Cgroup-level CPU statistics currently include time spent on
user/system processes, but do not include niced CPU time (despite
already being tracked). This patch exposes niced CPU time to the
userspace, allowing users to get a better understanding of their
hardware limits and can facilitate more informed workload distribution.
A new field 'ntime' is added to struct cgroup_base_stat as opposed to
struct task_cputime to minimize footprint.
Signed-off-by: Joshua Hahn <joshua.hahnjy@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In the function cgroup_base_stat_cputime_show, there are five
instances of #ifdef, which makes the code not concise.
To address this, add the function cgroup_force_idle_show
to make the code more succinct.
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This closely resembles helpers added for the global cgroup_rstat_lock in
commit fc29e04ae1ad ("cgroup/rstat: add cgroup_rstat_lock helpers and
tracepoints"). This is for the per CPU lock cgroup_rstat_cpu_lock.
Based on production workloads, we observe the fast-path "update" function
cgroup_rstat_updated() is invoked around 3 million times per sec, while the
"flush" function cgroup_rstat_flush_locked(), walking each possible CPU,
can see periodic spikes of 700 invocations/sec.
For this reason, the tracepoints are split into normal and fastpath
versions for this per-CPU lock. Making it feasible for production to
continuously monitor the non-fastpath tracepoint to detect lock contention
issues. The reason for monitoring is that lock disables IRQs which can
disturb e.g. softirq processing on the local CPUs involved. When the
global cgroup_rstat_lock stops disabling IRQs (e.g converted to a mutex),
this per CPU lock becomes the next bottleneck that can introduce latency
variations.
A practical bpftrace script for monitoring contention latency:
bpftrace -e '
tracepoint:cgroup:cgroup_rstat_cpu_lock_contended {
@start[tid]=nsecs; @cnt[probe]=count()}
tracepoint:cgroup:cgroup_rstat_cpu_locked {
if (args->contended) {
@wait_ns=hist(nsecs-@start[tid]); delete(@start[tid]);}
@cnt[probe]=count()}
interval:s:1 {time("%H:%M:%S "); print(@wait_ns); print(@cnt); clear(@cnt);}'
Signed-off-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Recent change to cgroup_rstat_flush_release added a
parameter cgrp, which is used by tracepoint to correlate
with other tracepoints that also have this cgrp.
The kernel test robot detected kernel doc was missing
a description of this member.
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202404170821.HwZGISTY-lkp@intel.com/
Signed-off-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
This commit enhances the ability to troubleshoot the global
cgroup_rstat_lock by introducing wrapper helper functions for the lock
along with associated tracepoints.
Although global, the cgroup_rstat_lock helper APIs and tracepoints take
arguments such as cgroup pointer and cpu_in_loop variable. This
adjustment is made because flushing occurs per cgroup despite the lock
being global. Hence, when troubleshooting, it's important to identify the
relevant cgroup. The cpu_in_loop variable is necessary because the global
lock may be released within the main flushing loop that traverses CPUs.
In the tracepoints, the cpu_in_loop value is set to -1 when acquiring the
main lock; otherwise, it denotes the CPU number processed last.
The new feature in this patchset is detecting when lock is contended. The
tracepoints are implemented with production in mind. For minimum overhead
attach to cgroup:cgroup_rstat_lock_contended, which only gets activated
when trylock detects lock is contended. A quick production check for
issues could be done via this perf commands:
perf record -g -e cgroup:cgroup_rstat_lock_contended
Next natural question would be asking how long time do lock contenders
wait for obtaining the lock. This can be answered by measuring the time
between cgroup:cgroup_rstat_lock_contended and cgroup:cgroup_rstat_locked
when args->contended is set. Like this bpftrace script:
bpftrace -e '
tracepoint:cgroup:cgroup_rstat_lock_contended {@start[tid]=nsecs}
tracepoint:cgroup:cgroup_rstat_locked {
if (args->contended) {
@wait_ns=hist(nsecs-@start[tid]); delete(@start[tid]);}}
interval:s:1 {time("%H:%M:%S "); print(@wait_ns); }'
Extending with time spend holding the lock will be more expensive as this
also looks at all the non-contended cases.
