We are adjusting struct page to make it smaller, removing unneeded fields
which correctly belong to struct folio.
Two of those fields are page->index and page->mapping. Perf is currently
making use of both of these. This is unnecessary. This patch eliminates
this.
Perf establishes its own internally controlled memory-mapped pages using
vm_ops hooks. The first page in the mapping is the read/write user control
page, and the rest of the mapping consists of read-only pages.
The VMA is backed by kernel memory either from the buddy allocator or
vmalloc depending on configuration. It is intended to be mapped read/write,
but because it has a page_mkwrite() hook, vma_wants_writenotify() indicates
that it should be mapped read-only.
When a write fault occurs, the provided page_mkwrite() hook,
perf_mmap_fault() (doing double duty handing faults as well) uses the
vmf->pgoff field to determine if this is the first page, allowing for the
desired read/write first page, read-only rest mapping.
For this to work the implementation has to carefully work around faulting
logic. When a page is write-faulted, the fault() hook is called first, then
its page_mkwrite() hook is called (to allow for dirty tracking in file
systems).
On fault we set the folio's mapping in perf_mmap_fault(), this is because
when do_page_mkwrite() is subsequently invoked, it treats a missing mapping
as an indicator that the fault should be retried.
We also set the folio's index so, given the folio is being treated as faux
user memory, it correctly references its offset within the VMA.
This explains why the mapping and index fields are used - but it's not
necessary.
We preallocate pages when perf_mmap() is called for the first time via
rb_alloc(), and further allocate auxiliary pages via rb_aux_alloc() as
needed if the mapping requires it.
This allocation is done in the f_ops->mmap() hook provided in perf_mmap(),
and so we can instead simply map all the memory right away here - there's
no point in handling (read) page faults when we don't demand page nor need
to be notified about them (perf does not).
This patch therefore changes this logic to map everything when the mmap()
hook is called, establishing a PFN map. It implements vm_ops->pfn_mkwrite()
to provide the required read/write vs. read-only behaviour, which does not
require the previously implemented workarounds.
While it is not ideal to use a VM_PFNMAP here, doing anything else will
result in the page_mkwrite() hook need to be provided, which requires the
same page->mapping hack this patch seeks to undo.
It will also result in the pages being treated as folios and placed on the
rmap, which really does not make sense for these mappings.
Semantically it makes sense to establish this as some kind of special
mapping, as the pages are managed by perf and are not strictly user pages,
but currently the only means by which we can do so functionally while
maintaining the required R/W and R/O behaviour is a PFN map.
There should be no change to actual functionality as a result of this
change.
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250103153151.124163-1-lorenzo.stoakes@oracle.com
Ole reported that event->mmap_mutex is strictly insufficient to
serialize the AUX buffer, add a per RB mutex to fully serialize it.
Note that in the lock order comment the perf_event::mmap_mutex order
was already wrong, that is, it nesting under mmap_lock is not new with
this patch.
Fixes: 45bfb2e50471 ("perf: Add AUX area to ring buffer for raw data streams")
Reported-by: Ole <ole@binarygecko.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
rb_alloc_aux() should not be called with nr_pages <= 0. Make it more robust
and readable by returning an error immediately in that case.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240624201101.60186-8-adrian.hunter@intel.com
The default aux_watermark is half the AUX area buffer size. In general,
on a 64-bit architecture, the AUX area buffer size could be a bigger than
fits in a 32-bit type, but the calculation does not allow for that
possibility.
However the aux_watermark value is recorded in a u32, so should not be
more than U32_MAX either.
Fix by doing the calculation in a correctly sized type, and limiting the
result to U32_MAX.
Fixes: d68e6799a5c8 ("perf: Cap allocation order at aux_watermark")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240624201101.60186-7-adrian.hunter@intel.com
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive. This has caused
issues with code that was not yet upstream and depended on the previous
definition.
To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.
Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When perf-record with a large AUX area, e.g 4GB, it fails with:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)
and it reveals a WARNING with __alloc_pages():
------------[ cut here ]------------
WARNING: CPU: 44 PID: 17573 at mm/page_alloc.c:5568 __alloc_pages+0x1ec/0x248
Call trace:
__alloc_pages+0x1ec/0x248
__kmalloc_large_node+0xc0/0x1f8
__kmalloc_node+0x134/0x1e8
rb_alloc_aux+0xe0/0x298
perf_mmap+0x440/0x660
mmap_region+0x308/0x8a8
do_mmap+0x3c0/0x528
vm_mmap_pgoff+0xf4/0x1b8
ksys_mmap_pgoff+0x18c/0x218
__arm64_sys_mmap+0x38/0x58
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0x58/0x188
do_el0_svc+0x34/0x50
el0_svc+0x34/0x108
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x1a4/0x1a8
'rb->aux_pages' allocated by kcalloc() is a pointer array which is used to
maintains AUX trace pages. The allocated page for this array is physically
contiguous (and virtually contiguous) with an order of 0..MAX_ORDER. If the
size of pointer array crosses the limitation set by MAX_ORDER, it reveals a
WARNING.
So bail out early with -ENOMEM if the request AUX area is out of bound,
e.g.:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)
Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use local_try_cmpxchg instead of local_cmpxchg (*ptr, old, new) == old
in __perf_output_begin. x86 CMPXCHG instruction returns success in ZF
flag, so this change saves a compare after cmpxchg (and related move
instruction in front of cmpxchg).
Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg
fails. There is no need to re-read the value in the loop.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230708090048.63046-2-ubizjak@gmail.com
MAX_ORDER is not inclusive: the maximum allocation order buddy allocator
can deliver is MAX_ORDER-1.
Fix MAX_ORDER usage in rb_alloc_aux_page().
Link: https://lkml.kernel.org/r/20230315113133.11326-7-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Marco reported:
Due to the implementation of how SIGTRAP are delivered if
perf_event_attr::sigtrap is set, we've noticed 3 issues:
1. Missing SIGTRAP due to a race with event_sched_out() (more
details below).
2. Hardware PMU events being disabled due to returning 1 from
perf_event_overflow(). The only way to re-enable the event is
for user space to first "properly" disable the event and then
re-enable it.
3. The inability to automatically disable an event after a
specified number of overflows via PERF_EVENT_IOC_REFRESH.
The worst of the 3 issues is problem (1), which occurs when a
pending_disable is "consumed" by a racing event_sched_out(), observed
as follows:
CPU0 | CPU1
--------------------------------+---------------------------
__perf_event_overflow() |
perf_event_disable_inatomic() |
pending_disable = CPU0 | ...
| _perf_event_enable()
| event_function_call()
| task_function_call()
| /* sends IPI to CPU0 */
<IPI> | ...
__perf_event_enable() +---------------------------
ctx_resched()
task_ctx_sched_out()
ctx_sched_out()
group_sched_out()
event_sched_out()
pending_disable = -1
</IPI>
<IRQ-work>
perf_pending_event()
perf_pending_event_disable()
/* Fails to send SIGTRAP because no pending_disable! */
</IRQ-work>
In the above case, not only is that particular SIGTRAP missed, but also
all future SIGTRAPs because 'event_limit' is not reset back to 1.
To fix, rework pending delivery of SIGTRAP via IRQ-work by introduction
of a separate 'pending_sigtrap', no longer using 'event_limit' and
'pending_disable' for its delivery.
Additionally; and different to Marco's proposed patch:
- recognise that pending_disable effectively duplicates oncpu for
the case where it is set. As such, change the irq_work handler to
use ->oncpu to target the event and use pending_* as boolean toggles.
- observe that SIGTRAP targets the ctx->task, so the context switch
optimization that carries contexts between tasks is invalid. If
the irq_work were delayed enough to hit after a context switch the
SIGTRAP would be delivered to the wrong task.
- observe that if the event gets scheduled out
(rotation/migration/context-switch/...) the irq-work would be
insufficient to deliver the SIGTRAP when the event gets scheduled
back in (the irq-work might still be pending on the old CPU).
Therefore have event_sched_out() convert the pending sigtrap into a
task_work which will deliver the signal at return_to_user.
Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Debugged-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Marco Elver <elver@google.com>
Debugged-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Marco Elver <elver@google.com>
Sometimes we want to know an accurate number of samples even if it's
lost. Currenlty PERF_RECORD_LOST is generated for a ring-buffer which
might be shared with other events. So it's hard to know per-event
lost count.
