mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 02:05:33 +00:00
1661 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Sebastian Andrzej Siewior
|
5af42f928f |
perf: Shrink the size of the recursion counter.
There are four recursion counter, one for each context. The type of the counter is `int' but the counter is used as `bool' since it is only incremented if zero. The main goal here is to shrink the whole struct into 32bit int which can later be added task_struct into an existing hole. Reduce the type of the recursion counter to an unsigned char, keep the increment/ decrement operation. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marco Elver <elver@google.com> Link: https://lore.kernel.org/r/20240704170424.1466941-5-bigeasy@linutronix.de |
||
Sebastian Andrzej Siewior
|
c5d93d23a2 |
perf: Enqueue SIGTRAP always via task_work.
A signal is delivered by raising irq_work() which works from any context including NMI. irq_work() can be delayed if the architecture does not provide an interrupt vector. In order not to lose a signal, the signal is injected via task_work during event_sched_out(). Instead going via irq_work, the signal could be added directly via task_work. The signal is sent to current and can be enqueued on its return path to userland. Queue signal via task_work and consider possible NMI context. Remove perf_event::pending_sigtrap and and use perf_event::pending_work instead. Reported-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marco Elver <elver@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lore.kernel.org/r/20240704170424.1466941-4-bigeasy@linutronix.de |
||
Sebastian Andrzej Siewior
|
058244c683 |
perf: Move irq_work_queue() where the event is prepared.
Only if perf_event::pending_sigtrap is zero, the irq_work accounted by increminging perf_event::nr_pending. The member perf_event::pending_addr might be overwritten by a subsequent event if the signal was not yet delivered and is expected. The irq_work will not be enqeueued again because it has a check to be only enqueued once. Move irq_work_queue() to where the counter is incremented and perf_event::pending_sigtrap is set to make it more obvious that the irq_work is scheduled once. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marco Elver <elver@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lore.kernel.org/r/20240704170424.1466941-2-bigeasy@linutronix.de |
||
Frederic Weisbecker
|
3a5465418f |
perf: Fix event leak upon exec and file release
The perf pending task work is never waited upon the matching event release. In the case of a child event, released via free_event() directly, this can potentially result in a leaked event, such as in the following scenario that doesn't even require a weak IRQ work implementation to trigger: schedule() prepare_task_switch() =======> <NMI> perf_event_overflow() event->pending_sigtrap = ... irq_work_queue(&event->pending_irq) <======= </NMI> perf_event_task_sched_out() event_sched_out() event->pending_sigtrap = 0; atomic_long_inc_not_zero(&event->refcount) task_work_add(&event->pending_task) finish_lock_switch() =======> <IRQ> perf_pending_irq() //do nothing, rely on pending task work <======= </IRQ> begin_new_exec() perf_event_exit_task() perf_event_exit_event() // If is child event free_event() WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1) // event is leaked Similar scenarios can also happen with perf_event_remove_on_exec() or simply against concurrent perf_event_release(). Fix this with synchonizing against the possibly remaining pending task work while freeing the event, just like is done with remaining pending IRQ work. This means that the pending task callback neither need nor should hold a reference to the event, preventing it from ever beeing freed. Fixes: 517e6a301f34 ("perf: Fix perf_pending_task() UaF") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240621091601.18227-5-frederic@kernel.org |
||
Frederic Weisbecker
|
2fd5ad3f31 |
perf: Fix event leak upon exit
When a task is scheduled out, pending sigtrap deliveries are deferred to the target task upon resume to userspace via task_work. However failures while adding an event's callback to the task_work engine are ignored. And since the last call for events exit happen after task work is eventually closed, there is a small window during which pending sigtrap can be queued though ignored, leaking the event refcount addition such as in the following scenario: TASK A ----- do_exit() exit_task_work(tsk); <IRQ> perf_event_overflow() event->pending_sigtrap = pending_id; irq_work_queue(&event->pending_irq); </IRQ> =========> PREEMPTION: TASK A -> TASK B event_sched_out() event->pending_sigtrap = 0; atomic_long_inc_not_zero(&event->refcount) // FAILS: task work has exited task_work_add(&event->pending_task) [...] <IRQ WORK> perf_pending_irq() // early return: event->oncpu = -1 </IRQ WORK> [...] =========> TASK B -> TASK A perf_event_exit_task(tsk) perf_event_exit_event() free_event() WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1) // leak event due to unexpected refcount == 2 As a result the event is never released while the task exits. Fix this with appropriate task_work_add()'s error handling. Fixes: 517e6a301f34 ("perf: Fix perf_pending_task() UaF") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240621091601.18227-4-frederic@kernel.org |
||
Peter Zijlstra
|
0c8ea05e9b |
Merge branch 'tip/x86/cpu'
The Lunarlake patches rely on the new VFM stuff. Signed-off-by: Peter Zijlstra <peterz@infradead.org> |
||
Adrian Hunter
|
0ca4da2412 |
perf: Make rb_alloc_aux() return an error immediately if nr_pages <= 0
rb_alloc_aux() should not be called with nr_pages <= 0. Make it more robust and readable by returning an error immediately in that case. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240624201101.60186-8-adrian.hunter@intel.com |
||
Adrian Hunter
|
43deb76b19 |
perf: Fix default aux_watermark calculation
The default aux_watermark is half the AUX area buffer size. In general, on a 64-bit architecture, the AUX area buffer size could be a bigger than fits in a 32-bit type, but the calculation does not allow for that possibility. However the aux_watermark value is recorded in a u32, so should not be more than U32_MAX either. Fix by doing the calculation in a correctly sized type, and limiting the result to U32_MAX. Fixes: d68e6799a5c8 ("perf: Cap allocation order at aux_watermark") Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240624201101.60186-7-adrian.hunter@intel.com |
||
Adrian Hunter
|
dbc48c8f41 |
perf: Prevent passing zero nr_pages to rb_alloc_aux()
nr_pages is unsigned long but gets passed to rb_alloc_aux() as an int, and is stored as an int. Only power-of-2 values are accepted, so if nr_pages is a 64_bit value, it will be passed to rb_alloc_aux() as zero. That is not ideal because: 1. the value is incorrect 2. rb_alloc_aux() is at risk of misbehaving, although it manages to return -ENOMEM in that case, it is a result of passing zero to get_order() even though the get_order() result is documented to be undefined in that case. Fix by simply validating the maximum supported value in the first place. Use -ENOMEM error code for consistency with the current error code that is returned in that case. Fixes: 45bfb2e50471 ("perf: Add AUX area to ring buffer for raw data streams") Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240624201101.60186-6-adrian.hunter@intel.com |