Like this bpftrace script:
bpftrace -e '
tracepoint:cgroup:cgroup_rstat_lock_contended {@start[tid]=nsecs}
tracepoint:cgroup:cgroup_rstat_locked { @locked[tid]=nsecs;
if (args->contended) {
@wait_ns=hist(nsecs-@start[tid]); delete(@start[tid]);}}
tracepoint:cgroup:cgroup_rstat_unlock {
@locked_ns=hist(nsecs-@locked[tid]); delete(@locked[tid]);}
interval:s:1 {time("%H:%M:%S "); print(@wait_ns);print(@locked_ns); }'
Signed-off-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
This commit marks kfuncs as such inside the .BTF_ids section. The upshot
of these annotations is that we'll be able to automatically generate
kfunc prototypes for downstream users. The process is as follows:
1. In source, use BTF_KFUNCS_START/END macro pair to mark kfuncs
2. During build, pahole injects into BTF a "bpf_kfunc" BTF_DECL_TAG for
each function inside BTF_KFUNCS sets
3. At runtime, vmlinux or module BTF is made available in sysfs
4. At runtime, bpftool (or similar) can look at provided BTF and
generate appropriate prototypes for functions with "bpf_kfunc" tag
To ensure future kfunc are similarly tagged, we now also return error
inside kfunc registration for untagged kfuncs. For vmlinux kfuncs,
we also WARN(), as initcall machinery does not handle errors.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/e55150ceecbf0a5d961e608941165c0bee7bc943.1706491398.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
- Yafang Shao added task_get_cgroup1() helper to enable a similar BPF helper
so that BPF progs can be more useful on cgroup1 hierarchies. While cgroup1
is mostly in maintenance mode, this addition is very small while having an
outsized usefulness for users who are still on cgroup1. Yafang also
optimized root cgroup list access by making it RCU protected in the
process.
- Waiman Long optimized rstat operation leading to substantially lower and
more consistent lock hold time while flushing the hierarchical statistics.
As the lock can be acquired briefly in various hot paths, this reduction
has cascading benefits.
- Waiman also improved the quality of isolation for cpuset's isolated
partitions. CPUs which are allocated to isolated partitions are now
excluded from running unbound work items and cpu_is_isolated() test which
is used by vmstat and memcg to reduce interference now includes cpuset
isolated CPUs. While it isn't there yet, the hope is eventually reaching
parity with the isolation level provided by the `isolcpus` boot param but
in a dynamic manner.
This involved a couple workqueue patches which were applied directly to
cgroup/for-6.8 rather than ping-ponged through the wq tree. This was
because the wq code change was small and the area is usually very static
and unlikely to cause conflicts. However, luck had it that there was a wq
bug fix in the area during the 6.7 cycle which caused a conflict. The
conflict is contextual but can be a bit confusing to resolve, so there is
one merge from wq/for-6.7-fixes.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZYnuJg4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGQ5kAP9nMMWqi+R1HeG7+hWROTVjQZ0OM9KRcpZ1TmjF
FNbkJgEAzt+sPnoWwYDTSI7pkNeZ/IM7x1qkkKGvENNtUXrz0Ac=
=PyYN
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
- Yafang Shao added task_get_cgroup1() helper to enable a similar BPF
helper so that BPF progs can be more useful on cgroup1 hierarchies.
While cgroup1 is mostly in maintenance mode, this addition is very
small while having an outsized usefulness for users who are still on
cgroup1. Yafang also optimized root cgroup list access by making it
RCU protected in the process.
- Waiman Long optimized rstat operation leading to substantially lower
and more consistent lock hold time while flushing the hierarchical
statistics. As the lock can be acquired briefly in various hot paths,
this reduction has cascading benefits.
- Waiman also improved the quality of isolation for cpuset's isolated
partitions. CPUs which are allocated to isolated partitions are now
excluded from running unbound work items and cpu_is_isolated() test
which is used by vmstat and memcg to reduce interference now includes
cpuset isolated CPUs. While it isn't there yet, the hope is
eventually reaching parity with the isolation level provided by the
`isolcpus` boot param but in a dynamic manner.