Add event->lost_samples field and PERF_FORMAT_LOST to retrieve it from
userspace.
Original-patch-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220616180623.1358843-1-namhyung@kernel.org
This problem can be reproduced with CONFIG_PERF_USE_VMALLOC enabled on
both x86_64 and aarch64 arch when using sysdig -B(using ebpf)[1].
sysdig -B works fine after rebuilding the kernel with
CONFIG_PERF_USE_VMALLOC disabled.
I tracked it down to the if condition event->rb->nr_pages != nr_pages
in perf_mmap is true when CONFIG_PERF_USE_VMALLOC is enabled where
event->rb->nr_pages = 1 and nr_pages = 2048 resulting perf_mmap to
return -EINVAL. This is because when CONFIG_PERF_USE_VMALLOC is
enabled, rb->nr_pages is always equal to 1.
Arch with CONFIG_PERF_USE_VMALLOC enabled by default:
arc/arm/csky/mips/sh/sparc/xtensa
Arch with CONFIG_PERF_USE_VMALLOC disabled by default:
x86_64/aarch64/...
Fix this problem by using data_page_nr()
[1] https://github.com/draios/sysdig
Fixes: 906010b2134e ("perf_event: Provide vmalloc() based mmap() backing")
Signed-off-by: Zhipeng Xie <xiezhipeng1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220209145417.6495-1-xiezhipeng1@huawei.com
Currently, we start allocating AUX pages half the size of the total
requested AUX buffer size, ignoring the attr.aux_watermark setting. This,
in turn, makes intel_pt driver disregard the watermark also, as it uses
page order for its SG (ToPA) configuration.
Now, this can be fixed in the intel_pt PMU driver, but seeing as it's the
only one currently making use of high order allocations, there is no
reason not to fix the allocator instead. This way, any other driver
wishing to add this support would not have to worry about this.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210414154955.49603-2-alexander.shishkin@linux.intel.com
I found the ring buffer pages are allocated in the node but the ring
buffer itself is not. Let's convert it to use kzalloc_node() too.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210315033436.682438-1-namhyung@kernel.org
__perf_output_begin() has an on-stack struct perf_sample_data in the
unlikely case it needs to generate a LOST record. However, every call
to perf_output_begin() must already have a perf_sample_data on-stack.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151954.985416146@infradead.org
eBPF requires needing to know the size of the perf ring buffer structure.
But it unfortunately has the same name as the generic ring buffer used by
tracing and oprofile. To make it less ambiguous, rename the perf ring buffer
structure to "perf_buffer".
As other parts of the ring buffer code has "perf_" as the prefix, it only
makes sense to give the ring buffer the "perf_" prefix as well.
Link: https://lore.kernel.org/r/20191213153553.GE20583@krava
Acked-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
AUX data can be used to annotate perf events such as performance counters
or tracepoints/breakpoints by including it in sample records when
PERF_SAMPLE_AUX flag is set. Such samples would be instrumental in debugging
and profiling by providing, for example, a history of instruction flow
leading up to the event's overflow.
The implementation makes use of grouping an AUX event with all the events
that wish to take samples of the AUX data, such that the former is the
group leader. The samplees should also specify the desired size of the AUX
sample via attr.aux_sample_size.
AUX capable PMUs need to explicitly add support for sampling, because it
relies on a new callback to take a snapshot of the buffer without touching
the event states.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: mathieu.poirier@linaro.org
Link: https://lkml.kernel.org/r/20191025140835.53665-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently perf_mmap_alloc_page() is used to allocate memory in
rb_alloc(), but using free_page() to free memory in the failure path.
It's better to use perf_mmap_free_page() instead.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <jolsa@redhat.co>
Cc: <acme@kernel.org>
Cc: <mingo@redhat.com>
Cc: <mark.rutland@arm.com>
Cc: <namhyung@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/575c7e8c-90c7-4e3a-b41d-f894d8cdbd7f@huawei.com
In perf_mmap_free_page(), the unsigned long type is converted to the
pointer type, but where the call is made, the pointer type is converted
to the unsigned long type. There is no need to do these operations.