||
Adrian Hunter
|
3df94a5b10 |
perf: Fix perf_aux_size() for greater-than 32-bit size
perf_buffer->aux_nr_pages uses a 32-bit type, so a cast is needed to calculate a 64-bit size. Fixes: 45bfb2e50471 ("perf: Add AUX area to ring buffer for raw data streams") Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240624201101.60186-5-adrian.hunter@intel.com |
||
Barry Song
|
15bde4abab |
mm: extend rmap flags arguments for folio_add_new_anon_rmap
Patch series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()", v2. This patchset is preparatory work for mTHP swapin. folio_add_new_anon_rmap() assumes that new anon rmaps are always exclusive. However, this assumption doesn’t hold true for cases like do_swap_page(), where a new anon might be added to the swapcache and is not necessarily exclusive. The patchset extends the rmap flags to allow folio_add_new_anon_rmap() to handle both exclusive and non-exclusive new anon folios. The do_swap_page() function is updated to use this extended API with rmap flags. Consequently, all new anon folios now consistently use folio_add_new_anon_rmap(). The special case for !folio_test_anon() in __folio_add_anon_rmap() can be safely removed. In conclusion, new anon folios always use folio_add_new_anon_rmap(), regardless of exclusivity. Old anon folios continue to use __folio_add_anon_rmap() via folio_add_anon_rmap_pmd() and folio_add_anon_rmap_ptes(). This patch (of 3): In the case of a swap-in, a new anonymous folio is not necessarily exclusive. This patch updates the rmap flags to allow a new anonymous folio to be treated as either exclusive or non-exclusive. To maintain the existing behavior, we always use EXCLUSIVE as the default setting. [akpm@linux-foundation.org: cleanup and constifications per David and akpm] [v-songbaohua@oppo.com: fix missing doc for flags of folio_add_new_anon_rmap()] Link: https://lkml.kernel.org/r/20240619210641.62542-1-21cnbao@gmail.com [v-songbaohua@oppo.com: enhance doc for extend rmap flags arguments for folio_add_new_anon_rmap] Link: https://lkml.kernel.org/r/20240622030256.43775-1-21cnbao@gmail.com Link: https://lkml.kernel.org/r/20240617231137.80726-1-21cnbao@gmail.com Link: https://lkml.kernel.org/r/20240617231137.80726-2-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Suggested-by: David Hildenbrand <david@redhat.com> Tested-by: Shuai Yuan <yuanshuai@oppo.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Chris Li <chrisl@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kuan-Wei Chiu
|
bfe3127180 |
lib min_heap: rename min_heapify() to min_heap_sift_down()
After adding min_heap_sift_up(), the naming convention has been adjusted to maintain consistency with the min_heap_sift_up(). Consequently, min_heapify() has been renamed to min_heap_sift_down(). Link: https://lkml.kernel.org/CAP-5=fVcBAxt8Mw72=NCJPRJfjDaJcqk4rjbadgouAEAHz_q1A@mail.gmail.com Link: https://lkml.kernel.org/r/20240524152958.919343-13-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Reviewed-by: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Brian Foster <bfoster@redhat.com> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kuan-Wei Chiu
|
267607e875 |
lib min_heap: add args for min_heap_callbacks
Add a third parameter 'args' for the 'less' and 'swp' functions in the 'struct min_heap_callbacks'. This additional parameter allows these comparison and swap functions to handle extra arguments when necessary. Link: https://lkml.kernel.org/r/20240524152958.919343-9-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Reviewed-by: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Brian Foster <bfoster@redhat.com> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kuan-Wei Chiu
|
873ce25766 |
lib min_heap: add type safe interface
Implement a type-safe interface for min_heap using strong type pointers instead of void * in the data field. This change includes adding small macro wrappers around functions, enabling the use of __minheap_cast and __minheap_obj_size macros for type casting and obtaining element size. This implementation removes the necessity of passing element size in min_heap_callbacks. Additionally, introduce the MIN_HEAP_PREALLOCATED macro for preallocating some elements. Link: https://lkml.kernel.org/ioyfizrzq7w7mjrqcadtzsfgpuntowtjdw5pgn4qhvsdp4mqqg@nrlek5vmisbu Link: https://lkml.kernel.org/r/20240524152958.919343-5-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Reviewed-by: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Brian Foster <bfoster@redhat.com> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kuan-Wei Chiu
|
ddd36b7ee1 |
perf/core: fix several typos
Patch series "treewide: Refactor heap related implementation", v6. This patch series focuses on several adjustments related to heap implementation. Firstly, a type-safe interface has been added to the min_heap, along with the introduction of several new functions to enhance its functionality. Additionally, the heap implementation for bcache and bcachefs has been replaced with the generic min_heap implementation from include/linux. Furthermore, several typos have been corrected. Previous discussion with Kent Overstreet: https://lkml.kernel.org/ioyfizrzq7w7mjrqcadtzsfgpuntowtjdw5pgn4qhvsdp4mqqg@nrlek5vmisbu This patch (of 16): Replace 'artifically' with 'artificially'. Replace 'irrespecive' with 'irrespective'. Replace 'futher' with 'further'. Replace 'sufficent' with 'sufficient'. Link: https://lkml.kernel.org/r/20240524152958.919343-1-visitorckw@gmail.com Link: https://lkml.kernel.org/r/20240524152958.919343-2-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Reviewed-by: Ian Rogers <irogers@google.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Brian Foster <bfoster@redhat.com> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrii Nakryiko
|
4a365eb8a6 |
perf,uprobes: fix user stack traces in the presence of pending uretprobes
When kernel has pending uretprobes installed, it hijacks original user function return address on the stack with a uretprobe trampoline address. There could be multiple such pending uretprobes (either on different user functions or on the same recursive one) at any given time within the same task. This approach interferes with the user stack trace capture logic, which would report suprising addresses (like 0x7fffffffe000) that correspond to a special "[uprobes]" section that kernel installs in the target process address space for uretprobe trampoline code, while logically it should be an address somewhere within the calling function of another traced user function. This is easy to correct for, though. Uprobes subsystem keeps track of pending uretprobes and records original return addresses. This patch is using this to do a post-processing step and restore each trampoline address entries with correct original return address. This is done only if there are pending uretprobes for current task. This is a similar approach to what fprobe/kretprobe infrastructure is doing when capturing kernel stack traces in the presence of pending return probes. Link: https://lore.kernel.org/all/20240522013845.1631305-3-andrii@kernel.org/ Reported-by: Riham Selim <rihams@meta.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