* tag 'cgroup-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Move rcu_head up near the top of cgroup_root
cgroup/cpuset: Include isolated cpuset CPUs in cpu_is_isolated() check
cgroup: Avoid false cacheline sharing of read mostly rstat_cpu
cgroup/rstat: Optimize cgroup_rstat_updated_list()
cgroup: Fix documentation for cpu.idle
cgroup/cpuset: Expose cpuset.cpus.isolated
workqueue: Move workqueue_set_unbound_cpumask() and its helpers inside CONFIG_SYSFS
cgroup/rstat: Reduce cpu_lock hold time in cgroup_rstat_flush_locked()
cgroup/cpuset: Take isolated CPUs out of workqueue unbound cpumask
cgroup/cpuset: Keep track of CPUs in isolated partitions
selftests/cgroup: Minor code cleanup and reorganization of test_cpuset_prs.sh
workqueue: Add workqueue_unbound_exclude_cpumask() to exclude CPUs from wq_unbound_cpumask
selftests: cgroup: Fixes a typo in a comment
cgroup: Add a new helper for cgroup1 hierarchy
cgroup: Add annotation for holding namespace_sem in current_cgns_cgroup_from_root()
cgroup: Eliminate the need for cgroup_mutex in proc_cgroup_show()
cgroup: Make operations on the cgroup root_list RCU safe
cgroup: Remove unnecessary list_empty()
The current design of cgroup_rstat_cpu_pop_updated() is to traverse
the updated tree in a way to pop out the leaf nodes first before
their parents. This can cause traversal of multiple nodes before a
leaf node can be found and popped out. IOW, a given node in the tree
can be visited multiple times before the whole operation is done. So
it is not very efficient and the code can be hard to read.
With the introduction of cgroup_rstat_updated_list() to build a list
of cgroups to be flushed first before any flushing operation is being
done, we can optimize the way the updated tree nodes are being popped
by pushing the parents first to the tail end of the list before their
children. In this way, most updated tree nodes will be visited only
once with the exception of the subtree root as we still need to go
back to its parent and popped it out of its updated_children list.
This also makes the code easier to read.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When cgroup_rstat_updated() isn't being called concurrently with
cgroup_rstat_flush_locked(), its run time is pretty short. When
both are called concurrently, the cgroup_rstat_updated() run time
can spike to a pretty high value due to high cpu_lock hold time in
cgroup_rstat_flush_locked(). This can be problematic if the task calling
cgroup_rstat_updated() is a realtime task running on an isolated CPU
with a strict latency requirement. The cgroup_rstat_updated() call can
happen when there is a page fault even though the task is running in
user space most of the time.
The percpu cpu_lock is used to protect the update tree -
updated_next and updated_children. This protection is only needed when
cgroup_rstat_cpu_pop_updated() is being called. The subsequent flushing
operation which can take a much longer time does not need that protection
as it is already protected by cgroup_rstat_lock.
To reduce the cpu_lock hold time, we need to perform all the
cgroup_rstat_cpu_pop_updated() calls up front with the lock
released afterward before doing any flushing. This patch adds a new
cgroup_rstat_updated_list() function to return a singly linked list of
cgroups to be flushed.
Some instrumentation code are added to measure the cpu_lock hold time
right after lock acquisition to after releasing the lock. Parallel
kernel build on a 2-socket x86-64 server is used as the benchmarking
tool for measuring the lock hold time.
The maximum cpu_lock hold time before and after the patch are 100us and
29us respectively. So the worst case time is reduced to about 30% of
the original. However, there may be some OS or hardware noises like NMI
or SMI in the test system that can worsen the worst case value. Those
noises are usually tuned out in a real production environment to get
a better result.