Modify the parameter type of perf_mmap_free_page() to pointer type.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <jolsa@redhat.co>
Cc: <acme@kernel.org>
Cc: <mingo@redhat.com>
Cc: <mark.rutland@arm.com>
Cc: <namhyung@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/e6ae3f0c-d04c-50f9-544a-aee3b30330cd@huawei.com
While the IRQ/NMI will nest, the nest-count will be invariant over the
actual exception, since it will decrement equal to increment.
This means we can -- carefully -- use a regular variable since the
typical LOAD-STORE race doesn't exist (similar to preempt_count).
This optimizes the ring-buffer for all LOAD-STORE architectures, since
they need to use atomic ops to implement local_t.
Suggested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: mark.rutland@arm.com
Cc: namhyung@kernel.org
Cc: yabinc@google.com
Link: http://lkml.kernel.org/r/20190517115418.481392777@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We must use {READ,WRITE}_ONCE() on rb->user_page data such that
concurrent usage will see whole values. A few key sites were missing
this.
Suggested-by: Yabin Cui <yabinc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: mark.rutland@arm.com
Cc: namhyung@kernel.org
Fixes: 7b732a750477 ("perf_counter: new output ABI - part 1")
Link: http://lkml.kernel.org/r/20190517115418.394192145@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Similar to how decrementing rb->next too early can cause data_head to
(temporarily) be observed to go backward, so too can this happen when
we increment too late.
This barrier() ensures the rb->head load happens after the increment,
both the one in the 'goto again' path, as the one from
perf_output_get_handle() -- albeit very unlikely to matter for the
latter.
Suggested-by: Yabin Cui <yabinc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: mark.rutland@arm.com
Cc: namhyung@kernel.org
Fixes: ef60777c9abd ("perf: Optimize the perf_output() path by removing IRQ-disables")
Link: http://lkml.kernel.org/r/20190517115418.309516009@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In perf_output_put_handle(), an IRQ/NMI can happen in below location and
write records to the same ring buffer:
...
local_dec_and_test(&rb->nest)
... <-- an IRQ/NMI can happen here
rb->user_page->data_head = head;
...
In this case, a value A is written to data_head in the IRQ, then a value
B is written to data_head after the IRQ. And A > B. As a result,
data_head is temporarily decreased from A to B. And a reader may see
data_head < data_tail if it read the buffer frequently enough, which
creates unexpected behaviors.
This can be fixed by moving dec(&rb->nest) to after updating data_head,
which prevents the IRQ/NMI above from updating data_head.
[ Split up by peterz. ]
Signed-off-by: Yabin Cui <yabinc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: mark.rutland@arm.com
Fixes: ef60777c9abd ("perf: Optimize the perf_output() path by removing IRQ-disables")
Link: http://lkml.kernel.org/r/20190517115418.224478157@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This recent commit:
5768402fd9c6e87 ("perf/ring_buffer: Use high order allocations for AUX buffers optimistically")
overlooked the fact that the previous one page granularity of the AUX buffer
provided an implicit double buffering capability to the PMU driver, which
went away when the entire buffer became one high-order page.
Always make the full-trace mode AUX allocation at least two-part to preserve
the previous behavior and allow the implicit double buffering to continue.
Reported-by: Ammy Yi <ammy.yi@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Fixes: 5768402fd9c6e87 ("perf/ring_buffer: Use high order allocations for AUX buffers optimistically")
Link: http://lkml.kernel.org/r/20190503085536.24119-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
1627314fb54a33e ("perf: Suppress AUX/OVERWRITE records")
has an unintended side-effect of also suppressing all AUX records with no flags
and non-zero size, so all the regular records in the full trace mode.
This breaks some use cases for people.
Fix this by restoring "regular" AUX records.