Jiri Olsa
|
ff474a78ce |
uprobe: Add uretprobe syscall to speed up return probe
Adding uretprobe syscall instead of trap to speed up return probe. At the moment the uretprobe setup/path is: - install entry uprobe - when the uprobe is hit, it overwrites probed function's return address on stack with address of the trampoline that contains breakpoint instruction - the breakpoint trap code handles the uretprobe consumers execution and jumps back to original return address This patch replaces the above trampoline's breakpoint instruction with new ureprobe syscall call. This syscall does exactly the same job as the trap with some more extra work: - syscall trampoline must save original value for rax/r11/rcx registers on stack - rax is set to syscall number and r11/rcx are changed and used by syscall instruction - the syscall code reads the original values of those registers and restore those values in task's pt_regs area - only caller from trampoline exposed in '[uprobes]' is allowed, the process will receive SIGILL signal otherwise Even with some extra work, using the uretprobes syscall shows speed improvement (compared to using standard breakpoint): On Intel (11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz) current: uretprobe-nop : 1.498 ± 0.000M/s uretprobe-push : 1.448 ± 0.001M/s uretprobe-ret : 0.816 ± 0.001M/s with the fix: uretprobe-nop : 1.969 ± 0.002M/s < 31% speed up uretprobe-push : 1.910 ± 0.000M/s < 31% speed up uretprobe-ret : 0.934 ± 0.000M/s < 14% speed up On Amd (AMD Ryzen 7 5700U) current: uretprobe-nop : 0.778 ± 0.001M/s uretprobe-push : 0.744 ± 0.001M/s uretprobe-ret : 0.540 ± 0.001M/s with the fix: uretprobe-nop : 0.860 ± 0.001M/s < 10% speed up uretprobe-push : 0.818 ± 0.001M/s < 10% speed up uretprobe-ret : 0.578 ± 0.000M/s < 7% speed up The performance test spawns a thread that runs loop which triggers uprobe with attached bpf program that increments the counter that gets printed in results above. The uprobe (and uretprobe) kind is determined by which instruction is being patched with breakpoint instruction. That's also important for uretprobes, because uprobe is installed for each uretprobe. The performance test is part of bpf selftests: tools/testing/selftests/bpf/run_bench_uprobes.sh Note at the moment uretprobe syscall is supported only for native 64-bit process, compat process still uses standard breakpoint. Note that when shadow stack is enabled the uretprobe syscall returns via iret, which is slower than return via sysret, but won't cause the shadow stack violation. Link: https://lore.kernel.org/all/20240611112158.40795-4-jolsa@kernel.org/ Suggested-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
Haifeng Xu
|
74751ef5c1 |
perf/core: Fix missing wakeup when waiting for context reference
In our production environment, we found many hung tasks which are blocked for more than 18 hours. Their call traces are like this: [346278.191038] __schedule+0x2d8/0x890 [346278.191046] schedule+0x4e/0xb0 [346278.191049] perf_event_free_task+0x220/0x270 [346278.191056] ? init_wait_var_entry+0x50/0x50 [346278.191060] copy_process+0x663/0x18d0 [346278.191068] kernel_clone+0x9d/0x3d0 [346278.191072] __do_sys_clone+0x5d/0x80 [346278.191076] __x64_sys_clone+0x25/0x30 [346278.191079] do_syscall_64+0x5c/0xc0 [346278.191083] ? syscall_exit_to_user_mode+0x27/0x50 [346278.191086] ? do_syscall_64+0x69/0xc0 [346278.191088] ? irqentry_exit_to_user_mode+0x9/0x20 [346278.191092] ? irqentry_exit+0x19/0x30 [346278.191095] ? exc_page_fault+0x89/0x160 [346278.191097] ? asm_exc_page_fault+0x8/0x30 [346278.191102] entry_SYSCALL_64_after_hwframe+0x44/0xae The task was waiting for the refcount become to 1, but from the vmcore, we found the refcount has already been 1. It seems that the task didn't get woken up by perf_event_release_kernel() and got stuck forever. The below scenario may cause the problem. Thread A Thread B ... ... perf_event_free_task perf_event_release_kernel ... acquire event->child_mutex ... get_ctx ... release event->child_mutex acquire ctx->mutex ... perf_free_event (acquire/release event->child_mutex) ... release ctx->mutex wait_var_event acquire ctx->mutex acquire event->child_mutex # move existing events to free_list release event->child_mutex release ctx->mutex put_ctx ... ... In this case, all events of the ctx have been freed, so we couldn't find the ctx in free_list and Thread A will miss the wakeup. It's thus necessary to add a wakeup after dropping the reference. Fixes: 1cf8dfe8a661 ("perf/core: Fix race between close() and fork()") Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20240513103948.33570-1-haifeng.xu@shopee.com |
||
Linus Torvalds
|
61307b7be4 |
The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB nvA4E0DcPrUAFy144FNM0NTCb7u9vAw= =V3R/ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ... |
||
Linus Torvalds
|
70a663205d |
Probes updates for v6.10:
- tracing/probes: Adding new pseudo-types %pd and %pD support for dumping dentry name from 'struct dentry *' and file name from 'struct file *'. - uprobes: Some performance optimizations have been done. . Speed up the BPF uprobe event by delaying the fetching of the uprobe event arguments that are not used in BPF. . Avoid locking by speculatively checking whether uprobe event is valid. . Reduce lock contention by using read/write_lock instead of spinlock for uprobe list operation. This improved BPF uprobe benchmark result 43% on average. - rethook: Removes non-fatal warning messages when tracing stack from BPF and skip rcu_is_watching() validation in rethook if possible. - objpool: Optimizing objpool (which is used by kretprobes and fprobe as rethook backend storage) by inlining functions and avoid caching nr_cpu_ids because it is a const value. - fprobe: Add entry/exit callbacks types (code cleanup) - kprobes: Check ftrace was killed in kprobes if it uses ftrace. -----BEGIN PGP SIGNATURE----- iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmZFUxsbHG1hc2FtaS5o aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8b+fIH/A96/SeC5WRLhXmHfTCM IvKUea2n0b0oV/2pVfHqfkCBTICuUZ97Opd9VH9jLtjBOTh0fUOGZ2DNVGdSYfWm IIkS5dhuZxHXrSHEVYykwLHI3AOL7Q6Ny9EmOg1CNMidUkPMNtBvppsBYPlFU/B/ qQJAvOdkVOnNITCaas0+MNgepoVVKdJzdNQ1I4WrGyG8isCZBaCYKo2QcGyheCNN y8NXvnVHgmgHQ8nTaeE5AawclFzFnhwHfPQPe1kiyGrx15b8K+VYmaZxPKv33A1a KT3TKJ1Ep7s7iWFh2iPVJzIwOXCmSnvNTKfNx/MDuKtO7UVfFwytoMEaekbmv3bG VqM= =n/mW -----END PGP SIGNATURE----- Merge tag 'probes-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: - tracing/probes: Add new pseudo-types %pd and %pD support for dumping