OTOH, the lock hold time frequency distribution should give a better
idea of the performance benefit of the patch. Below were the frequency
distribution before and after the patch:
Hold time Before patch After patch
--------- ------------ -----------
0-01 us 804,139 13,738,708
01-05 us 9,772,767 1,177,194
05-10 us 4,595,028 4,984
10-15 us 303,481 3,562
15-20 us 78,971 1,314
20-25 us 24,583 18
25-30 us 6,908 12
30-40 us 8,015
40-50 us 2,192
50-60 us 316
60-70 us 43
70-80 us 7
80-90 us 2
>90 us 3
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Not all uses of __diag_ignore_all(...) in BPF-related code in order to
suppress warnings are wrapping kfunc definitions. Some "hook point"
definitions - small functions meant to be used as attach points for
fentry and similar BPF progs - need to suppress -Wmissing-declarations.
We could use __bpf_kfunc_{start,end}_defs added in the previous patch in
such cases, but this might be confusing to someone unfamiliar with BPF
internals. Instead, this patch adds __bpf_hook_{start,end} macros,
currently having the same effect as __bpf_kfunc_{start,end}_defs, then
uses them to suppress warnings for two hook points in the kernel itself
and some bpf_testmod hook points as well.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20231031215625.2343848-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The member variable bstat of the structure cgroup_rstat_cpu
records the per-cpu time of the cgroup itself, but does not
include the per-cpu time of its descendants. The per-cpu time
including descendants is very useful for calculating the
per-cpu usage of cgroups.
Although we can indirectly obtain the total per-cpu time
of the cgroup and its descendants by accumulating the per-cpu
bstat of each descendant of the cgroup. But after a child cgroup
is removed, we will lose its bstat information. This will cause
the cumulative value to be non-monotonic, thus affecting
the accuracy of cgroup per-cpu usage.
So we add the subtree_bstat variable to record the total
per-cpu time of this cgroup and its descendants, which is
similar to "cpuacct.usage*" in cgroup v1. And this is
also helpful for the migration from cgroup v1 to cgroup v2.
After adding this variable, we can obtain the per-cpu time of
cgroup and its descendants in user mode through eBPF/drgn, etc.
And we are still trying to determine how to expose it in the
cgroupfs interface.
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Previous patches removed the only caller of cgroup_rstat_flush_atomic().
Remove the function and simplify the code.
Link: https://lkml.kernel.org/r/20230421174020.2994750-6-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page().
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
than exclusive, and has fixed a bunch of errors which were caused by its
unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
=J+Dj
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
Patch series "memcg: avoid flushing stats atomically where possible", v3.
rstat flushing is an expensive operation that scales with the number of
cpus and the number of cgroups in the system. The purpose of this series
is to minimize the contexts where we flush stats atomically.
Patches 1 and 2 are cleanups requested during reviews of prior versions of
this series.
Patch 3 makes sure we never try to flush from within an irq context.
Patches 4 to 7 introduce separate variants of mem_cgroup_flush_stats() for
atomic and non-atomic flushing, and make sure we only flush the stats
atomically when necessary.
Patch 8 is a slightly tangential optimization that limits the work done by
rstat flushing in some scenarios.
This patch (of 8):
cgroup_rstat_flush_irqsafe() can be a confusing name. It may read as
"irqs are disabled throughout", which is what the current implementation
does (currently under discussion [1]), but is not the intention. The
intention is that this function is safe to call from atomic contexts.
Name it as such.
Link: https://lkml.kernel.org/r/20230330191801.1967435-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20230330191801.1967435-2-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We need to reset forceidle_sum to 0 when reading from root, since the
bstat we accumulate into is stack allocated.
To make this more robust, just replace the existing cputime reset with a
memset of the overall bstat.
Signed-off-by: Josh Don <joshdon@google.com>
Fixes: 1fcf54deb767 ("sched/core: add forced idle accounting for cgroups")
Cc: stable@vger.kernel.org # v6.0+
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that we have the __bpf_kfunc tag, we should use add it to all
existing kfuncs to ensure that they'll never be elided in LTO builds.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230201173016.342758-4-void@manifault.com
Enable bpf programs to make use of rstat to collect cgroup hierarchical
stats efficiently:
- Add cgroup_rstat_updated() kfunc, for bpf progs that collect stats.
