ADDR_MASK)
static bool gcs_signal_cap_valid(u64 addr, u64 val)
{
return val == GCS_SIGNAL_CAP(addr);
}
#endif
/*
* Do a signal return; undo the signal stack. These are aligned to 128-bit.
*/
@ -1062,8 +1055,7 @@ static int restore_sigframe(struct pt_regs *regs,
#ifdef CONFIG_ARM64_GCS
static int gcs_restore_signal(void)
{
unsigned long __user *gcspr_el0;
u64 cap;
u64 gcspr_el0, cap;
int ret;
if (!system_supports_gcs())
@ -1072,7 +1064,7 @@ static int gcs_restore_signal(void)
if (!(current->thread.gcs_el0_mode & PR_SHADOW_STACK_ENABLE))
return 0;
gcspr_el0 = (unsigned long __user *)read_sysreg_s(SYS_GCSPR_EL0);
gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
/*
* Ensure that any changes to the GCS done via GCS operations
@ -1087,22 +1079,23 @@ static int gcs_restore_signal(void)
* then faults will be generated on GCS operations - the main
* concern is to protect GCS pages.
*/
ret = copy_from_user(&cap, gcspr_el0, sizeof(cap));
ret = copy_from_user(&cap, (unsigned long __user *)gcspr_el0,
sizeof(cap));
if (ret)
return -EFAULT;
/*
* Check that the cap is the actual GCS before replacing it.
*/
if (!gcs_signal_cap_valid((u64)gcspr_el0, cap))
if (cap != GCS_SIGNAL_CAP(gcspr_el0))
return -EINVAL;
/* Invalidate the token to prevent reuse */
put_user_gcs(0, (__user void*)gcspr_el0, &ret);
put_user_gcs(0, (unsigned long __user *)gcspr_el0, &ret);
if (ret != 0)
return -EFAULT;
write_sysreg_s(gcspr_el0 + 1, SYS_GCSPR_EL0);
write_sysreg_s(gcspr_el0 + 8, SYS_GCSPR_EL0);
return 0;
}
@ -1421,7 +1414,7 @@ static int get_sigframe(struct rt_sigframe_user_layout *user,
static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
{
unsigned long __user *gcspr_el0;
u64 gcspr_el0;
int ret = 0;
if (!system_supports_gcs())
@ -1434,18 +1427,20 @@ static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
* We are entering a signal handler, current register state is
* active.
*/
gcspr_el0 = (unsigned long __user *)read_sysreg_s(SYS_GCSPR_EL0);
gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
/*
* Push a cap and the GCS entry for the trampoline onto the GCS.
*/
put_user_gcs((unsigned long)sigtramp, gcspr_el0 - 2, &ret);
put_user_gcs(GCS_SIGNAL_CAP(gcspr_el0 - 1), gcspr_el0 - 1, &ret);
put_user_gcs((unsigned long)sigtramp,
(unsigned long __user *)(gcspr_el0 - 16), &ret);
put_user_gcs(GCS_SIGNAL_CAP(gcspr_el0 - 8),
(unsigned long __user *)(gcspr_el0 - 8), &ret);
if (ret != 0)
return ret;
gcspr_el0 -= 2;
write_sysreg_s((unsigned long)gcspr_el0, SYS_GCSPR_EL0);
gcspr_el0 -= 16;
write_sysreg_s(gcspr_el0, SYS_GCSPR_EL0);
return 0;
}

View File

@ -783,9 +783,6 @@ static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
return -EBUSY;
if (__hyp_ack_skip_pgtable_check(tx))
return 0;
return __hyp_check_page_state_range(addr, size,
PKVM_PAGE_SHARED_BORROWED);
}

View File

@ -24,6 +24,7 @@ static DEFINE_MUTEX(arm_pmus_lock);
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc);
static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
{
@ -327,48 +328,25 @@ u64 kvm_pmu_implemented_counter_mask(struct kvm_vcpu *vcpu)
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
}
/**
* kvm_pmu_enable_counter_mask - enable selected PMU counters
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCNTENSET register
*
* Call perf_event_enable to start counting the perf event
*/
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
static void kvm_pmc_enable_perf_event(struct kvm_pmc *pmc)
{
int i;
if (!kvm_vcpu_has_pmu(vcpu))
return;
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
return;
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
struct kvm_pmc *pmc;
if (!(val & BIT(i)))
continue;
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
if (!pmc->perf_event) {
kvm_pmu_create_perf_event(pmc);
} else {
return;
}
perf_event_enable(pmc->perf_event);
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
kvm_debug("fail to enable perf event\n");
}
}
static void kvm_pmc_disable_perf_event(struct kvm_pmc *pmc)
{
if (pmc->perf_event)
perf_event_disable(pmc->perf_event);
}
/**
* kvm_pmu_disable_counter_mask - disable selected PMU counters
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCNTENCLR register
*
* Call perf_event_disable to stop counting the perf event
*/
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
void kvm_pmu_reprogram_counter_mask(struct kvm_vcpu *vcpu, u64 val)
{
int i;
@ -376,16 +354,18 @@ void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
return;
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
struct kvm_pmc *pmc;
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
if (!(val & BIT(i)))
continue;
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
if (pmc->perf_event)
perf_event_disable(pmc->perf_event);
if (kvm_pmu_counter_is_enabled(pmc))
kvm_pmc_enable_perf_event(pmc);
else
kvm_pmc_disable_perf_event(pmc);
}
kvm_vcpu_pmu_restore_guest(vcpu);
}
/*
@ -626,27 +606,28 @@ void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
val &= ~ARMV8_PMU_PMCR_LP;
/* Request a reload of the PMU to enable/disable affected counters */
if ((__vcpu_sys_reg(vcpu, PMCR_EL0) ^ val) & ARMV8_PMU_PMCR_E)
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
/* The reset bits don't indicate any state, and shouldn't be saved. */
__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
if (val & ARMV8_PMU_PMCR_E) {
kvm_pmu_enable_counter_mask(vcpu,
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
} else {
kvm_pmu_disable_counter_mask(vcpu,
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
}
if (val & ARMV8_PMU_PMCR_C)
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
if (val & ARMV8_PMU_PMCR_P) {
unsigned long mask = kvm_pmu_accessible_counter_mask(vcpu);
mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
/*
* Unlike other PMU sysregs, the controls in PMCR_EL0 always apply
* to the 'guest' range of counters and never the 'hyp' range.
*/
unsigned long mask = kvm_pmu_implemented_counter_mask(vcpu) &
~kvm_pmu_hyp_counter_mask(vcpu) &
~BIT(ARMV8_PMU_CYCLE_IDX);
for_each_set_bit(i, &mask, 32)
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
}
kvm_vcpu_pmu_restore_guest(vcpu);
}
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
@ -910,11 +891,11 @@ void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
{
u64 mask = kvm_pmu_implemented_counter_mask(vcpu);
kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
kvm_pmu_reprogram_counter_mask(vcpu, mask);
}
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)

View File

@ -1208,16 +1208,14 @@ static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
mask = kvm_pmu_accessible_counter_mask(vcpu);
if (p->is_write) {
val = p->regval & mask;
if (r->Op2 & 0x1) {
if (r->Op2 & 0x1)
/* accessing PMCNTENSET_EL0 */
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
kvm_pmu_enable_counter_mask(vcpu, val);
kvm_vcpu_pmu_restore_guest(vcpu);
} else {
else
/* accessing PMCNTENCLR_EL0 */
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
kvm_pmu_disable_counter_mask(vcpu, val);
}
kvm_pmu_reprogram_counter_mask(vcpu, val);
} else {
p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
}
@ -2450,6 +2448,26 @@ static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
return __el2_visibility(vcpu, rd, s1pie_visibility);
}
static bool access_mdcr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 old = __vcpu_sys_reg(vcpu, MDCR_EL2);
if (!access_rw(vcpu, p, r))
return false;
/*
* Request a reload of the PMU to enable/disable the counters affected
* by HPME.
*/
if ((old ^ __vcpu_sys_reg(vcpu, MDCR_EL2)) & MDCR_EL2_HPME)
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
return true;
}
/*
* Architected system registers.
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
@ -2983,7 +3001,7 @@ static const struct sys_reg_desc sys_reg_descs[] = {
EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
EL2_REG(MDCR_EL2, access_mdcr, reset_val, 0),
EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),

View File

@ -32,3 +32,9 @@ KBUILD_LDFLAGS += $(ldflags-y)
TIR_NAME := r19
KBUILD_CFLAGS += -ffixed-$(TIR_NAME) -DTHREADINFO_REG=$(TIR_NAME) -D__linux__
KBUILD_AFLAGS += -DTHREADINFO_REG=$(TIR_NAME)
# Disable HexagonConstExtenders pass for LLVM versions prior to 19.1.0
# https://github.com/llvm/llvm-project/issues/99714
ifneq ($(call clang-min-version, 190100),y)
KBUILD_CFLAGS += -mllvm -hexagon-cext=false
endif