dentry name from 'struct dentry *' and file name from 'struct file *' - uprobes performance optimizations: - Speed up the BPF uprobe event by delaying the fetching of the uprobe event arguments that are not used in BPF - Avoid locking by speculatively checking whether uprobe event is valid - Reduce lock contention by using read/write_lock instead of spinlock for uprobe list operation. This improved BPF uprobe benchmark result 43% on average - rethook: Remove non-fatal warning messages when tracing stack from BPF and skip rcu_is_watching() validation in rethook if possible - objpool: Optimize objpool (which is used by kretprobes and fprobe as rethook backend storage) by inlining functions and avoid caching nr_cpu_ids because it is a const value - fprobe: Add entry/exit callbacks types (code cleanup) - kprobes: Check ftrace was killed in kprobes if it uses ftrace * tag 'probes-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: kprobe/ftrace: bail out if ftrace was killed selftests/ftrace: Fix required features for VFS type test case objpool: cache nr_possible_cpus() and avoid caching nr_cpu_ids objpool: enable inlining objpool_push() and objpool_pop() operations rethook: honor CONFIG_FTRACE_VALIDATE_RCU_IS_WATCHING in rethook_try_get() ftrace: make extra rcu_is_watching() validation check optional uprobes: reduce contention on uprobes_tree access rethook: Remove warning messages printed for finding return address of a frame. fprobe: Add entry/exit callbacks types selftests/ftrace: add fprobe test cases for VFS type "%pd" and "%pD" selftests/ftrace: add kprobe test cases for VFS type "%pd" and "%pD" Documentation: tracing: add new type '%pd' and '%pD' for kprobe tracing/probes: support '%pD' type for print struct file's name tracing/probes: support '%pd' type for print struct dentry's name uprobes: add speculative lockless system-wide uprobe filter check uprobes: prepare uprobe args buffer lazily uprobes: encapsulate preparation of uprobe args buffer |
||
Linus Torvalds
|
f4b0c4b508 |
ARM:
* Move a lot of state that was previously stored on a per vcpu basis into a per-CPU area, because it is only pertinent to the host while the vcpu is loaded. This results in better state tracking, and a smaller vcpu structure. * Add full handling of the ERET/ERETAA/ERETAB instructions in nested virtualisation. The last two instructions also require emulating part of the pointer authentication extension. As a result, the trap handling of pointer authentication has been greatly simplified. * Turn the global (and not very scalable) LPI translation cache into a per-ITS, scalable cache, making non directly injected LPIs much cheaper to make visible to the vcpu. * A batch of pKVM patches, mostly fixes and cleanups, as the upstreaming process seems to be resuming. Fingers crossed! * Allocate PPIs and SGIs outside of the vcpu structure, allowing for smaller EL2 mapping and some flexibility in implementing more or less than 32 private IRQs. * Purge stale mpidr_data if a vcpu is created after the MPIDR map has been created. * Preserve vcpu-specific ID registers across a vcpu reset. * Various minor cleanups and improvements. LoongArch: * Add ParaVirt IPI support. * Add software breakpoint support. * Add mmio trace events support. RISC-V: * Support guest breakpoints using ebreak * Introduce per-VCPU mp_state_lock and reset_cntx_lock * Virtualize SBI PMU snapshot and counter overflow interrupts * New selftests for SBI PMU and Guest ebreak * Some preparatory work for both TDX and SNP page fault handling. This also cleans up the page fault path, so that the priorities of various kinds of fauls (private page, no memory, write to read-only slot, etc.) are easier to follow. x86: * Minimize amount of time that shadow PTEs remain in the special REMOVED_SPTE state. This is a state where the mmu_lock is held for reading but concurrent accesses to the PTE have to spin; shortening its use allows other vCPUs to repopulate the zapped region while the zapper finishes tearing down the old, defunct page tables. * Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which is defined by hardware but left for software use. This lets KVM communicate its inability to map GPAs that set bits 51:48 on hosts without 5-level nested page tables. Guest firmware is expected to use the information when mapping BARs; this avoids that they end up at a legal, but unmappable, GPA. * Fixed a bug where KVM would not reject accesses to MSR that aren't supposed to exist given the vCPU model and/or KVM configuration. * As usual, a bunch of code cleanups. x86 (AMD): * Implement a new and improved API to initialize SEV and SEV-ES VMs, which will also be extendable to SEV-SNP. The new API specifies the desired encryption in KVM_CREATE_VM and then separately initializes the VM. The new API also allows customizing the desired set of VMSA features; the features affect the measurement of the VM's initial state, and therefore enabling them cannot be done tout court by the hypervisor. While at it, the new API includes two bugfixes that couldn't be applied to the old one without a flag day in userspace or without affecting the initial measurement. When a SEV-ES VM is created with the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected once the VMSA has been encrypted. Also, the FPU and AVX state will be synchronized and encrypted too. * Support for GHCB version 2 as applicable to SEV-ES guests. This, once more, is only accessible when using the new KVM_SEV_INIT2 flow for initialization of SEV-ES VMs. x86 (Intel): * An initial bunch of prerequisite patches for Intel TDX were merged. They generally don't do anything interesting. The only somewhat user visible change is a new debugging mode that checks that KVM's MMU never triggers a #VE virtualization exception in the guest. * Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to L1, as per the SDM. Generic: * Use vfree() instead of kvfree() for allocations that always use vcalloc() or __vcalloc(). * Remove .change_pte() MMU notifier - the changes to non-KVM code are small and Andrew Morton asked that I also take those through the KVM tree. The callback was only ever implemented by KVM (which was also the original user of MMU notifiers) but it had been nonfunctional ever since calls to set_pte_at_notify were wrapped with invalidate_range_start and invalidate_range_end... in 2012. Selftests: * Enhance the demand paging test to allow for better reporting and stressing of UFFD performance. * Convert the steal time test to generate TAP-friendly output. * Fix a flaky false positive in the xen_shinfo_test due to comparing elapsed time across two different clock domains. * Skip the MONITOR/MWAIT test if the host doesn't actually support MWAIT. * Avoid unnecessary use of "sudo" in the NX hugepage test wrapper shell script, to play nice with running in a minimal userspace environment. * Allow skipping the RSEQ test's sanity check that the vCPU was able to complete a reasonable number of KVM_RUNs, as the assert can fail on a completely valid setup. If the test is run on