- Add cgroup_rstat_flush() sleepable kfunc, for bpf progs that read stats.
- Add an empty bpf_rstat_flush() hook that is called during rstat
flushing, for bpf progs that flush stats to attach to. Attaching a bpf
prog to this hook effectively registers it as a flush callback.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220824233117.1312810-4-haoluo@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
4feee7d1260 previously added per-task forced idle accounting. This patch
extends this to also include cgroups.
rstat is used for cgroup accounting, except for the root, which uses
kcpustat in order to bypass the need for doing an rstat flush when
reading root stats.
Only cgroup v2 is supported. Similar to the task accounting, the cgroup
accounting requires that schedstats is enabled.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20220629211426.3329954-1-joshdon@google.com
Merge more updates from Andrew Morton:
"Various misc subsystems, before getting into the post-linux-next
material.
41 patches.
Subsystems affected by this patch series: procfs, misc, core-kernel,
lib, checkpatch, init, pipe, minix, fat, cgroups, kexec, kdump,
taskstats, panic, kcov, resource, and ubsan"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (41 commits)
Revert "ubsan, kcsan: Don't combine sanitizer with kcov on clang"
kernel/resource: fix kfree() of bootmem memory again
kcov: properly handle subsequent mmap calls
kcov: split ioctl handling into locked and unlocked parts
panic: move panic_print before kmsg dumpers
panic: add option to dump all CPUs backtraces in panic_print
docs: sysctl/kernel: add missing bit to panic_print
taskstats: remove unneeded dead assignment
kasan: no need to unset panic_on_warn in end_report()
ubsan: no need to unset panic_on_warn in ubsan_epilogue()
panic: unset panic_on_warn inside panic()
docs: kdump: add scp example to write out the dump file
docs: kdump: update description about sysfs file system support
arm64: mm: use IS_ENABLED(CONFIG_KEXEC_CORE) instead of #ifdef
x86/setup: use IS_ENABLED(CONFIG_KEXEC_CORE) instead of #ifdef
riscv: mm: init: use IS_ENABLED(CONFIG_KEXEC_CORE) instead of #ifdef
kexec: make crashk_res, crashk_low_res and crash_notes symbols always visible
cgroup: use irqsave in cgroup_rstat_flush_locked().
fat: use pointer to simple type in put_user()
minix: fix bug when opening a file with O_DIRECT
...
All callers of cgroup_rstat_flush_locked() acquire cgroup_rstat_lock
either with spin_lock_irq() or spin_lock_irqsave().
cgroup_rstat_flush_locked() itself acquires cgroup_rstat_cpu_lock which
is a raw_spin_lock. This lock is also acquired in
cgroup_rstat_updated() in IRQ context and therefore requires _irqsave()
locking suffix in cgroup_rstat_flush_locked().
Since there is no difference between spin_lock_t and raw_spin_lock_t on
!RT lockdep does not complain here. On RT lockdep complains because the
interrupts were not disabled here and a deadlock is possible.
Acquire the raw_spin_lock_t with disabled interrupts.
Link: https://lkml.kernel.org/r/20220301122143.1521823-2-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zefan Li <lizefan.x@bytedance.com>
From: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Subject: cgroup: add a comment to cgroup_rstat_flush_locked().
Add a comment why spin_lock_irq() -> raw_spin_lock_irqsave() is needed.
Link: https://lkml.kernel.org/r/Yh+DOK73hfVV5ThX@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of retrieve current bstat to cur and copy it to delta, let's use
delta directly.
This saves one copy operation and has the same code convention as
propagating delta to parent.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In function cgroup_base_stat_flush(), we update cgroup_base_stat by
getting rstatc->bstat and adjust delta to related fields.
There are two convention to assign cgroup_base_stat in this function:
* rstat2 = rstat1
* rstat2.cputime = rstat1.cputime
The second convention may make audience think just field "cputime" is
updated, while cputime is the only field in cgroup_base_stat.