View File

@ -143,11 +143,11 @@ static int show_cpuinfo(struct seq_file *m, void *v)
" DIV:\t\t%s\n"
" BMX:\t\t%s\n"
" CDX:\t\t%s\n",
cpuinfo.has_mul ? "yes" : "no",
cpuinfo.has_mulx ? "yes" : "no",
cpuinfo.has_div ? "yes" : "no",
cpuinfo.has_bmx ? "yes" : "no",
cpuinfo.has_cdx ? "yes" : "no");
str_yes_no(cpuinfo.has_mul),
str_yes_no(cpuinfo.has_mulx),
str_yes_no(cpuinfo.has_div),
str_yes_no(cpuinfo.has_bmx),
str_yes_no(cpuinfo.has_cdx));
seq_printf(m,
"Icache:\t\t%ukB, line length: %u\n",

View File

@ -208,6 +208,7 @@ CONFIG_FB_ATY=y
CONFIG_FB_ATY_CT=y
CONFIG_FB_ATY_GX=y
CONFIG_FB_3DFX=y
CONFIG_BACKLIGHT_CLASS_DEVICE=y
# CONFIG_VGA_CONSOLE is not set
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_LOGO=y

View File

@ -716,6 +716,7 @@ CONFIG_FB_TRIDENT=m
CONFIG_FB_SM501=m
CONFIG_FB_IBM_GXT4500=y
CONFIG_LCD_PLATFORM=m
CONFIG_BACKLIGHT_CLASS_DEVICE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION=y
CONFIG_LOGO=y

View File

@ -34,6 +34,8 @@ enum vcpu_ftr {
#define E500_TLB_BITMAP (1 << 30)
/* TLB1 entry is mapped by host TLB0 */
#define E500_TLB_TLB0 (1 << 29)
/* entry is writable on the host */
#define E500_TLB_WRITABLE (1 << 28)
/* bits [6-5] MAS2_X1 and MAS2_X0 and [4-0] bits for WIMGE */
#define E500_TLB_MAS2_ATTR (0x7f)

View File

@ -45,11 +45,14 @@ static inline unsigned int tlb1_max_shadow_size(void)
return host_tlb_params[1].entries - tlbcam_index - 1;
}
static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
static inline u32 e500_shadow_mas3_attrib(u32 mas3, bool writable, int usermode)
{
/* Mask off reserved bits. */
mas3 &= MAS3_ATTRIB_MASK;
if (!writable)
mas3 &= ~(MAS3_UW|MAS3_SW);
#ifndef CONFIG_KVM_BOOKE_HV
if (!usermode) {
/* Guest is in supervisor mode,
@ -242,17 +245,18 @@ static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}
static inline bool kvmppc_e500_ref_setup(struct tlbe_ref *ref,
static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
struct kvm_book3e_206_tlb_entry *gtlbe,
kvm_pfn_t pfn, unsigned int wimg)
kvm_pfn_t pfn, unsigned int wimg,
bool writable)
{
ref->pfn = pfn;
ref->flags = E500_TLB_VALID;
if (writable)
ref->flags |= E500_TLB_WRITABLE;
/* Use guest supplied MAS2_G and MAS2_E */
ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
return tlbe_is_writable(gtlbe);
}
static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
@ -305,6 +309,7 @@ static void kvmppc_e500_setup_stlbe(
{
kvm_pfn_t pfn = ref->pfn;
u32 pr = vcpu->arch.shared->msr & MSR_PR;
bool writable = !!(ref->flags & E500_TLB_WRITABLE);
BUG_ON(!(ref->flags & E500_TLB_VALID));
@ -312,7 +317,7 @@ static void kvmppc_e500_setup_stlbe(
stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
e500_shadow_mas3_attrib(gtlbe->mas7_3, writable, pr);
}
static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
@ -321,15 +326,14 @@ static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
struct tlbe_ref *ref)
{
struct kvm_memory_slot *slot;
unsigned long pfn = 0; /* silence GCC warning */
unsigned int psize;
unsigned long pfn;
struct page *page = NULL;
unsigned long hva;
int pfnmap = 0;
int tsize = BOOK3E_PAGESZ_4K;
int ret = 0;
unsigned long mmu_seq;
struct kvm *kvm = vcpu_e500->vcpu.kvm;
unsigned long tsize_pages = 0;
pte_t *ptep;
unsigned int wimg = 0;
pgd_t *pgdir;
@ -351,30 +355,54 @@ static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
hva = gfn_to_hva_memslot(slot, gfn);
if (tlbsel == 1) {
struct vm_area_struct *vma;
mmap_read_lock(kvm->mm);
pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &page);
if (is_error_noslot_pfn(pfn)) {
if (printk_ratelimit())
pr_err("%s: real page not found for gfn %lx\n",
__func__, (long)gfn);
return -EINVAL;
}
vma = find_vma(kvm->mm, hva);
if (vma && hva >= vma->vm_start &&
(vma->vm_flags & VM_PFNMAP)) {
spin_lock(&kvm->mmu_lock);
if (mmu_invalidate_retry(kvm, mmu_seq)) {
ret = -EAGAIN;
goto out;
}
pgdir = vcpu_e500->vcpu.arch.pgdir;
/*
* This VMA is a physically contiguous region (e.g.
* /dev/mem) that bypasses normal Linux page
* management. Find the overlap between the
* vma and the memslot.
* We are just looking at the wimg bits, so we don't
* care much about the trans splitting bit.
* We are holding kvm->mmu_lock so a notifier invalidate
* can't run hence pfn won't change.
*/
local_irq_save(flags);
ptep = find_linux_pte(pgdir, hva, NULL, &psize);
if (ptep) {
pte_t pte = READ_ONCE(*ptep);
if (pte_present(pte)) {
wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
MAS2_WIMGE_MASK;
} else {
local_irq_restore(flags);
pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
__func__, (long)gfn, pfn);
ret = -EINVAL;
goto out;
}
}
local_irq_restore(flags);
if (psize && tlbsel == 1) {
unsigned long psize_pages, tsize_pages;
unsigned long start, end;
unsigned long slot_start, slot_end;
pfnmap = 1;
start = vma->vm_pgoff;
end = start +
vma_pages(vma);
pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
psize_pages = 1UL << (psize - PAGE_SHIFT);
start = pfn & ~(psize_pages - 1);
end = start + psize_pages;
slot_start = pfn - (gfn - slot->base_gfn);
slot_end = slot_start + slot->npages;
@ -387,6 +415,12 @@ static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Any page size that doesn't satisfy the host mapping
* will fail the start and end tests.
*/
tsize = min(psize - PAGE_SHIFT + BOOK3E_PAGESZ_4K, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
@ -419,79 +453,12 @@ static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
pfn &= ~(tsize_pages - 1);
break;
}
} else if (vma && hva >= vma->vm_start &&
is_vm_hugetlb_page(vma)) {
unsigned long psize = vma_kernel_pagesize(vma);
tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
MAS1_TSIZE_SHIFT;
/*
* Take the largest page size that satisfies both host
* and guest mapping
*/
tsize = min(__ilog2(psize) - 10, tsize);
/*
* e500 doesn't implement the lowest tsize bit,
* or 1K pages.
*/
tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
}
mmap_read_unlock(kvm->mm);
}
if (likely(!pfnmap)) {
tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, NULL, &page);
if (is_error_noslot_pfn(pfn)) {
if (printk_ratelimit())
pr_err("%s: real page not found for gfn %lx\n",
__func__, (long)gfn);
return -EINVAL;
}
/* Align guest and physical address to page map boundaries */
pfn &= ~(tsize_pages - 1);
gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
}
spin_lock(&kvm->mmu_lock);
if (mmu_invalidate_retry(kvm, mmu_seq)) {
ret = -EAGAIN;
goto out;
}
pgdir = vcpu_e500->vcpu.arch.pgdir;
/*
* We are just looking at the wimg bits, so we don't
* care much about the trans splitting bit.
* We are holding kvm->mmu_lock so a notifier invalidate
* can't run hence pfn won't change.
*/
local_irq_save(flags);
ptep = find_linux_pte(pgdir, hva, NULL, NULL);
if (ptep) {
pte_t pte = READ_ONCE(*ptep);
if (pte_present(pte)) {
wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
MAS2_WIMGE_MASK;
local_irq_restore(flags);
} else {
local_irq_restore(flags);
pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
__func__, (long)gfn, pfn);
ret = -EINVAL;
goto out;
}
}
writable = kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg, writable);
kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
ref, gvaddr, stlbe);
writable = tlbe_is_writable(stlbe);
/* Clear i-cache for new pages */
kvmppc_mmu_flush_icache(pfn);