a large-ish system that is otherwise idle, and the test isn't affined to a low-ish number of CPUs, the vCPU task can be repeatedly migrated to CPUs that are in deep sleep states, which results in the vCPU having very little net runtime before the next migration due to high wakeup latencies. * Define _GNU_SOURCE for all selftests to fix a warning that was introduced by a change to kselftest_harness.h late in the 6.9 cycle, and because forcing every test to #define _GNU_SOURCE is painful. * Provide a global pseudo-RNG instance for all tests, so that library code can generate random, but determinstic numbers. * Use the global pRNG to randomly force emulation of select writes from guest code on x86, e.g. to help validate KVM's emulation of locked accesses. * Allocate and initialize x86's GDT, IDT, TSS, segments, and default exception handlers at VM creation, instead of forcing tests to manually trigger the related setup. Documentation: * Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmZE878UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroOukQf+LcvZsWtrC7Wd5K9SQbYXaS4Rk6P6 JHoQW2d0hUN893J2WibEw+l1J/0vn5JumqHXyZgJ7CbaMtXkWWQTwDSDLuURUKpv XNB3Sb17G87NH+s1tOh0tA9h5upbtlHVHvrtIwdbb9+XHgQ6HTL4uk+HdfO/p9fW cWBEZAKoWcCIa99Numv3pmq5vdrvBlNggwBugBS8TH69EKMw+V1Vu1SFkIdNDTQk NJJ28cohoP3wnwlIHaXSmU4RujipPH3Lm/xupyA5MwmzO713eq2yUqV49jzhD5/I MA4Ruvgrdm4wpp89N9lQMyci91u6q7R9iZfMu0tSg2qYI3UPKIdstd8sOA== =2lED -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM updates from Paolo Bonzini: "ARM: - Move a lot of state that was previously stored on a per vcpu basis into a per-CPU area, because it is only pertinent to the host while the vcpu is loaded. This results in better state tracking, and a smaller vcpu structure. - Add full handling of the ERET/ERETAA/ERETAB instructions in nested virtualisation. The last two instructions also require emulating part of the pointer authentication extension. As a result, the trap handling of pointer authentication has been greatly simplified. - Turn the global (and not very scalable) LPI translation cache into a per-ITS, scalable cache, making non directly injected LPIs much cheaper to make visible to the vcpu. - A batch of pKVM patches, mostly fixes and cleanups, as the upstreaming process seems to be resuming. Fingers crossed! - Allocate PPIs and SGIs outside of the vcpu structure, allowing for smaller EL2 mapping and some flexibility in implementing more or less than 32 private IRQs. - Purge stale mpidr_data if a vcpu is created after the MPIDR map has been created. - Preserve vcpu-specific ID registers across a vcpu reset. - Various minor cleanups and improvements. LoongArch: - Add ParaVirt IPI support - Add software breakpoint support - Add mmio trace events support RISC-V: - Support guest breakpoints using ebreak - Introduce per-VCPU mp_state_lock and reset_cntx_lock - Virtualize SBI PMU snapshot and counter overflow interrupts - New selftests for SBI PMU and Guest ebreak - Some preparatory work for both TDX and SNP page fault handling. This also cleans up the page fault path, so that the priorities of various kinds of fauls (private page, no memory, write to read-only slot, etc.) are easier to follow. x86: - Minimize amount of time that shadow PTEs remain in the special REMOVED_SPTE state. This is a state where the mmu_lock is held for reading but concurrent accesses to the PTE have to spin; shortening its use allows other vCPUs to repopulate the zapped region while the zapper finishes tearing down the old, defunct page tables. - Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which is defined by hardware but left for software use. This lets KVM communicate its inability to map GPAs that set bits 51:48 on hosts without 5-level nested page tables. Guest firmware is expected to use the information when mapping BARs; this avoids that they end up at a legal, but unmappable, GPA. - Fixed a bug where KVM would not reject accesses to MSR that aren't supposed to exist given the vCPU model and/or KVM configuration. - As usual, a bunch of code cleanups. x86 (AMD): - Implement a new and improved API to initialize SEV and SEV-ES VMs, which will also be extendable to SEV-SNP. The new API specifies the desired encryption in KVM_CREATE_VM and then separately initializes the VM. The new API also allows customizing the desired set of VMSA features; the features affect the measurement of the VM's initial state, and therefore enabling them cannot be done tout court by the hypervisor. While at it, the new API includes two bugfixes that couldn't be applied to the old one without a flag day in userspace or without affecting the initial measurement. When a SEV-ES VM is created with the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected once the VMSA has been encrypted. Also, the FPU and AVX state will be synchronized and encrypted too. - Support for GHCB version 2 as applicable to SEV-ES guests. This, once more, is only accessible when using the new KVM_SEV_INIT2 flow for initialization of SEV-ES VMs. x86 (Intel): - An initial bunch of prerequisite patches for Intel TDX were merged. They generally don't do anything interesting. The only somewhat user visible change is a new debugging mode that checks that KVM's MMU never triggers a #VE virtualization exception in the guest. - Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to L1, as per the SDM. Generic: - Use vfree() instead of kvfree() for allocations that always use vcalloc() or __vcalloc(). - Remove .change_pte() MMU notifier - the changes to non-KVM code are small and Andrew Morton asked that I also take those through the KVM tree. The callback was only ever implemented by KVM (which was also the original user of MMU notifiers) but it had been nonfunctional ever since calls to set_pte_at_notify were wrapped with invalidate_range_start and invalidate_range_end... in 2012. Selftests: - Enhance the demand paging test to allow for better reporting and stressing of UFFD performance. - Convert the steal time test to generate TAP-friendly output. - Fix a flaky false positive in the xen_shinfo_test due to comparing elapsed time across two different clock domains. - Skip the MONITOR/MWAIT test if the host doesn't actually support MWAIT. - Avoid unnecessary use of "sudo" in the NX hugepage test wrapper shell script, to play nice with running in a minimal userspace environment. - Allow skipping the RSEQ test's sanity check that the vCPU was able to complete a reasonable number of KVM_RUNs, as the assert can fail on a completely valid setup. If the test is run on a large-ish system that is otherwise idle, and the test isn't affined to a low-ish number of CPUs, the vCPU task can be repeatedly migrated to CPUs that are in deep sleep states, which results in the vCPU having very little net runtime before the next migration due to high wakeup latencies. - Define _GNU_SOURCE for all selftests to fix a warning that was introduced by a change to kselftest_harness.h late in the 6.9 cycle, and because forcing every test to #define _GNU_SOURCE is painful. - Provide a global pseudo-RNG