Let's use the same convention to eliminate this confusion.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
After commit dc26532aed0a ("cgroup: rstat: punt root-level optimization to
individual controllers"), each rstat on updated_children list has its
->updated_next not NULL.
This means we can remove the check on ->updated_next, if we make sure
the subtree from @root is on list, which could be done by checking
updated_next for root.
tj: Coding style fixes.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Instead of do while unconditionally, let's put the loop variant in
while.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
There is a race between updaters and flushers (flush can possibly miss
the latest update(s)). This is expected as explained in
cgroup_rstat_updated() comment, add also machine readable annotation so
that KCSAN results aren't noisy.
Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/r/CACkBjsbPVdkub=e-E-p1WBOLxS515ith-53SFdmFHWV_QMo40w@mail.gmail.com
Suggested-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In account_guest_time in kernel/sched/cputime.c guest time is
attributed to both CPUTIME_NICE and CPUTIME_USER in addition to
CPUTIME_GUEST_NICE and CPUTIME_GUEST respectively. Therefore, adding
both to calculate usage results in double counting any guest time at
the rootcg.
Fixes: 936f2a70f207 ("cgroup: add cpu.stat file to root cgroup")
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
0fa294fb1985 ("cgroup: Replace cgroup_rstat_mutex with a spinlock") added
cgroup_rstat_flush_irqsafe() allowing flushing to happen from the irq
context. However, rstat paths use u64_stats_sync to synchronize access to
64bit stat counters on 32bit machines. u64_stats_sync is implemented using
seq_lock and trying to read from an irq context can lead to A-A deadlock if
the irq happens to interrupt the stat update.
Fix it by using the irqsafe variants - u64_stats_update_begin_irqsave() and
u64_stats_update_end_irqrestore() - in the update paths. Note that none of
this matters on 64bit machines. All these are just for 32bit SMP setups.
Note that the interface was introduced way back, its first and currently
only use was recently added by 2d146aa3aa84 ("mm: memcontrol: switch to
rstat"). Stable tagging targets this commit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Rik van Riel <riel@surriel.com>
Fixes: 2d146aa3aa84 ("mm: memcontrol: switch to rstat")
Cc: stable@vger.kernel.org # v5.13+
Fix function name in cgroup.c and rstat.c kernel-doc comment
to remove these warnings found by clang_w1.
kernel/cgroup/cgroup.c:2401: warning: expecting prototype for
cgroup_taskset_migrate(). Prototype was for cgroup_migrate_execute()
instead.
kernel/cgroup/rstat.c:233: warning: expecting prototype for
cgroup_rstat_flush_begin(). Prototype was for cgroup_rstat_flush_hold()
instead.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Fixes: 'commit e595cd706982 ("cgroup: track migration context in cgroup_mgctx")'
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix some spelling mistakes in comments:
hierarhcy ==> hierarchy
automtically ==> automatically
overriden ==> overridden
In absense of .. or ==> In absence of .. and
assocaited ==> associated
taget ==> target
initate ==> initiate
succeded ==> succeeded
curremt ==> current
udpated ==> updated
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Current users of the rstat code can source root-level statistics from
the native counters of their respective subsystem, allowing them to
forego aggregation at the root level. This optimization is currently
implemented inside the generic rstat code, which doesn't track the root
cgroup and doesn't invoke the subsystem flush callbacks on it.
However, the memory controller cannot do this optimization, because
cgroup1 breaks out memory specifically for the local level, including at
the root level. In preparation for the memory controller switching to
rstat, move the optimization from rstat core to the controllers.
Afterwards, rstat will always track the root cgroup for changes and
invoke the subsystem callbacks on it; and it's up to the subsystem to
special-case and skip aggregation of the root cgroup if it can source
this information through other, cheaper means.
This is the case for the io controller and the cgroup base stats. In
their respective flush callbacks, check whether the parent is the root
cgroup, and if so, skip the unnecessary upward propagation.
The extra cost of tracking the root cgroup is negligible: on stat
changes, we actually remove a branch that checks for the root. The
queueing for a flush touches only per-cpu data, and only the first stat
change since a flush requires a (per-cpu) lock.