Reported-by: Ben Gainey <Ben.Gainey@arm.com>
Tested-by: Ben Gainey <Ben.Gainey@arm.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 1627314fb54a33e ("perf: Suppress AUX/OVERWRITE records")
Link: https://lkml.kernel.org/r/20190329091338.29999-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Thomas-Mich Richter reported he triggered a WARN()ing from event_function_local()
on his s390. The problem boils down to:
CPU-A CPU-B
perf_event_overflow()
perf_event_disable_inatomic()
@pending_disable = 1
irq_work_queue();
sched-out
event_sched_out()
@pending_disable = 0
sched-in
perf_event_overflow()
perf_event_disable_inatomic()
@pending_disable = 1;
irq_work_queue(); // FAILS
irq_work_run()
perf_pending_event()
if (@pending_disable)
perf_event_disable_local(); // WHOOPS
The problem exists in generic, but s390 is particularly sensitive
because it doesn't implement arch_irq_work_raise(), nor does it call
irq_work_run() from it's PMU interrupt handler (nor would that be
sufficient in this case, because s390 also generates
perf_event_overflow() from pmu::stop). Add to that the fact that s390
is a virtual architecture and (virtual) CPU-A can stall long enough
for the above race to happen, even if it would self-IPI.
Adding a irq_work_sync() to event_sched_in() would work for all hardare
PMUs that properly use irq_work_run() but fails for software PMUs.
Instead encode the CPU number in @pending_disable, such that we can
tell which CPU requested the disable. This then allows us to detect
the above scenario and even redirect the IPI to make up for the failed
queue.
Reported-by: Thomas-Mich Richter <tmricht@linux.ibm.com>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hendrik Brueckner <brueckner@linux.ibm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the AUX buffer allocator will use high-order allocations
for PMUs that don't support hardware scatter-gather chaining to ensure
large contiguous blocks of pages, and always use an array of single
pages otherwise.
There is, however, a tangible performance benefit in using larger chunks
of contiguous memory even in the latter case, that comes from not having
to fetch the next page's address at every page boundary. In particular,
a task running under Intel PT on an Atom CPU shows 1.5%-2% less runtime
penalty with a single multi-page output region in snapshot mode (no PMI)
than with multiple single-page output regions, from ~6% down to ~4%. For
the snapshot mode it does make a difference as it is intended to run over
long periods of time.
For this reason, change the allocation policy to always optimistically
start with the highest possible order when allocating pages for the AUX
buffer, desceding until the allocation succeeds or order zero allocation
fails.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190215114727.62648-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
9dff0aa95a32 ("perf/core: Don't WARN() for impossible ring-buffer sizes")
results in perf recording failures with larger mmap areas:
root@skl:/tmp# perf record -g -a
failed to mmap with 12 (Cannot allocate memory)
The root cause is that the following condition is buggy:
if (order_base_2(size) >= MAX_ORDER)
goto fail;
The problem is that @size is in bytes and MAX_ORDER is in pages,
so the right test is:
if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
goto fail;
Fix it.
Reported-by: "Jin, Yao" <yao.jin@linux.intel.com>
Bisected-by: Borislav Petkov <bp@alien8.de>
Analyzed-by: Peter Zijlstra <peterz@infradead.org>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Fixes: 9dff0aa95a32 ("perf/core: Don't WARN() for impossible ring-buffer sizes")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When pmu::setup_aux() is called the coresight PMU needs to know which
sink to use for the session by looking up the information in the
event's attr::config2 field.
As such simply replace the cpu information by the complete perf_event
structure and change all affected customers.
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Suzuki Poulouse <suzuki.poulose@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Link: http://lkml.kernel.org/r/20190131184714.20388-2-mathieu.poirier@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable ring_buffer.aux_refcount is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts. Please check Documentation/core-api/refcount-vs-atomic.rst
for more information.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the ring_buffer.aux_refcount it might make a difference
in following places:
- perf_aux_output_begin(): increment in refcount_inc_not_zero() only
guarantees control dependency on success vs. fully ordered
atomic counterpart
- rb_free_aux(): decrement in refcount_dec_and_test() only
provides RELEASE ordering and ACQUIRE ordering + control dependency
on success vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: namhyung@kernel.org
Link: https://lkml.kernel.org/r/1548678448-24458-4-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable ring_buffer.refcount is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts. Please check Documentation/core-api/refcount-vs-atomic.rst
for more information.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the ring_buffer.refcount it might make a difference
in following places:
- ring_buffer_get(): increment in refcount_inc_not_zero() only
guarantees control dependency on success vs. fully ordered
atomic counterpart
- ring_buffer_put(): decrement in refcount_dec_and_test() only
provides RELEASE ordering and ACQUIRE ordering + control dependency
on success vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: namhyung@kernel.org
Link: https://lkml.kernel.org/r/1548678448-24458-3-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use proper SPDX license identifiers instead of the bogus reference to
kernel-base/COPYING.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190116111308.012666937@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The perf tool uses /proc/sys/kernel/perf_event_mlock_kb to determine how
large its ringbuffer mmap should be. This can be configured to arbitrary
values, which can be larger than the maximum possible allocation from
kmalloc.