instance for all tests, so that library code can generate random, but determinstic numbers. - Use the global pRNG to randomly force emulation of select writes from guest code on x86, e.g. to help validate KVM's emulation of locked accesses. - Allocate and initialize x86's GDT, IDT, TSS, segments, and default exception handlers at VM creation, instead of forcing tests to manually trigger the related setup. Documentation: - Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (225 commits) selftests/kvm: remove dead file KVM: selftests: arm64: Test vCPU-scoped feature ID registers KVM: selftests: arm64: Test that feature ID regs survive a reset KVM: selftests: arm64: Store expected register value in set_id_regs KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope KVM: arm64: Only reset vCPU-scoped feature ID regs once KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs() KVM: arm64: Rename is_id_reg() to imply VM scope KVM: arm64: Destroy mpidr_data for 'late' vCPU creation KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support KVM: arm64: Fix hvhe/nvhe early alias parsing KVM: SEV: Allow per-guest configuration of GHCB protocol version KVM: SEV: Add GHCB handling for termination requests KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests KVM: SEV: Add support to handle AP reset MSR protocol KVM: x86: Explicitly zero kvm_caps during vendor module load KVM: x86: Fully re-initialize supported_mce_cap on vendor module load KVM: x86: Fully re-initialize supported_vm_types on vendor module load KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfns KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error values ... |
||
Jonathan Haslam
|
0dc715295d |
uprobes: reduce contention on uprobes_tree access
Active uprobes are stored in an RB tree and accesses to this tree are dominated by read operations. Currently these accesses are serialized by a spinlock but this leads to enormous contention when large numbers of threads are executing active probes. This patch converts the spinlock used to serialize access to the uprobes_tree RB tree into a reader-writer spinlock. This lock type aligns naturally with the overwhelmingly read-only nature of the tree usage here. Although the addition of reader-writer spinlocks are discouraged [0], this fix is proposed as an interim solution while an RCU based approach is implemented (that work is in a nascent form). This fix also has the benefit of being trivial, self contained and therefore simple to backport. We have used a uprobe benchmark from the BPF selftests [1] to estimate the improvements. Each block of results below show 1 line per execution of the benchmark ("the "Summary" line) and each line is a run with one more thread added - a thread is a "producer". The lines are edited to remove extraneous output. The tests were executed with this driver script: for num_threads in {1..20} do sudo ./bench -a -p $num_threads trig-uprobe-nop | grep Summary done SPINLOCK (BEFORE) ================== Summary: hits 1.396 ± 0.007M/s ( 1.396M/prod) Summary: hits 1.656 ± 0.016M/s ( 0.828M/prod) Summary: hits 2.246 ± 0.008M/s ( 0.749M/prod) Summary: hits 2.114 ± 0.010M/s ( 0.529M/prod) Summary: hits 2.013 ± 0.009M/s ( 0.403M/prod) Summary: hits 1.753 ± 0.008M/s ( 0.292M/prod) Summary: hits 1.847 ± 0.001M/s ( 0.264M/prod) Summary: hits 1.889 ± 0.001M/s ( 0.236M/prod) Summary: hits 1.833 ± 0.006M/s ( 0.204M/prod) Summary: hits 1.900 ± 0.003M/s ( 0.190M/prod) Summary: hits 1.918 ± 0.006M/s ( 0.174M/prod) Summary: hits 1.925 ± 0.002M/s ( 0.160M/prod) Summary: hits 1.837 ± 0.001M/s ( 0.141M/prod) Summary: hits 1.898 ± 0.001M/s ( 0.136M/prod) Summary: hits 1.799 ± 0.016M/s ( 0.120M/prod) Summary: hits 1.850 ± 0.005M/s ( 0.109M/prod) Summary: hits 1.816 ± 0.002M/s ( 0.101M/prod) Summary: hits 1.787 ± 0.001M/s ( 0.094M/prod) Summary: hits 1.764 ± 0.002M/s ( 0.088M/prod) RW SPINLOCK (AFTER) =================== Summary: hits 1.444 ± 0.020M/s ( 1.444M/prod) Summary: hits 2.279 ± 0.011M/s ( 1.139M/prod) Summary: hits 3.422 ± 0.014M/s ( 1.141M/prod) Summary: hits 3.565 ± 0.017M/s ( 0.891M/prod) Summary: hits 2.671 ± 0.013M/s ( 0.534M/prod) Summary: hits 2.409 ± 0.005M/s ( 0.401M/prod) Summary: hits 2.485 ± 0.008M/s ( 0.355M/prod) Summary: hits 2.496 ± 0.003M/s ( 0.312M/prod) Summary: hits 2.585 ± 0.002M/s ( 0.287M/prod) Summary: hits 2.908 ± 0.011M/s ( 0.291M/prod) Summary: hits 2.346 ± 0.016M/s ( 0.213M/prod) Summary: hits 2.804 ± 0.004M/s ( 0.234M/prod) Summary: hits 2.556 ± 0.001M/s ( 0.197M/prod) Summary: hits 2.754 ± 0.004M/s ( 0.197M/prod) Summary: hits 2.482 ± 0.002M/s ( 0.165M/prod) Summary: hits 2.412 ± 0.005M/s ( 0.151M/prod) Summary: hits 2.710 ± 0.003M/s ( 0.159M/prod) Summary: hits 2.826 ± 0.005M/s ( 0.157M/prod) Summary: hits 2.718 ± 0.001M/s ( 0.143M/prod) Summary: hits 2.844 ± 0.006M/s ( 0.142M/prod) The numbers in parenthesis give averaged throughput per thread which is of greatest interest here as a measure of scalability. Improvements are in the order of 22 - 68% with this particular benchmark (mean = 43%). V2: - Updated commit message to include benchmark results. [0] https://docs.kernel.org/locking/spinlocks.html [1] https://github.com/torvalds/linux/blob/master/tools/testing/selftests/bpf/benchs/bench_trigger.c Link: https://lore.kernel.org/all/20240422102306.6026-1-jonathan.haslam@gmail.com/ Signed-off-by: Jonathan Haslam <jonathan.haslam@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
David Hildenbrand
|
25176ad09c |
mm/treewide: rename CONFIG_HAVE_FAST_GUP to CONFIG_HAVE_GUP_FAST
Nowadays, we call it "GUP-fast", the external interface includes functions like "get_user_pages_fast()", and we renamed all internal functions to reflect that as well. Let's make the config option reflect that. Link: https://lkml.kernel.org/r/20240402125516.223131-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ingo Molnar
|
854dd99b5d |
perf/bpf: Mark perf_event_set_bpf_handler() and perf_event_free_bpf_handler() as inline too
They can be unused with certain Kconfig variations: kernel/events/core.c:9622:13: warning: ‘perf_event_free_bpf_handler’ defined but not used [-Wunused-function] kernel/events/core.c:9586:12: warning: ‘perf_event_set_bpf_handler’ defined but not used [-Wunused-function] Since they are both single-use, mark them inline. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: linux-kernel@vger.kernel.org Cc: Kyle Huey <khuey@kylehuey.com> |
||
Kyle Huey
|
fd20bb51ed |
perf/ring_buffer: Trigger IO signals for watermark_wakeup
perf_output_wakeup() already marks the perf event fd available for polling. Trigger IO signals with FASYNC too. Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240413141618.4160-3-khuey@kylehuey.com |
||
Kyle Huey
|
4a01398066 |
perf: Move perf_event_fasync() to perf_event.h
This will allow it to be called from perf_output_wakeup(). Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240413141618.4160-2-khuey@kylehuey.com |
||
Ingo Molnar
|
93d3fde7fd |
perf/bpf: Change the !CONFIG_BPF_SYSCALL stubs to static inlines