Link: https://lkml.kernel.org/r/20210209163304.77088-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rstat currently only supports the default hierarchy in cgroup2. In
order to replace memcg's private stats infrastructure - used in both
cgroup1 and cgroup2 - with rstat, the latter needs to support cgroup1.
The initialization and destruction callbacks for regular cgroups are
already in place. Remove the cgroup_on_dfl() guards to handle cgroup1.
The initialization of the root cgroup is currently hardcoded to only
handle cgrp_dfl_root.cgrp. Move those callbacks to cgroup_setup_root()
and cgroup_destroy_root() to handle the default root as well as the
various cgroup1 roots we may set up during mounting.
The linking of css to cgroups happens in code shared between cgroup1 and
cgroup2 as well. Simply remove the cgroup_on_dfl() guard.
Linkage of the root css to the root cgroup is a bit trickier: per
default, the root css of a subsystem controller belongs to the default
hierarchy (i.e. the cgroup2 root). When a controller is mounted in its
cgroup1 version, the root css is stolen and moved to the cgroup1 root;
on unmount, the css moves back to the default hierarchy. Annotate
rebind_subsystems() to move the root css linkage along between roots.
Link: https://lkml.kernel.org/r/20210209163304.77088-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup_rstat_updated is only used by core block code, no need to
export it.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, the root cgroup does not have a cpu.stat file. Add one which
is consistent with /proc/stat to capture global cpu statistics that
might not fall under cgroup accounting.
We haven't done this in the past because the data are already presented
in /proc/stat and we didn't want to add overhead from collecting root
cgroup stats when cgroups are configured, but no cgroups have been
created.
By keeping the data consistent with /proc/stat, I think we avoid the
first problem, while improving the usability of cgroups stats.
We avoid the second problem by computing the contents of cpu.stat from
existing data collected for /proc/stat anyway.
Signed-off-by: Boris Burkov <boris@bur.io>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
This reverts commit 9a9e97b2f1f2 ("cgroup: Add memory barriers to plug
cgroup_rstat_updated() race window").
The commit was added in anticipation of memcg rstat conversion which needed
synchronous accounting for the event counters (e.g. oom kill count). However,
the conversion didn't get merged due to percpu memory overhead concern which
couldn't be addressed at the time.
Unfortunately, the patch's addition of smp_mb() to cgroup_rstat_updated()
meant that every scheduling event now had to go through an additional full
barrier and Mel Gorman noticed it as 1% regression in netperf UDP_STREAM test.
There's no need to have this barrier in tree now and even if we need
synchronous accounting in the future, the right thing to do is separating that
out to a separate function so that hot paths which don't care about
synchronous behavior don't have to pay the overhead of the full barrier. Let's
revert.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/20200409154413.GK3818@techsingularity.net
Cc: v4.18+
Function name cgroup_rstat_cpu_pop_upated() in comment should be
cgroup_rstat_cpu_pop_updated().
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup->bstat_pending is used to determine the base stat delta to
propagate to the parent. While correct, this is different from how
percpu delta is determined for no good reason and the inconsistency
makes the code more difficult to understand.
This patch makes parent propagation delta calculation use the same
method as percpu to global propagation.
* cgroup_base_stat_accumulate() is renamed to cgroup_base_stat_add()
and cgroup_base_stat_sub() is added.
* percpu propagation calculation is updated to use the above helpers.
* cgroup->bstat_pending is replaced with cgroup->last_bstat and
updated to use the same calculation as percpu propagation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cgroup_rstat_cpu_pop_updated() is used to traverse the updated cgroups
on flush. While it was only visiting updated ones in the subtree, it
was visiting @root unconditionally. We can easily check whether @root
is updated or not by looking at its ->updated_next just as with the
cgroups in the subtree.
* Remove the unnecessary cgroup_parent() test. The system root cgroup
is never updated and thus its ->updated_next is always NULL. No
need to test whether cgroup_parent() exists in addition to
->updated_next.