View File

@ -464,7 +464,43 @@ static vm_fault_t vas_mmap_fault(struct vm_fault *vmf)
return VM_FAULT_SIGBUS;
}
/*
* During mmap() paste address, mapping VMA is saved in VAS window
* struct which is used to unmap during migration if the window is
* still open. But the user space can remove this mapping with
* munmap() before closing the window and the VMA address will
* be invalid. Set VAS window VMA to NULL in this function which
* is called before VMA free.
*/
static void vas_mmap_close(struct vm_area_struct *vma)
{
struct file *fp = vma->vm_file;
struct coproc_instance *cp_inst = fp->private_data;
struct vas_window *txwin;
/* Should not happen */
if (!cp_inst || !cp_inst->txwin) {
pr_err("No attached VAS window for the paste address mmap\n");
return;
}
txwin = cp_inst->txwin;
/*
* task_ref.vma is set in coproc_mmap() during mmap paste
* address. So it has to be the same VMA that is getting freed.
*/
if (WARN_ON(txwin->task_ref.vma != vma)) {
pr_err("Invalid paste address mmaping\n");
return;
}
mutex_lock(&txwin->task_ref.mmap_mutex);
txwin->task_ref.vma = NULL;
mutex_unlock(&txwin->task_ref.mmap_mutex);
}
static const struct vm_operations_struct vas_vm_ops = {
.close = vas_mmap_close,
.fault = vas_mmap_fault,
};

View File

@ -122,6 +122,7 @@ struct kernel_mapping {
extern struct kernel_mapping kernel_map;
extern phys_addr_t phys_ram_base;
extern unsigned long vmemmap_start_pfn;
#define is_kernel_mapping(x) \
((x) >= kernel_map.virt_addr && (x) < (kernel_map.virt_addr + kernel_map.size))

View File

@ -87,7 +87,7 @@
* Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
* is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
*/
#define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
#define vmemmap ((struct page *)VMEMMAP_START - vmemmap_start_pfn)
#define PCI_IO_SIZE SZ_16M
#define PCI_IO_END VMEMMAP_START

View File

@ -159,6 +159,7 @@ struct riscv_pmu_snapshot_data {
};
#define RISCV_PMU_RAW_EVENT_MASK GENMASK_ULL(47, 0)
#define RISCV_PMU_PLAT_FW_EVENT_MASK GENMASK_ULL(61, 0)
#define RISCV_PMU_RAW_EVENT_IDX 0x20000
#define RISCV_PLAT_FW_EVENT 0xFFFF

View File

@ -3,8 +3,11 @@
#ifndef __ASM_RISCV_SPINLOCK_H
#define __ASM_RISCV_SPINLOCK_H
#ifdef CONFIG_RISCV_COMBO_SPINLOCKS
#ifdef CONFIG_QUEUED_SPINLOCKS
#define _Q_PENDING_LOOPS (1 << 9)
#endif
#ifdef CONFIG_RISCV_COMBO_SPINLOCKS
#define __no_arch_spinlock_redefine
#include <asm/ticket_spinlock.h>

View File

@ -23,21 +23,21 @@
REG_S a0, TASK_TI_A0(tp)
csrr a0, CSR_CAUSE
/* Exclude IRQs */
blt a0, zero, _new_vmalloc_restore_context_a0
blt a0, zero, .Lnew_vmalloc_restore_context_a0
REG_S a1, TASK_TI_A1(tp)
/* Only check new_vmalloc if we are in page/protection fault */
li a1, EXC_LOAD_PAGE_FAULT
beq a0, a1, _new_vmalloc_kernel_address
beq a0, a1, .Lnew_vmalloc_kernel_address
li a1, EXC_STORE_PAGE_FAULT
beq a0, a1, _new_vmalloc_kernel_address
beq a0, a1, .Lnew_vmalloc_kernel_address
li a1, EXC_INST_PAGE_FAULT
bne a0, a1, _new_vmalloc_restore_context_a1
bne a0, a1, .Lnew_vmalloc_restore_context_a1
_new_vmalloc_kernel_address:
.Lnew_vmalloc_kernel_address:
/* Is it a kernel address? */
csrr a0, CSR_TVAL
bge a0, zero, _new_vmalloc_restore_context_a1
bge a0, zero, .Lnew_vmalloc_restore_context_a1
/* Check if a new vmalloc mapping appeared that could explain the trap */
REG_S a2, TASK_TI_A2(tp)
@ -69,7 +69,7 @@ _new_vmalloc_kernel_address:
/* Check the value of new_vmalloc for this cpu */
REG_L a2, 0(a0)
and a2, a2, a1
beq a2, zero, _new_vmalloc_restore_context
beq a2, zero, .Lnew_vmalloc_restore_context
/* Atomically reset the current cpu bit in new_vmalloc */
amoxor.d a0, a1, (a0)
@ -83,11 +83,11 @@ _new_vmalloc_kernel_address:
csrw CSR_SCRATCH, x0
sret
_new_vmalloc_restore_context:
.Lnew_vmalloc_restore_context:
REG_L a2, TASK_TI_A2(tp)
_new_vmalloc_restore_context_a1:
.Lnew_vmalloc_restore_context_a1:
REG_L a1, TASK_TI_A1(tp)
_new_vmalloc_restore_context_a0:
.Lnew_vmalloc_restore_context_a0:
REG_L a0, TASK_TI_A0(tp)
.endm
@ -278,6 +278,7 @@ SYM_CODE_START_NOALIGN(ret_from_exception)
#else
sret
#endif
SYM_INNER_LABEL(ret_from_exception_end, SYM_L_GLOBAL)
SYM_CODE_END(ret_from_exception)
ASM_NOKPROBE(ret_from_exception)

View File

@ -23,7 +23,7 @@ struct used_bucket {
struct relocation_head {
struct hlist_node node;
struct list_head *rel_entry;
struct list_head rel_entry;
void *location;
};
@ -634,7 +634,7 @@ process_accumulated_relocations(struct module *me,
location = rel_head_iter->location;
list_for_each_entry_safe(rel_entry_iter,
rel_entry_iter_tmp,
rel_head_iter->rel_entry,
&rel_head_iter->rel_entry,
head) {
curr_type = rel_entry_iter->type;
reloc_handlers[curr_type].reloc_handler(
@ -704,16 +704,7 @@ static int add_relocation_to_accumulate(struct module *me, int type,
return -ENOMEM;
}
rel_head->rel_entry =
kmalloc(sizeof(struct list_head), GFP_KERNEL);
if (!rel_head->rel_entry) {
kfree(entry);
kfree(rel_head);
return -ENOMEM;
}
INIT_LIST_HEAD(rel_head->rel_entry);
INIT_LIST_HEAD(&rel_head->rel_entry);
rel_head->location = location;
INIT_HLIST_NODE(&rel_head->node);
if (!current_head->first) {
@ -722,7 +713,6 @@ static int add_relocation_to_accumulate(struct module *me, int type,
if (!bucket) {
kfree(entry);
kfree(rel_head->rel_entry);
kfree(rel_head);
return -ENOMEM;
}
@ -735,7 +725,7 @@ static int add_relocation_to_accumulate(struct module *me, int type,
}
/* Add relocation to head of discovered rel_head */
list_add_tail(&entry->head, rel_head->rel_entry);
list_add_tail(&entry->head, &rel_head->rel_entry);
return 0;
}

View File

@ -30,7 +30,7 @@ static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
p->ainsn.api.restore = (unsigned long)p->addr + len;
patch_text_nosync(p->ainsn.api.insn, &p->opcode, len);
patch_text_nosync(p->ainsn.api.insn + len, &insn, GET_INSN_LENGTH(insn));
patch_text_nosync((void *)p->ainsn.api.insn + len, &insn, GET_INSN_LENGTH(insn));
}
static void __kprobes arch_prepare_simulate(struct kprobe *p)

View File

@ -17,6 +17,7 @@
#ifdef CONFIG_FRAME_POINTER
extern asmlinkage void handle_exception(void);
extern unsigned long ret_from_exception_end;
static inline int fp_is_valid(unsigned long fp, unsigned long sp)
{
@ -71,7 +72,8 @@ void notrace walk_stackframe(struct task_struct *task, struct pt_regs *regs,
fp = frame->fp;
pc = ftrace_graph_ret_addr(current, &graph_idx, frame->ra,
&frame->ra);
if (pc == (unsigned long)handle_exception) {
if (pc >= (unsigned long)handle_exception &&
pc < (unsigned long)&ret_from_exception_end) {
if (unlikely(!__kernel_text_address(pc) || !fn(arg, pc)))
break;