Otherwise the compiler will be unhappy if they go unused, which they do on allnoconfigs. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Kyle Huey <me@kylehuey.com> Link: https://lore.kernel.org/r/ZhkE9F4dyfR2dH2D@gmail.com |
||
Kyle Huey
|
c4fcc7d1f4 |
perf/bpf: Allow a BPF program to suppress all sample side effects
Returning zero from a BPF program attached to a perf event already suppresses any data output. Return early from __perf_event_overflow() in this case so it will also suppress event_limit accounting, SIGTRAP generation, and F_ASYNC signalling. Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240412015019.7060-7-khuey@kylehuey.com |
||
Kyle Huey
|
f11f10bfa1 |
perf/bpf: Call BPF handler directly, not through overflow machinery
To ultimately allow BPF programs attached to perf events to completely suppress all of the effects of a perf event overflow (rather than just the sample output, as they do today), call bpf_overflow_handler() from __perf_event_overflow() directly rather than modifying struct perf_event's overflow_handler. Return the BPF program's return value from bpf_overflow_handler() so that __perf_event_overflow() knows how to proceed. Remove the now unnecessary orig_overflow_handler from struct perf_event. This patch is solely a refactoring and results in no behavior change. Suggested-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240412015019.7060-5-khuey@kylehuey.com |
||
Kyle Huey
|
924d934393 |
perf/bpf: Create bpf_overflow_handler() stub for !CONFIG_BPF_SYSCALL
This will allow __perf_event_overflow() (which is independent of CONFIG_BPF_SYSCALL) to call bpf_overflow_handler(). Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240412015019.7060-3-khuey@kylehuey.com |
||
Kyle Huey
|
4c03fe11b9 |
perf/bpf: Reorder bpf_overflow_handler() ahead of __perf_event_overflow()
This will allow __perf_event_overflow() to call bpf_overflow_handler(). Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240412015019.7060-2-khuey@kylehuey.com |
||
Paolo Bonzini
|
f7842747d1 |
mm: replace set_pte_at_notify() with just set_pte_at()
With the demise of the .change_pte() MMU notifier callback, there is no notification happening in set_pte_at_notify(). It is a synonym of set_pte_at() and can be replaced with it. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Message-ID: <20240405115815.3226315-5-pbonzini@redhat.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Namhyung Kim
|
f38628b06c |
perf/core: Reduce PMU access to adjust sample freq
In perf_adjust_freq_unthr_context(), it first starts the event and then stop unnecessarily to adjust the sampling frequency if the event is throttled. For a throttled non-frequency event, it doesn't have a freq so no need to adjust. Just starting the event would be ok. For a frequency event, whether it's throttled or not, it needs to stop before adjusting the frequency. That means it should not start the even if it was throttled. I tried to skip calling the stop callback, but it didn't work well since the event count might not be up to date. It should call the stop callback with PERF_EF_UPDATE anyway. However not calling start would prevent unnecessary MSR accesses (which can be costly) for already stopped events as stop state is saved in the hw config. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ian Rogers <irogers@google.com> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20240207050545.2727923-2-namhyung@kernel.org |
||
Namhyung Kim
|
0259bf63f7 |
perf/core: Optimize perf_adjust_freq_unthr_context()
It was unnecessarily disabling and enabling PMUs for each event. It should be done at PMU level. Add pmu_ctx->nr_freq counter to check it at each PMU. As PMU context has separate active lists for pinned group and flexible group, factor out a new function to do the job. Another minor optimization is that it can skip PMUs w/ CAP_NO_INTERRUPT even if it needs to unthrottle sampling events. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Mingwei Zhang <mizhang@google.com> Reviewed-by: Ian Rogers <irogers@google.com> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20240207050545.2727923-1-namhyung@kernel.org |
||
Linus Torvalds
|
902861e34c |
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx TMNhHfyiHYDTx/GAV9NXW84tasJSDgA= =TG55 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ... |
||
Andrii Nakryiko
|
66c8473135 |
bpf: move sleepable flag from bpf_prog_aux to bpf_prog
prog->aux->sleepable is checked very frequently as part of (some) BPF program run hot paths. So this extra aux indirection seems wasteful and on busy systems might cause unnecessary memory cache misses. Let's move sleepable flag into prog itself to eliminate unnecessary pointer dereference. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Message-ID: <20240309004739.2961431-1-andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Jakub Kicinski
|
4b2765ae41 |
bpf-next-for-netdev
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZeEKVAAKCRDbK58LschI g7oYAQD5Jlv4fIVTvxvfZrTTZ2tU+OsPa75mc8SDKwpash3YygEA8kvESy8+t6pg D6QmSf1DIZdFoSp/bV+pfkNWMeR8gwg= =mTAj -----END PGP SIGNATURE----- Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Daniel Borkmann says: ==================== pull-request: bpf-next 2024-02-29 We've added 119 non-merge commits during the last 32 day(s) which contain a total of 150 files changed, 3589 insertions(+), 995 deletions(-). The main changes are: 1) Extend the BPF verifier to enable static subprog calls in spin lock critical sections, from Kumar Kartikeya Dwivedi. 2) Fix confusing and incorrect inference of PTR_TO_CTX argument type in BPF global subprogs, from Andrii Nakryiko. 3) Larger batch of riscv BPF JIT improvements and enabling inlining of the bpf_kptr_xchg() for RV64, from Pu Lehui. 4) Allow skeleton users to change the values of the fields in struct_ops maps at runtime, from Kui-Feng Lee. 5) Extend the verifier's capabilities of tracking scalars when they are spilled to stack, especially when the spill or fill is narrowing, from Maxim Mikityanskiy & Eduard Zingerman. 6) Various BPF selftest improvements to fix errors under gcc BPF backend, from Jose E. Marchesi. 7) Avoid module loading failure when the module trying to register a struct_ops has its BTF section stripped, from Geliang Tang. 8) Annotate all kfuncs in .BTF_ids section which eventually allows for automatic kfunc prototype generation from bpftool, from Daniel Xu. 9) Several updates to the instruction-set.rst IETF standardization document, from Dave Thaler. 10) Shrink the size of struct bpf_map resp. bpf_array, from Alexei Starovoitov. 11) Initial small subset of BPF verifier prepwork for sleepable bpf_timer, from Benjamin Tissoires. 12) Fix bpftool to be more portable to musl libc by using POSIX's basename(), from Arnaldo Carvalho de Melo. 13) Add libbpf support to gcc in CORE macro definitions, from Cupertino Miranda. 14) Remove a duplicate type check in perf_event_bpf_event, from Florian Lehner. 