* Terminate traverse if ->updated_next is NULL. This can only happen
for subtree @root and there's no reason to visit it if it's not
marked updated.
This reduces cpu consumption when reading a lot of rstat backed files.
In a micro benchmark reading stat from ~1600 cgroups, the sys time was
lowered by >40%.
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_rstat_updated() ensures that the cgroup's rstat is linked to
the parent. If there's no parent, it never gets linked and the
function ends up grabbing and releasing the cgroup_rstat_lock each
time for no reason which can be expensive.
This hasn't been a problem till now because nobody was calling the
function for the root cgroup but rstat is gonna be exposed to
controllers and use cases, so let's get ready. Make
cgroup_rstat_updated() an no-op for the root cgroup.
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_rstat_updated() has a small race window where an updated
signaling can race with flush and could be lost till the next update.
This wasn't a problem for the existing usages, but we plan to use
rstat to track counters which need to be accurate.
This patch plugs the race window by synchronizing
cgroup_rstat_updated() and flush path with memory barriers around
cgroup_rstat_cpu->updated_next pointer.
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch adds cgroup_subsys->css_rstat_flush(). If a subsystem has
this callback, its csses are linked on cgrp->css_rstat_list and rstat
will call the function whenever the associated cgroup is flushed.
Flush is also performed when such csses are released so that residual
counts aren't lost.
Combined with the rstat API previous patches factored out, this allows
controllers to plug into rstat to manage their statistics in a
scalable way.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, rstat flush path is protected with a mutex which is fine as
all the existing users are from interface file show path. However,
rstat is being generalized for use by controllers and flushing from
atomic contexts will be necessary.
This patch replaces cgroup_rstat_mutex with a spinlock and adds a
irq-safe flush function - cgroup_rstat_flush_irqsafe(). Explicit
yield handling is added to the flush path so that other flush
functions can yield to other threads and flushers.
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_rstat is being generalized so that controllers can use it too.
This patch factors out and exposes the following interface functions.
* cgroup_rstat_updated(): Renamed from cgroup_rstat_cpu_updated() for
consistency.
* cgroup_rstat_flush_hold/release(): Factored out from base stat
implementation.
* cgroup_rstat_flush(): Verbatim expose.
While at it, drop assert on cgroup_rstat_mutex in
cgroup_base_stat_flush() as it crosses layers and make a minor comment
update.
v2: Added EXPORT_SYMBOL_GPL(cgroup_rstat_updated) to fix a build bug.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, rstat.c has rstat and base stat implementations intermixed.
Collect base stat implementation at the end of the file. Also,
reorder the prototypes.
This patch doesn't make any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Base resource stat accounts universial (not specific to any
controller) resource consumptions on top of rstat. Currently, its
implementation is intermixed with rstat implementation making the code
confusing to follow.
This patch clarifies the distintion by doing the followings.
* Encapsulate base resource stat counters, currently only cputime, in
struct cgroup_base_stat.
* Move prev_cputime into struct cgroup and initialize it with cgroup.
* Rename the related functions so that they start with cgroup_base_stat.
* Prefix the related variables and field names with b.
This patch doesn't make any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
stat is too generic a name and ends up causing subtle confusions.
It'll be made generic so that controllers can plug into it, which will
make the problem worse. Let's rename it to something more specific -
cgroup_rstat for cgroup recursive stat.
This patch does the following renames. No other changes.
* cpu_stat -> rstat_cpu
* stat -> rstat
* ?cstat -> ?rstatc
Note that the renames are selective. The unrenamed are the ones which
implement basic resource statistics on top of rstat. This will be
further cleaned up in the following patches.
Signed-off-by: Tejun Heo <tj@kernel.org>
stat is too generic a name and ends up causing subtle confusions.
It'll be made generic so that controllers can plug into it, which will
make the problem worse. Let's rename it to something more specific -
cgroup_rstat for cgroup recursive stat.
First, rename kernel/cgroup/stat.c to kernel/cgroup/rstat.c. No
content changes.
Signed-off-by: Tejun Heo <tj@kernel.org>