View File

@ -35,7 +35,7 @@
int show_unhandled_signals = 1;
static DEFINE_SPINLOCK(die_lock);
static DEFINE_RAW_SPINLOCK(die_lock);
static int copy_code(struct pt_regs *regs, u16 *val, const u16 *insns)
{
@ -81,7 +81,7 @@ void die(struct pt_regs *regs, const char *str)
oops_enter();
spin_lock_irqsave(&die_lock, flags);
raw_spin_lock_irqsave(&die_lock, flags);
console_verbose();
bust_spinlocks(1);
@ -100,7 +100,7 @@ void die(struct pt_regs *regs, const char *str)
bust_spinlocks(0);
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
spin_unlock_irqrestore(&die_lock, flags);
raw_spin_unlock_irqrestore(&die_lock, flags);
oops_exit();
if (in_interrupt())

View File

@ -33,6 +33,7 @@
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/soc.h>
#include <asm/sparsemem.h>
#include <asm/tlbflush.h>
#include "../kernel/head.h"
@ -62,6 +63,13 @@ EXPORT_SYMBOL(pgtable_l5_enabled);
phys_addr_t phys_ram_base __ro_after_init;
EXPORT_SYMBOL(phys_ram_base);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#define VMEMMAP_ADDR_ALIGN (1ULL << SECTION_SIZE_BITS)
unsigned long vmemmap_start_pfn __ro_after_init;
EXPORT_SYMBOL(vmemmap_start_pfn);
#endif
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
__page_aligned_bss;
EXPORT_SYMBOL(empty_zero_page);
@ -240,8 +248,12 @@ static void __init setup_bootmem(void)
* Make sure we align the start of the memory on a PMD boundary so that
* at worst, we map the linear mapping with PMD mappings.
*/
if (!IS_ENABLED(CONFIG_XIP_KERNEL))
if (!IS_ENABLED(CONFIG_XIP_KERNEL)) {
phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
#ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
#endif
}
/*
* In 64-bit, any use of __va/__pa before this point is wrong as we
@ -1101,6 +1113,9 @@ asmlinkage void __init setup_vm(uintptr_t dtb_pa)
kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
phys_ram_base = CONFIG_PHYS_RAM_BASE;
#ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
#endif
kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);

View File

@ -234,6 +234,8 @@ static unsigned long get_vmem_size(unsigned long identity_size,
vsize = round_up(SZ_2G + max_mappable, rte_size) +
round_up(vmemmap_size, rte_size) +
FIXMAP_SIZE + MODULES_LEN + KASLR_LEN;
if (IS_ENABLED(CONFIG_KMSAN))
vsize += MODULES_LEN * 2;
return size_add(vsize, vmalloc_size);
}

View File

@ -306,7 +306,7 @@ static void pgtable_pte_populate(pmd_t *pmd, unsigned long addr, unsigned long e
pages++;
}
}
if (mode == POPULATE_DIRECT)
if (mode == POPULATE_IDENTITY)
update_page_count(PG_DIRECT_MAP_4K, pages);
}
@ -339,7 +339,7 @@ static void pgtable_pmd_populate(pud_t *pud, unsigned long addr, unsigned long e
}
pgtable_pte_populate(pmd, addr, next, mode);
}
if (mode == POPULATE_DIRECT)
if (mode == POPULATE_IDENTITY)
update_page_count(PG_DIRECT_MAP_1M, pages);
}
@ -372,7 +372,7 @@ static void pgtable_pud_populate(p4d_t *p4d, unsigned long addr, unsigned long e
}
pgtable_pmd_populate(pud, addr, next, mode);
}
if (mode == POPULATE_DIRECT)
if (mode == POPULATE_IDENTITY)
update_page_count(PG_DIRECT_MAP_2G, pages);
}

View File

@ -270,7 +270,7 @@ static ssize_t sys_##_prefix##_##_name##_store(struct kobject *kobj, \
if (len >= sizeof(_value)) \
return -E2BIG; \
len = strscpy(_value, buf, sizeof(_value)); \
if (len < 0) \
if ((ssize_t)len < 0) \
return len; \
strim(_value); \
return len; \

View File

@ -2678,9 +2678,13 @@ static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
kvm_s390_clear_float_irqs(dev->kvm);
break;
case KVM_DEV_FLIC_APF_ENABLE:
if (kvm_is_ucontrol(dev->kvm))
return -EINVAL;
dev->kvm->arch.gmap->pfault_enabled = 1;
break;
case KVM_DEV_FLIC_APF_DISABLE_WAIT:
if (kvm_is_ucontrol(dev->kvm))
return -EINVAL;
dev->kvm->arch.gmap->pfault_enabled = 0;
/*
* Make sure no async faults are in transition when
@ -2894,6 +2898,8 @@ int kvm_set_routing_entry(struct kvm *kvm,
switch (ue->type) {
/* we store the userspace addresses instead of the guest addresses */
case KVM_IRQ_ROUTING_S390_ADAPTER:
if (kvm_is_ucontrol(kvm))
return -EINVAL;
e->set = set_adapter_int;
uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
if (uaddr == -EFAULT)

View File

@ -854,7 +854,7 @@ unpin:
static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
gpa_t gpa)
{
hpa_t hpa = (hpa_t) vsie_page->scb_o;
hpa_t hpa = virt_to_phys(vsie_page->scb_o);
if (hpa)
unpin_guest_page(vcpu->kvm, gpa, hpa);

View File

@ -429,6 +429,16 @@ static struct event_constraint intel_lnc_event_constraints[] = {
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
EVENT_EXTRA_END
};
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
@ -6422,7 +6432,7 @@ static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
intel_pmu_init_glc(pmu);
hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
hybrid(pmu, extra_regs) = intel_rwc_extra_regs;
hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
}
static __always_inline void intel_pmu_init_skt(struct pmu *pmu)

View File

@ -2517,6 +2517,7 @@ void __init intel_ds_init(void)
x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
break;
case 6:
case 5:
x86_pmu.pebs_ept = 1;
fallthrough;

View File

@ -1910,6 +1910,7 @@ static const struct x86_cpu_id intel_uncore_match[] __initconst = {
X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, &adl_uncore_init),
X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, &gnr_uncore_init),
X86_MATCH_VFM(INTEL_ATOM_CRESTMONT, &gnr_uncore_init),
X86_MATCH_VFM(INTEL_ATOM_DARKMONT_X, &gnr_uncore_init),
{},
};
MODULE_DEVICE_TABLE(x86cpu, intel_uncore_match);

View File

@ -452,6 +452,7 @@
#define X86_FEATURE_SME_COHERENT (19*32+10) /* AMD hardware-enforced cache coherency */
#define X86_FEATURE_DEBUG_SWAP (19*32+14) /* "debug_swap" AMD SEV-ES full debug state swap support */
#define X86_FEATURE_SVSM (19*32+28) /* "svsm" SVSM present */
#define X86_FEATURE_HV_INUSE_WR_ALLOWED (19*32+30) /* Allow Write to in-use hypervisor-owned pages */
/* AMD-defined Extended Feature 2 EAX, CPUID level 0x80000021 (EAX), word 20 */
#define X86_FEATURE_NO_NESTED_DATA_BP (20*32+ 0) /* No Nested Data Breakpoints */

View File

@ -230,6 +230,8 @@ static inline unsigned long long l1tf_pfn_limit(void)
return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
}
void init_cpu_devs(void);
void get_cpu_vendor(struct cpuinfo_x86 *c);
extern void early_cpu_init(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
extern void print_cpu_info(struct cpuinfo_x86 *);

View File

@ -65,4 +65,19 @@
extern bool __static_call_fixup(void *tramp, u8 op, void *dest);
extern void __static_call_update_early(void *tramp, void *func);
#define static_call_update_early(name, _func) \
({ \
typeof(&STATIC_CALL_TRAMP(name)) __F = (_func); \
if (static_call_initialized) { \
__static_call_update(&STATIC_CALL_KEY(name), \
STATIC_CALL_TRAMP_ADDR(name), __F);\
} else { \
WRITE_ONCE(STATIC_CALL_KEY(name).func, _func); \
__static_call_update_early(STATIC_CALL_TRAMP_ADDR(name),\
__F); \
} \
})
#endif /* _ASM_STATIC_CALL_H */

View File

@ -8,7 +8,7 @@
#include <asm/special_insns.h>
#ifdef CONFIG_X86_32
static inline void iret_to_self(void)
static __always_inline void iret_to_self(void)
{
asm volatile (
"pushfl\n\t"
@ -19,7 +19,7 @@ static inline void iret_to_self(void)
: ASM_CALL_CONSTRAINT : : "memory");
}
#else
static inline void iret_to_self(void)
static __always_inline void iret_to_self(void)
{
unsigned int tmp;
@ -55,7 +55,7 @@ static inline void iret_to_self(void)
* Like all of Linux's memory ordering operations, this is a
* compiler barrier as well.
*/
static inline void sync_core(void)
static __always_inline void sync_core(void)
{
/*
* The SERIALIZE instruction is the most straightforward way to