When this is configured to a suitably large value (e.g. thanks to the
perf fuzzer), attempting to use perf record triggers a WARN_ON_ONCE() in
__alloc_pages_nodemask():
WARNING: CPU: 2 PID: 5666 at mm/page_alloc.c:4511 __alloc_pages_nodemask+0x3f8/0xbc8
Let's avoid this by checking that the requested allocation is possible
before calling kzalloc.
Reported-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190110142745.25495-1-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It has been pointed out to me many times that it is useful to be able to
switch off AUX records to save the bandwidth for records that actually
matter, for example, in AUX overwrite mode.
The usefulness of PERF_RECORD_AUX is in some of its flags, like the
TRUNCATED flag that tells the decoder where exactly gaps in the trace
are. The OVERWRITE flag, on the other hand will be set on every single
record in overwrite mode. However, a PERF_RECORD_AUX[flags=OVERWRITE] is
generated on every target task's sched_out, which over time adds up to a
lot of useless information.
If any folks out there have userspace that depends on a constant stream
of OVERWRITE records for a good reason, they'll have to let us know.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Link: http://lkml.kernel.org/r/20180404145323.28651-1-alexander.shishkin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull perf fixes from Thomas Gleixner:
"A pile of perf updates:
Kernel side:
- Remove an incorrect warning in uprobe_init_insn() when
insn_get_length() fails. The error return code is handled at the
call site.
- Move the inline keyword to the right place in the perf ringbuffer
code to address a W=1 build warning.
Tooling:
perf stat:
- Fix metric column header display alignment
- Improve error messages for default attributes, providing better
output for error in command line.
- Add --interval-clear option, to provide a 'watch' like printing
perf script:
- Show hw-cache events too
perf c2c:
- Fix data dependency problem in layout of 'struct c2c_hist_entry'
Core:
- Do not blindly assume that 'struct perf_evsel' can be obtained via
a straight forward container_of() as there are call sites which
hand in a plain 'struct hist' which is not part of a container.
- Fix error index in the PMU event parser, so that error messages can
point to the problematic token"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Move the inline keyword at the beginning of the function declaration
uprobes/x86: Remove incorrect WARN_ON() in uprobe_init_insn()
perf script: Show hw-cache events
perf c2c: Keep struct hist_entry at the end of struct c2c_hist_entry
perf stat: Add event parsing error handling to add_default_attributes
perf stat: Allow to specify specific metric column len
perf stat: Fix metric column header display alignment
perf stat: Use only color_fprintf call in print_metric_only
perf stat: Add --interval-clear option
perf tools: Fix error index for pmu event parser
perf hists: Reimplement hists__has_callchains()
perf hists browser gtk: Use hist_entry__has_callchains()
perf hists: Make hist_entry__has_callchains() work with 'perf c2c'
perf hists: Save the callchain_size in struct hist_entry
When building perf with W=1 the following warning triggers:
CC kernel/events/ring_buffer.o
kernel/events/ring_buffer.c:105:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration]
static bool __always_inline
^~~~~~
...
Move the inline keyword to the beginning of the function declaration.
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: trival@kernel.org
Link: http://lkml.kernel.org/r/20180308202856.9378-1-malat@debian.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Perf PMU drivers using AUX buffers cannot be built as modules unless
the AUX helpers are exported.
This patch exports perf_aux_output_{begin,end,skip} and perf_get_aux to
modules.
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The following commit:
d9a50b0256 ("perf/aux: Ensure aux_wakeup represents most recent wakeup index")
changed the AUX wakeup position calculation to rounddown(), which causes
a division-by-zero in AUX overwrite mode (aka "snapshot mode").