View File

@ -39,9 +39,11 @@
#include <linux/string.h>
#include <linux/types.h>
#include <linux/pgtable.h>
#include <linux/instrumentation.h>
#include <trace/events/xen.h>
#include <asm/alternative.h>
#include <asm/page.h>
#include <asm/smap.h>
#include <asm/nospec-branch.h>
@ -86,11 +88,20 @@ struct xen_dm_op_buf;
* there aren't more than 5 arguments...)
*/
extern struct { char _entry[32]; } hypercall_page[];
void xen_hypercall_func(void);
DECLARE_STATIC_CALL(xen_hypercall, xen_hypercall_func);
#define __HYPERCALL "call hypercall_page+%c[offset]"
#define __HYPERCALL_ENTRY(x) \
[offset] "i" (__HYPERVISOR_##x * sizeof(hypercall_page[0]))
#ifdef MODULE
#define __ADDRESSABLE_xen_hypercall
#else
#define __ADDRESSABLE_xen_hypercall __ADDRESSABLE_ASM_STR(__SCK__xen_hypercall)
#endif
#define __HYPERCALL \
__ADDRESSABLE_xen_hypercall \
"call __SCT__xen_hypercall"
#define __HYPERCALL_ENTRY(x) "a" (x)
#ifdef CONFIG_X86_32
#define __HYPERCALL_RETREG "eax"
@ -148,7 +159,7 @@ extern struct { char _entry[32]; } hypercall_page[];
__HYPERCALL_0ARG(); \
asm volatile (__HYPERCALL \
: __HYPERCALL_0PARAM \
: __HYPERCALL_ENTRY(name) \
: __HYPERCALL_ENTRY(__HYPERVISOR_ ## name) \
: __HYPERCALL_CLOBBER0); \
(type)__res; \
})
@ -159,7 +170,7 @@ extern struct { char _entry[32]; } hypercall_page[];
__HYPERCALL_1ARG(a1); \
asm volatile (__HYPERCALL \
: __HYPERCALL_1PARAM \
: __HYPERCALL_ENTRY(name) \
: __HYPERCALL_ENTRY(__HYPERVISOR_ ## name) \
: __HYPERCALL_CLOBBER1); \
(type)__res; \
})
@ -170,7 +181,7 @@ extern struct { char _entry[32]; } hypercall_page[];
__HYPERCALL_2ARG(a1, a2); \
asm volatile (__HYPERCALL \
: __HYPERCALL_2PARAM \
: __HYPERCALL_ENTRY(name) \
: __HYPERCALL_ENTRY(__HYPERVISOR_ ## name) \
: __HYPERCALL_CLOBBER2); \
(type)__res; \
})
@ -181,7 +192,7 @@ extern struct { char _entry[32]; } hypercall_page[];
__HYPERCALL_3ARG(a1, a2, a3); \
asm volatile (__HYPERCALL \
: __HYPERCALL_3PARAM \
: __HYPERCALL_ENTRY(name) \
: __HYPERCALL_ENTRY(__HYPERVISOR_ ## name) \
: __HYPERCALL_CLOBBER3); \
(type)__res; \
})
@ -192,7 +203,7 @@ extern struct { char _entry[32]; } hypercall_page[];
__HYPERCALL_4ARG(a1, a2, a3, a4); \
asm volatile (__HYPERCALL \
: __HYPERCALL_4PARAM \
: __HYPERCALL_ENTRY(name) \
: __HYPERCALL_ENTRY(__HYPERVISOR_ ## name) \
: __HYPERCALL_CLOBBER4); \
(type)__res; \
})
@ -206,12 +217,9 @@ xen_single_call(unsigned int call,
__HYPERCALL_DECLS;
__HYPERCALL_5ARG(a1, a2, a3, a4, a5);
if (call >= PAGE_SIZE / sizeof(hypercall_page[0]))
return -EINVAL;
asm volatile(CALL_NOSPEC
asm volatile(__HYPERCALL
: __HYPERCALL_5PARAM
: [thunk_target] "a" (&hypercall_page[call])
: __HYPERCALL_ENTRY(call)
: __HYPERCALL_CLOBBER5);
return (long)__res;

View File

@ -142,11 +142,6 @@ static bool skip_addr(void *dest)
if (dest >= (void *)relocate_kernel &&
dest < (void*)relocate_kernel + KEXEC_CONTROL_CODE_MAX_SIZE)
return true;
#endif
#ifdef CONFIG_XEN
if (dest >= (void *)hypercall_page &&
dest < (void*)hypercall_page + PAGE_SIZE)
return true;
#endif
return false;
}

View File

@ -81,6 +81,34 @@ static void do_user_cp_fault(struct pt_regs *regs, unsigned long error_code)
static __ro_after_init bool ibt_fatal = true;
/*
* By definition, all missing-ENDBRANCH #CPs are a result of WFE && !ENDBR.
*
* For the kernel IBT no ENDBR selftest where #CPs are deliberately triggered,
* the WFE state of the interrupted context needs to be cleared to let execution
* continue. Otherwise when the CPU resumes from the instruction that just
* caused the previous #CP, another missing-ENDBRANCH #CP is raised and the CPU
* enters a dead loop.
*
* This is not a problem with IDT because it doesn't preserve WFE and IRET doesn't
* set WFE. But FRED provides space on the entry stack (in an expanded CS area)
* to save and restore the WFE state, thus the WFE state is no longer clobbered,
* so software must clear it.
*/
static void ibt_clear_fred_wfe(struct pt_regs *regs)
{
/*
* No need to do any FRED checks.
*
* For IDT event delivery, the high-order 48 bits of CS are pushed
* as 0s into the stack, and later IRET ignores these bits.
*
* For FRED, a test to check if fred_cs.wfe is set would be dropped
* by compilers.
*/
regs->fred_cs.wfe = 0;
}
static void do_kernel_cp_fault(struct pt_regs *regs, unsigned long error_code)
{
if ((error_code & CP_EC) != CP_ENDBR) {
@ -90,6 +118,7 @@ static void do_kernel_cp_fault(struct pt_regs *regs, unsigned long error_code)
if (unlikely(regs->ip == (unsigned long)&ibt_selftest_noendbr)) {
regs->ax = 0;
ibt_clear_fred_wfe(regs);
return;
}
@ -97,6 +126,7 @@ static void do_kernel_cp_fault(struct pt_regs *regs, unsigned long error_code)
if (!ibt_fatal) {
printk(KERN_DEFAULT CUT_HERE);
__warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
ibt_clear_fred_wfe(regs);
return;
}
BUG();

View File

@ -867,7 +867,7 @@ static void cpu_detect_tlb(struct cpuinfo_x86 *c)
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
}
static void get_cpu_vendor(struct cpuinfo_x86 *c)
void get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
int i;
@ -1649,15 +1649,11 @@ static void __init early_identify_cpu(struct cpuinfo_x86 *c)
detect_nopl();
}
void __init early_cpu_init(void)
void __init init_cpu_devs(void)
{
const struct cpu_dev *const *cdev;
int count = 0;
#ifdef CONFIG_PROCESSOR_SELECT
pr_info("KERNEL supported cpus:\n");
#endif
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
const struct cpu_dev *cpudev = *cdev;
@ -1665,20 +1661,30 @@ void __init early_cpu_init(void)
break;
cpu_devs[count] = cpudev;
count++;
}
}
void __init early_cpu_init(void)
{
#ifdef CONFIG_PROCESSOR_SELECT
unsigned int i, j;
pr_info("KERNEL supported cpus:\n");
#endif
init_cpu_devs();
#ifdef CONFIG_PROCESSOR_SELECT
{
unsigned int j;
for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
for (j = 0; j < 2; j++) {
if (!cpudev->c_ident[j])
if (!cpu_devs[i]->c_ident[j])
continue;
pr_info(" %s %s\n", cpudev->c_vendor,
cpudev->c_ident[j]);
pr_info(" %s %s\n", cpu_devs[i]->c_vendor,
cpu_devs[i]->c_ident[j]);
}
}
#endif
}
early_identify_cpu(&boot_cpu_data);
}

View File

@ -223,6 +223,63 @@ static void hv_machine_crash_shutdown(struct pt_regs *regs)
hyperv_cleanup();
}
#endif /* CONFIG_CRASH_DUMP */
static u64 hv_ref_counter_at_suspend;
static void (*old_save_sched_clock_state)(void);
static void (*old_restore_sched_clock_state)(void);
/*
* Hyper-V clock counter resets during hibernation. Save and restore clock
* offset during suspend/resume, while also considering the time passed
* before suspend. This is to make sure that sched_clock using hv tsc page
* based clocksource, proceeds from where it left off during suspend and
* it shows correct time for the timestamps of kernel messages after resume.
*/
static void save_hv_clock_tsc_state(void)
{
hv_ref_counter_at_suspend = hv_read_reference_counter();
}
static void restore_hv_clock_tsc_state(void)
{
/*
* Adjust the offsets used by hv tsc clocksource to
* account for the time spent before hibernation.
* adjusted value = reference counter (time) at suspend
* - reference counter (time) now.
*/
hv_adj_sched_clock_offset(hv_ref_counter_at_suspend - hv_read_reference_counter());
}
/*
* Functions to override save_sched_clock_state and restore_sched_clock_state
* functions of x86_platform. The Hyper-V clock counter is reset during
* suspend-resume and the offset used to measure time needs to be
* corrected, post resume.
*/
static void hv_save_sched_clock_state(void)
{
old_save_sched_clock_state();
save_hv_clock_tsc_state();
}
static void hv_restore_sched_clock_state(void)
{
restore_hv_clock_tsc_state();
old_restore_sched_clock_state();
}
static void __init x86_setup_ops_for_tsc_pg_clock(void)
{
if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
return;
old_save_sched_clock_state = x86_platform.save_sched_clock_state;
x86_platform.save_sched_clock_state = hv_save_sched_clock_state;
old_restore_sched_clock_state = x86_platform.restore_sched_clock_state;
x86_platform.restore_sched_clock_state = hv_restore_sched_clock_state;
}
#endif /* CONFIG_HYPERV */
static uint32_t __init ms_hyperv_platform(void)
@ -579,6 +636,7 @@ static void __init ms_hyperv_init_platform(void)
/* Register Hyper-V specific clocksource */
hv_init_clocksource();
x86_setup_ops_for_tsc_pg_clock();
hv_vtl_init_platform();
#endif
/*

View File

@ -190,7 +190,8 @@ int ssp_get(struct task_struct *target, const struct user_regset *regset,
struct fpu *fpu = &target->thread.fpu;
struct cet_user_state *cetregs;
if (!cpu_feature_enabled(X86_FEATURE_USER_SHSTK))
if (!cpu_feature_enabled(X86_FEATURE_USER_SHSTK) ||
!ssp_active(target, regset))
return -ENODEV;
sync_fpstate(fpu);

View File

@ -172,6 +172,14 @@ void arch_static_call_transform(void *site, void *tramp, void *func, bool tail)
}
EXPORT_SYMBOL_GPL(arch_static_call_transform);
noinstr void __static_call_update_early(void *tramp, void *func)
{
BUG_ON(system_state != SYSTEM_BOOTING);
BUG_ON(static_call_initialized);
__text_gen_insn(tramp, JMP32_INSN_OPCODE, tramp, func, JMP32_INSN_SIZE);
sync_core();
}
#ifdef CONFIG_MITIGATION_RETHUNK
/*
* This is called by apply_returns() to fix up static call trampolines,

View File

@ -519,14 +519,10 @@ INIT_PER_CPU(irq_stack_backing_store);
* linker will never mark as relocatable. (Using just ABSOLUTE() is not
* sufficient for that).
*/
#ifdef CONFIG_XEN
#ifdef CONFIG_XEN_PV
xen_elfnote_entry_value =
ABSOLUTE(xen_elfnote_entry) + ABSOLUTE(startup_xen);
#endif
xen_elfnote_hypercall_page_value =
ABSOLUTE(xen_elfnote_hypercall_page) + ABSOLUTE(hypercall_page);
#endif
#ifdef CONFIG_PVH
xen_elfnote_phys32_entry_value =
ABSOLUTE(xen_elfnote_phys32_entry) + ABSOLUTE(pvh_start_xen - LOAD_OFFSET);

View File

@ -3364,18 +3364,6 @@ static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
return true;
}
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
{
if (fault->exec)
return is_executable_pte(spte);
if (fault->write)
return is_writable_pte(spte);
/* Fault was on Read access */
return spte & PT_PRESENT_MASK;
}
/*
* Returns the last level spte pointer of the shadow page walk for the given
* gpa, and sets *spte to the spte value. This spte may be non-preset. If no

View File

@ -461,6 +461,23 @@ static inline bool is_mmu_writable_spte(u64 spte)
return spte & shadow_mmu_writable_mask;
}
/*
* Returns true if the access indicated by @fault is allowed by the existing
* SPTE protections. Note, the caller is responsible for checking that the
* SPTE is a shadow-present, leaf SPTE (either before or after).
*/
static inline bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
{
if (fault->exec)
return is_executable_pte(spte);
if (fault->write)
return is_writable_pte(spte);
/* Fault was on Read access */
return spte & PT_PRESENT_MASK;
}
/*
* If the MMU-writable flag is cleared, i.e. the SPTE is write-protected for
* write-tracking, remote TLBs must be flushed, even if the SPTE was read-only,

View File

@ -985,6 +985,11 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
if (fault->prefetch && is_shadow_present_pte(iter->old_spte))
return RET_PF_SPURIOUS;
if (is_shadow_present_pte(iter->old_spte) &&
is_access_allowed(fault, iter->old_spte) &&
is_last_spte(iter->old_spte, iter->level))
return RET_PF_SPURIOUS;
if (unlikely(!fault->slot))
new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
else

View File

@ -1199,6 +1199,12 @@ bool avic_hardware_setup(void)
return false;
}
if (cc_platform_has(CC_ATTR_HOST_SEV_SNP) &&
!boot_cpu_has(X86_FEATURE_HV_INUSE_WR_ALLOWED)) {
pr_warn("AVIC disabled: missing HvInUseWrAllowed on SNP-enabled system\n");
return false;
}
if (boot_cpu_has(X86_FEATURE_AVIC)) {
pr_info("AVIC enabled\n");
} else if (force_avic) {

View File

@ -3201,15 +3201,6 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
if (data & ~supported_de_cfg)
return 1;
/*
* Don't let the guest change the host-programmed value. The
* MSR is very model specific, i.e. contains multiple bits that
* are completely unknown to KVM, and the one bit known to KVM
* is simply a reflection of hardware capabilities.
*/
if (!msr->host_initiated && data != svm->msr_decfg)
return 1;
svm->msr_decfg = data;
break;
}

View File

@ -2,7 +2,7 @@
#ifndef __KVM_X86_VMX_POSTED_INTR_H
#define __KVM_X86_VMX_POSTED_INTR_H
#include <linux/find.h>
#include <linux/bitmap.h>
#include <asm/posted_intr.h>
void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu);

View File

@ -9976,7 +9976,7 @@ static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
{
u64 ret = vcpu->run->hypercall.ret;
if (!is_64_bit_mode(vcpu))
if (!is_64_bit_hypercall(vcpu))
ret = (u32)ret;
kvm_rax_write(vcpu, ret);
++vcpu->stat.hypercalls;
@ -12724,6 +12724,13 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
kvm_hv_init_vm(kvm);
kvm_xen_init_vm(kvm);
if (ignore_msrs && !report_ignored_msrs) {
pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
"a supported configuration. Lying to the guest about the existence of MSRs\n"
"may cause the guest operating system to hang or produce errors. If a guest\n"
"does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
}
return 0;
out_uninit_mmu:

View File

@ -2,6 +2,7 @@
#include <linux/console.h>
#include <linux/cpu.h>
#include <linux/instrumentation.h>
#include <linux/kexec.h>
#include <linux/memblock.h>
#include <linux/slab.h>
@ -21,7 +22,8 @@
#include "xen-ops.h"
EXPORT_SYMBOL_GPL(hypercall_page);
DEFINE_STATIC_CALL(xen_hypercall, xen_hypercall_hvm);
EXPORT_STATIC_CALL_TRAMP(xen_hypercall);
/*
* Pointer to the xen_vcpu_info structure or
@ -68,6 +70,67 @@ EXPORT_SYMBOL(xen_start_flags);
*/
struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
static __ref void xen_get_vendor(void)
{
init_cpu_devs();
cpu_detect(&boot_cpu_data);
get_cpu_vendor(&boot_cpu_data);
}
void xen_hypercall_setfunc(void)
{
if (static_call_query(xen_hypercall) != xen_hypercall_hvm)
return;
if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON))
static_call_update(xen_hypercall, xen_hypercall_amd);
else
static_call_update(xen_hypercall, xen_hypercall_intel);
}
/*
* Evaluate processor vendor in order to select the correct hypercall
* function for HVM/PVH guests.
* Might be called very early in boot before vendor has been set by
* early_cpu_init().
*/
noinstr void *__xen_hypercall_setfunc(void)
{
void (*func)(void);
/*
* Xen is supported only on CPUs with CPUID, so testing for
* X86_FEATURE_CPUID is a test for early_cpu_init() having been
* run.
*
* Note that __xen_hypercall_setfunc() is noinstr only due to a nasty
* dependency chain: it is being called via the xen_hypercall static
* call when running as a PVH or HVM guest. Hypercalls need to be
* noinstr due to PV guests using hypercalls in noinstr code. So we
* can safely tag the function body as "instrumentation ok", since
* the PV guest requirement is not of interest here (xen_get_vendor()
* calls noinstr functions, and static_call_update_early() might do
* so, too).
*/
instrumentation_begin();
if (!boot_cpu_has(X86_FEATURE_CPUID))
xen_get_vendor();
if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON))
func = xen_hypercall_amd;
else
func = xen_hypercall_intel;
static_call_update_early(xen_hypercall, func);
instrumentation_end();
return func;
}
static int xen_cpu_up_online(unsigned int cpu)
{
xen_init_lock_cpu(cpu);