The zero denominator results from the fact that perf record doesn't set
aux_watermark to anything, in which case the kernel will set it to half
the AUX buffer size, but only for non-overwrite mode. In the overwrite
mode aux_watermark stays zero.
The good news is that, AUX overwrite mode, wakeups don't happen and
related bookkeeping is not relevant, so we can simply forego the whole
wakeup updates.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/20170906160811.16510-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The aux_watermark member of struct ring_buffer represents the period (in
terms of bytes) at which wakeup events should be generated when data is
written to the aux buffer in non-snapshot mode. On hardware that cannot
generate an interrupt when the aux_head reaches an arbitrary wakeup index
(such as ARM SPE), the aux_head sampled from handle->head in
perf_aux_output_{skip,end} may in fact be past the wakeup index. This
can lead to wakeup slowly falling behind the head. For example, consider
the case where hardware can only generate an interrupt on a page-boundary
and the aux buffer is initialised as follows:
// Buffer size is 2 * PAGE_SIZE
rb->aux_head = rb->aux_wakeup = 0
rb->aux_watermark = PAGE_SIZE / 2
following the first perf_aux_output_begin call, the handle is
initialised with:
handle->head = 0
handle->size = 2 * PAGE_SIZE
handle->wakeup = PAGE_SIZE / 2
and the hardware will be programmed to generate an interrupt at
PAGE_SIZE.
When the interrupt is raised, the hardware head will be at PAGE_SIZE,
so calling perf_aux_output_end(handle, PAGE_SIZE) puts the ring buffer
into the following state:
rb->aux_head = PAGE_SIZE
rb->aux_wakeup = PAGE_SIZE / 2
rb->aux_watermark = PAGE_SIZE / 2
and then the next call to perf_aux_output_begin will result in:
handle->head = handle->wakeup = PAGE_SIZE
for which the semantics are unclear and, for a smaller aux_watermark
(e.g. PAGE_SIZE / 4), then the wakeup would in fact be behind head at
this point.
This patch fixes the problem by rounding down the aux_head (as sampled
from the handle) to the nearest aux_watermark boundary when updating
rb->aux_wakeup, therefore taking into account any overruns by the
hardware.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/1502900297-21839-2-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The aux_head and aux_wakeup members of struct ring_buffer are defined
using the local_t type, despite the fact that they are only accessed via
the perf_aux_output_*() functions, which cannot race with each other for a
given ring buffer.
This patch changes the type of the members to long, so we can avoid
using the local_*() API where it isn't needed.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/1502900297-21839-1-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the event for which an AUX area is about to be allocated, does
not support setting up an AUX area, rb_alloc_aux() return -ENOTSUPP.
This error condition is being returned unfiltered to the user space,
and, for example, the perf tools fails with:
failed to mmap with 524 (INTERNAL ERROR: strerror_r(524, 0x3fff497a1c8, 512)=22)
This error can be easily seen with "perf record -m 128,256 -e cpu-clock".
The 524 error code maps to -ENOTSUPP (in rb_alloc_aux()). The -ENOTSUPP
error code shall be only used within the kernel. So the correct error
code would then be -EOPNOTSUPP.
With this commit, the perf tool then reports:
failed to mmap with 95 (Operation not supported)
which is more clear.
Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Hou <bjhoupu@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas-Mich Richter <tmricht@linux.vnet.ibm.com>
Cc: acme@kernel.org
Cc: linux-s390@vger.kernel.org
Link: http://lkml.kernel.org/r/1497954399-6355-1-git-send-email-brueckner@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Intel PT driver needs to be able to communicate partial AUX transactions,
that is, transactions with gaps in data for reasons other than no room
left in the buffer (i.e. truncated transactions). Therefore, this condition
does not imply a wakeup for the consumer.
To this end, add a new "partial" AUX flag.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170220133352.17995-4-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for adding more flags to perf AUX records, introduce a
separate API for setting the flags for a session, rather than appending
more bool arguments to perf_aux_output_end. This allows to set each
flag at the time a corresponding condition is detected, instead of
tracking it in each driver's private state.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170220133352.17995-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>