View File

@ -106,15 +106,8 @@ static void __init init_hvm_pv_info(void)
/* PVH set up hypercall page in xen_prepare_pvh(). */
if (xen_pvh_domain())
pv_info.name = "Xen PVH";
else {
u64 pfn;
uint32_t msr;
else
pv_info.name = "Xen HVM";
msr = cpuid_ebx(base + 2);
pfn = __pa(hypercall_page);
wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
}
xen_setup_features();
@ -300,6 +293,10 @@ static uint32_t __init xen_platform_hvm(void)
if (xen_pv_domain())
return 0;
/* Set correct hypercall function. */
if (xen_domain)
xen_hypercall_setfunc();
if (xen_pvh_domain() && nopv) {
/* Guest booting via the Xen-PVH boot entry goes here */
pr_info("\"nopv\" parameter is ignored in PVH guest\n");

View File

@ -1341,6 +1341,9 @@ asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
xen_domain_type = XEN_PV_DOMAIN;
xen_start_flags = xen_start_info->flags;
/* Interrupts are guaranteed to be off initially. */
early_boot_irqs_disabled = true;
static_call_update_early(xen_hypercall, xen_hypercall_pv);
xen_setup_features();
@ -1431,7 +1434,6 @@ asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
local_irq_disable();
early_boot_irqs_disabled = true;
xen_raw_console_write("mapping kernel into physical memory\n");
xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,

View File

@ -129,17 +129,10 @@ static void __init pvh_arch_setup(void)
void __init xen_pvh_init(struct boot_params *boot_params)
{
u32 msr;
u64 pfn;
xen_pvh = 1;
xen_domain_type = XEN_HVM_DOMAIN;
xen_start_flags = pvh_start_info.flags;
msr = cpuid_ebx(xen_cpuid_base() + 2);
pfn = __pa(hypercall_page);
wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
x86_init.oem.arch_setup = pvh_arch_setup;
x86_init.oem.banner = xen_banner;

View File

@ -20,9 +20,32 @@
#include <linux/init.h>
#include <linux/linkage.h>
#include <linux/objtool.h>
#include <../entry/calling.h>
.pushsection .noinstr.text, "ax"
/*
* PV hypercall interface to the hypervisor.
*
* Called via inline asm(), so better preserve %rcx and %r11.
*
* Input:
* %eax: hypercall number
* %rdi, %rsi, %rdx, %r10, %r8: args 1..5 for the hypercall
* Output: %rax
*/
SYM_FUNC_START(xen_hypercall_pv)
ANNOTATE_NOENDBR
push %rcx
push %r11
UNWIND_HINT_SAVE
syscall
UNWIND_HINT_RESTORE
pop %r11
pop %rcx
RET
SYM_FUNC_END(xen_hypercall_pv)
/*
* Disabling events is simply a matter of making the event mask
* non-zero.
@ -176,7 +199,6 @@ SYM_CODE_START(xen_early_idt_handler_array)
SYM_CODE_END(xen_early_idt_handler_array)
__FINIT
hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32
/*
* Xen64 iret frame:
*
@ -186,17 +208,28 @@ hypercall_iret = hypercall_page + __HYPERVISOR_iret * 32
* cs
* rip <-- standard iret frame
*
* flags
* flags <-- xen_iret must push from here on
*
* rcx }
* r11 }<-- pushed by hypercall page
* rsp->rax }
* rcx
* r11
* rsp->rax
*/
.macro xen_hypercall_iret
pushq $0 /* Flags */
push %rcx
push %r11
push %rax
mov $__HYPERVISOR_iret, %eax
syscall /* Do the IRET. */
#ifdef CONFIG_MITIGATION_SLS
int3
#endif
.endm
SYM_CODE_START(xen_iret)
UNWIND_HINT_UNDEFINED
ANNOTATE_NOENDBR
pushq $0
jmp hypercall_iret
xen_hypercall_iret
SYM_CODE_END(xen_iret)
/*
@ -301,8 +334,7 @@ SYM_CODE_START(xen_entry_SYSENTER_compat)
ENDBR
lea 16(%rsp), %rsp /* strip %rcx, %r11 */
mov $-ENOSYS, %rax
pushq $0
jmp hypercall_iret
xen_hypercall_iret
SYM_CODE_END(xen_entry_SYSENTER_compat)
SYM_CODE_END(xen_entry_SYSCALL_compat)

View File

@ -6,9 +6,11 @@
#include <linux/elfnote.h>
#include <linux/init.h>
#include <linux/instrumentation.h>
#include <asm/boot.h>
#include <asm/asm.h>
#include <asm/frame.h>
#include <asm/msr.h>
#include <asm/page_types.h>
#include <asm/percpu.h>
@ -20,28 +22,6 @@
#include <xen/interface/xen-mca.h>
#include <asm/xen/interface.h>
.pushsection .noinstr.text, "ax"
.balign PAGE_SIZE
SYM_CODE_START(hypercall_page)
.rept (PAGE_SIZE / 32)
UNWIND_HINT_FUNC
ANNOTATE_NOENDBR
ANNOTATE_UNRET_SAFE
ret
/*
* Xen will write the hypercall page, and sort out ENDBR.
*/
.skip 31, 0xcc
.endr
#define HYPERCALL(n) \
.equ xen_hypercall_##n, hypercall_page + __HYPERVISOR_##n * 32; \
.type xen_hypercall_##n, @function; .size xen_hypercall_##n, 32
#include <asm/xen-hypercalls.h>
#undef HYPERCALL
SYM_CODE_END(hypercall_page)
.popsection
#ifdef CONFIG_XEN_PV
__INIT
SYM_CODE_START(startup_xen)
@ -87,6 +67,87 @@ SYM_CODE_END(xen_cpu_bringup_again)
#endif
#endif
.pushsection .noinstr.text, "ax"
/*
* Xen hypercall interface to the hypervisor.
*
* Input:
* %eax: hypercall number
* 32-bit:
* %ebx, %ecx, %edx, %esi, %edi: args 1..5 for the hypercall
* 64-bit:
* %rdi, %rsi, %rdx, %r10, %r8: args 1..5 for the hypercall
* Output: %[er]ax
*/
SYM_FUNC_START(xen_hypercall_hvm)
ENDBR
FRAME_BEGIN
/* Save all relevant registers (caller save and arguments). */
#ifdef CONFIG_X86_32
push %eax
push %ebx
push %ecx
push %edx
push %esi
push %edi
#else
push %rax
push %rcx
push %rdx
push %rdi
push %rsi
push %r11
push %r10
push %r9
push %r8
#ifdef CONFIG_FRAME_POINTER
pushq $0 /* Dummy push for stack alignment. */
#endif
#endif
/* Set the vendor specific function. */
call __xen_hypercall_setfunc
/* Set ZF = 1 if AMD, Restore saved registers. */
#ifdef CONFIG_X86_32
lea xen_hypercall_amd, %ebx
cmp %eax, %ebx
pop %edi
pop %esi
pop %edx
pop %ecx
pop %ebx
pop %eax
#else
lea xen_hypercall_amd(%rip), %rbx
cmp %rax, %rbx
#ifdef CONFIG_FRAME_POINTER
pop %rax /* Dummy pop. */
#endif
pop %r8
pop %r9
pop %r10
pop %r11
pop %rsi
pop %rdi
pop %rdx
pop %rcx
pop %rax
#endif
/* Use correct hypercall function. */
jz xen_hypercall_amd
jmp xen_hypercall_intel
SYM_FUNC_END(xen_hypercall_hvm)
SYM_FUNC_START(xen_hypercall_amd)
vmmcall
RET
SYM_FUNC_END(xen_hypercall_amd)
SYM_FUNC_START(xen_hypercall_intel)
vmcall
RET
SYM_FUNC_END(xen_hypercall_intel)
.popsection
ELFNOTE(Xen, XEN_ELFNOTE_GUEST_OS, .asciz "linux")
ELFNOTE(Xen, XEN_ELFNOTE_GUEST_VERSION, .asciz "2.6")
ELFNOTE(Xen, XEN_ELFNOTE_XEN_VERSION, .asciz "xen-3.0")
@ -116,8 +177,6 @@ SYM_CODE_END(xen_cpu_bringup_again)
#else
# define FEATURES_DOM0 0
#endif
ELFNOTE(Xen, XEN_ELFNOTE_HYPERCALL_PAGE, .globl xen_elfnote_hypercall_page;
xen_elfnote_hypercall_page: _ASM_PTR xen_elfnote_hypercall_page_value - .)
ELFNOTE(Xen, XEN_ELFNOTE_SUPPORTED_FEATURES,
.long FEATURES_PV | FEATURES_PVH | FEATURES_DOM0)
ELFNOTE(Xen, XEN_ELFNOTE_LOADER, .asciz "generic")

View File

@ -326,4 +326,13 @@ static inline void xen_smp_intr_free_pv(unsigned int cpu) {}
static inline void xen_smp_count_cpus(void) { }
#endif /* CONFIG_SMP */
#ifdef CONFIG_XEN_PV
void xen_hypercall_pv(void);
#endif
void xen_hypercall_hvm(void);
void xen_hypercall_amd(void);
void xen_hypercall_intel(void);
void xen_hypercall_setfunc(void);
void *__xen_hypercall_setfunc(void);
#endif /* XEN_OPS_H */

View File

@ -155,8 +155,7 @@ int set_blocksize(struct file *file, int size)
struct inode *inode = file->f_mapping->host;
struct block_device *bdev = I_BDEV(inode);
/* Size must be a power of two, and between 512 and PAGE_SIZE */
if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
if (blk_validate_block_size(size))
return -EINVAL;
/* Size cannot be smaller than the size supported by the device */

View File

@ -6844,16 +6844,24 @@ static struct bfq_queue *bfq_waker_bfqq(struct bfq_queue *bfqq)
if (new_bfqq == waker_bfqq) {
/*
* If waker_bfqq is in the merge chain, and current
* is the only procress.
* is the only process, waker_bfqq can be freed.
*/
if (bfqq_process_refs(waker_bfqq) == 1)
return NULL;
break;
return waker_bfqq;
}
new_bfqq = new_bfqq->new_bfqq;
}
/*
* If waker_bfqq is not in the merge chain, and it's procress reference
* is 0, waker_bfqq can be freed.
*/
if (bfqq_process_refs(waker_bfqq) == 0)
return NULL;
return waker_bfqq;
}

View File

@ -275,13 +275,15 @@ void blk_mq_sysfs_unregister_hctxs(struct request_queue *q)
struct blk_mq_hw_ctx *hctx;
unsigned long i;
lockdep_assert_held(&q->sysfs_dir_lock);
mutex_lock(&q->sysfs_dir_lock);
if (!q->mq_sysfs_init_done)
return;
goto unlock;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_unregister_hctx(hctx);
unlock:
mutex_unlock(&q->sysfs_dir_lock);
}
int blk_mq_sysfs_register_hctxs(struct request_queue *q)
@ -290,10 +292,9 @@ int blk_mq_sysfs_register_hctxs(struct request_queue *q)
unsigned long i;
int ret = 0;
lockdep_assert_held(&q->sysfs_dir_lock);
mutex_lock(&q->sysfs_dir_lock);
if (!q->mq_sysfs_init_done)
return ret;
goto unlock;
queue_for_each_hw_ctx(q, hctx, i) {
ret = blk_mq_register_hctx(hctx);
@ -301,5 +302,8 @@ int blk_mq_sysfs_register_hctxs(struct request_queue *q)
break;
}
unlock:
mutex_unlock(&q->sysfs_dir_lock);
return ret;
}

View File

@ -4412,6 +4412,15 @@ struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
}
EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
/*
* Only hctx removed from cpuhp list can be reused
*/
static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
{
return hlist_unhashed(&hctx->cpuhp_online) &&
hlist_unhashed(&hctx->cpuhp_dead);
}
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
struct blk_mq_tag_set *set, struct request_queue *q,
int hctx_idx, int node)
@ -4421,7 +4430,7 @@ static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
/* reuse dead hctx first */
spin_lock(&q->unused_hctx_lock);
list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
if (tmp->numa_node == node) {
if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
hctx = tmp;
break;
}
@ -4453,8 +4462,7 @@ static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
unsigned long i, j;
/* protect against switching io scheduler */
lockdep_assert_held(&q->sysfs_lock);
mutex_lock(&q->sysfs_lock);
for (i = 0; i < set->nr_hw_queues; i++) {
int old_node;
int node = blk_mq_get_hctx_node(set, i);
@ -4487,6 +4495,7 @@ static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
xa_for_each_start(&q->hctx_table, j, hctx, j)
blk_mq_exit_hctx(q, set, hctx, j);
mutex_unlock(&q->sysfs_lock);
/* unregister cpuhp callbacks for exited hctxs */
blk_mq_remove_hw_queues_cpuhp(q);
@ -4518,14 +4527,10 @@ int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
xa_init(&q->hctx_table);
mutex_lock(&q->sysfs_lock);
blk_mq_realloc_hw_ctxs(set, q);
if (!q->nr_hw_queues)
goto err_hctxs;
mutex_unlock(&q->sysfs_lock);
INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
@ -4544,7 +4549,6 @@ int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
return 0;
err_hctxs:
mutex_unlock(&q->sysfs_lock);
blk_mq_release(q);
err_exit:
q->mq_ops = NULL;
@ -4925,12 +4929,12 @@ static bool blk_mq_elv_switch_none(struct list_head *head,
return false;
/* q->elevator needs protection from ->sysfs_lock */
lockdep_assert_held(&q->sysfs_lock);
mutex_lock(&q->sysfs_lock);
/* the check has to be done with holding sysfs_lock */
if (!q->elevator) {
kfree(qe);
goto out;
goto unlock;
}
INIT_LIST_HEAD(&qe->node);
@ -4940,7 +4944,9 @@ static bool blk_mq_elv_switch_none(struct list_head *head,
__elevator_get(qe->type);
list_add(&qe->node, head);
elevator_disable(q);
out:
unlock:
mutex_unlock(&q->sysfs_lock);
return true;
}
@ -4969,9 +4975,11 @@ static void blk_mq_elv_switch_back(struct list_head *head,
list_del(&qe->node);
kfree(qe);
mutex_lock(&q->sysfs_lock);
elevator_switch(q, t);
/* drop the reference acquired in blk_mq_elv_switch_none */
elevator_put(t);
mutex_unlock(&q->sysfs_lock);
}
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
@ -4991,11 +4999,8 @@ static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
return;
list_for_each_entry(q, &set->tag_list, tag_set_list) {
mutex_lock(&q->sysfs_dir_lock);
mutex_lock(&q->sysfs_lock);
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_freeze_queue(q);
}
/*
* Switch IO scheduler to 'none', cleaning up the data associated
* with the previous scheduler. We will switch back once we are done
@ -5051,11 +5056,8 @@ switch_back:
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_elv_switch_back(&head, q);
list_for_each_entry(q, &set->tag_list, tag_set_list) {
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_unfreeze_queue(q);
mutex_unlock(&q->sysfs_lock);
mutex_unlock(&q->sysfs_dir_lock);
}
/* Free the excess tags when nr_hw_queues shrink. */
for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)

View File

@ -706,11 +706,11 @@ queue_attr_store(struct kobject *kobj, struct attribute *attr,
if (entry->load_module)
entry->load_module(disk, page, length);
mutex_lock(&q->sysfs_lock);
blk_mq_freeze_queue(q);
mutex_lock(&q->sysfs_lock);
res = entry->store(disk, page, length);
blk_mq_unfreeze_queue(q);
mutex_unlock(&q->sysfs_lock);
blk_mq_unfreeze_queue(q);
return res;
}

View File

@ -409,7 +409,7 @@ static void ivpu_bo_print_info(struct ivpu_bo *bo, struct drm_printer *p)
mutex_lock(&bo->lock);
drm_printf(p, "%-9p %-3u 0x%-12llx %-10lu 0x%-8x %-4u",
bo, bo->ctx->id, bo->vpu_addr, bo->base.base.size,
bo, bo->ctx ? bo->ctx->id : 0, bo->vpu_addr, bo->base.base.size,
bo->flags, kref_read(&bo->base.base.refcount));
if (bo->base.pages)

View File

@ -612,18 +612,22 @@ int ivpu_mmu_reserved_context_init(struct ivpu_device *vdev)
if (!ivpu_mmu_ensure_pgd(vdev, &vdev->rctx.pgtable)) {
ivpu_err(vdev, "Failed to allocate root page table for reserved context\n");
ret = -ENOMEM;
goto unlock;
goto err_ctx_fini;
}
ret = ivpu_mmu_cd_set(vdev, vdev->rctx.id, &vdev->rctx.pgtable);
if (ret) {
ivpu_err(vdev, "Failed to set context descriptor for reserved context\n");
goto unlock;
goto err_ctx_fini;
}
unlock:
mutex_unlock(&vdev->rctx.lock);
return ret;
err_ctx_fini:
mutex_unlock(&vdev->rctx.lock);
ivpu_mmu_context_fini(vdev, &vdev->rctx);
return ret;
}
void ivpu_mmu_reserved_context_fini(struct ivpu_device *vdev)

Some files were not shown because too many files have changed in this diff Show More