15) Fix bpf_spin_{un,}lock BPF helpers to actually annotate them with notrace correctly, from Yonghong Song. 16) Replace the deprecated bpf_lpm_trie_key 0-length array with flexible array to fix build warnings, from Kees Cook. 17) Fix resolve_btfids cross-compilation to non host-native endianness, from Viktor Malik. * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (119 commits) selftests/bpf: Test if shadow types work correctly. bpftool: Add an example for struct_ops map and shadow type. bpftool: Generated shadow variables for struct_ops maps. libbpf: Convert st_ops->data to shadow type. libbpf: Set btf_value_type_id of struct bpf_map for struct_ops. bpf: Replace bpf_lpm_trie_key 0-length array with flexible array bpf, arm64: use bpf_prog_pack for memory management arm64: patching: implement text_poke API bpf, arm64: support exceptions arm64: stacktrace: Implement arch_bpf_stack_walk() for the BPF JIT bpf: add is_async_callback_calling_insn() helper bpf: introduce in_sleepable() helper bpf: allow more maps in sleepable bpf programs selftests/bpf: Test case for lacking CFI stub functions. bpf: Check cfi_stubs before registering a struct_ops type. bpf: Clarify batch lookup/lookup_and_delete semantics bpf, docs: specify which BPF_ABS and BPF_IND fields were zero bpf, docs: Fix typos in instruction-set.rst selftests/bpf: update tcp_custom_syncookie to use scalar packet offset bpf: Shrink size of struct bpf_map/bpf_array. ... ==================== Link: https://lore.kernel.org/r/20240301001625.8800-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Kefeng Wang
|
6b27cc6c66 |
mm: convert mm_counter_file() to take a folio
Now all callers of mm_counter_file() have a folio, convert mm_counter_file() to take a folio. Saves a call to compound_head() hidden inside PageSwapBacked(). Link: https://lkml.kernel.org/r/20240111152429.3374566-11-willy@infradead.org Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Florian Lehner
|
aecaa3ed48 |
perf/bpf: Fix duplicate type check
Remove the duplicate check on type and unify result. Signed-off-by: Florian Lehner <dev@der-flo.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <song@kernel.org> Link: https://lore.kernel.org/bpf/20240120150920.3370-1-dev@der-flo.net |
||
David Hildenbrand
|
4dca82d141 |
uprobes: use pagesize-aligned virtual address when replacing pages
uprobes passes an unaligned page mapping address to folio_add_new_anon_rmap(), which ends up triggering a VM_BUG_ON() we recently extended in commit 372cbd4d5a066 ("mm: non-pmd-mappable, large folios for folio_add_new_anon_rmap()"). Arguably, this is uprobes code doing something wrong; however, for the time being it would have likely worked in rmap code because __folio_set_anon() would set folio->index to the same value. Looking at __replace_page(), we'd also pass slightly wrong values to mmu_notifier_range_init(), page_vma_mapped_walk(), flush_cache_page(), ptep_clear_flush() and set_pte_at_notify(). I suspect most of them are fine, but let's just mark the introducing commit as the one needed fixing. I don't think CC stable is warranted. We'll add more sanity checks in rmap code separately, to make sure that we always get properly aligned addresses. Link: https://lkml.kernel.org/r/20240115100731.91007-1-david@redhat.com Fixes: c517ee744b96 ("uprobes: __replace_page() should not use page_address_in_vma()") Signed-off-by: David Hildenbrand <david@redhat.com> Reported-by: Jiri Olsa <jolsa@kernel.org> Closes: https://lkml.kernel.org/r/ZaMR2EWN-HvlCfUl@krava Tested-by: Jiri Olsa <jolsa@kernel.org> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Shishkin Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
fb46e22a9e |
Many singleton patches against the MM code. The patch series which
are included in this merge do the following: - Peng Zhang has done some mapletree maintainance work in the series "maple_tree: add mt_free_one() and mt_attr() helpers" "Some cleanups of maple tree" - In the series "mm: use memmap_on_memory semantics for dax/kmem" Vishal Verma has altered the interworking between memory-hotplug and dax/kmem so that newly added 'device memory' can more easily have its memmap placed within that newly added memory. - Matthew Wilcox continues folio-related work (including a few fixes) in the patch series "Add folio_zero_tail() and folio_fill_tail()" "Make folio_start_writeback return void" "Fix fault handler's handling of poisoned tail pages" "Convert aops->error_remove_page to ->error_remove_folio" "Finish two folio conversions" "More swap folio conversions" - Kefeng Wang has also contributed folio-related work in the series "mm: cleanup and use more folio in page fault" - Jim Cromie has improved the kmemleak reporting output in the series "tweak kmemleak report format". - In the series "stackdepot: allow evicting stack traces" Andrey Konovalov to permits clients (in this case KASAN) to cause eviction of no longer needed stack traces. - Charan Teja Kalla has fixed some accounting issues in the page allocator's atomic reserve calculations in the series "mm: page_alloc: fixes for high atomic reserve caluculations". - Dmitry Rokosov has added to the samples/ dorectory some sample code for a userspace memcg event listener application. See the series "samples: introduce cgroup events listeners". - Some mapletree maintanance work from Liam Howlett in the series "maple_tree: iterator state changes". - Nhat Pham has improved zswap's approach to writeback in the series "workload-specific and memory pressure-driven zswap writeback". - DAMON/DAMOS feature and maintenance work from SeongJae Park in the series "mm/damon: let users feed and tame/auto-tune DAMOS" "selftests/damon: add Python-written DAMON functionality tests" "mm/damon: misc updates for 6.8" - Yosry Ahmed has improved memcg's stats flushing in the series "mm: memcg: subtree stats flushing and thresholds". - In the series "Multi-size THP for anonymous memory" Ryan Roberts has added a runtime opt-in feature to transparent hugepages which improves performance by allocating larger chunks of memory during anonymous page faults. - Matthew Wilcox has also contributed some cleanup and maintenance work against eh buffer_head code int he series "More buffer_head cleanups". - Suren Baghdasaryan has done work on Andrea Arcangeli's series "userfaultfd move option". UFFDIO_MOVE permits userspace heap compaction algorithms to move userspace's pages around rather than UFFDIO_COPY'a alloc/copy/free. - Stefan Roesch has developed a "KSM Advisor", in the series "mm/ksm: Add ksm advisor". This is a governor which tunes KSM's scanning aggressiveness in response to userspace's current needs. - Chengming Zhou has optimized zswap's temporary working memory use in the series "mm/zswap: dstmem reuse optimizations and cleanups". - Matthew Wilcox has performed some maintenance work on the writeback code, both code and within filesystems. The series is "Clean up the writeback paths". - Andrey Konovalov has optimized KASAN's handling of alloc and free stack traces for secondary-level allocators, in the series "kasan: save mempool stack traces". - Andrey also performed some KASAN maintenance work in the series "kasan: assorted clean-ups". - David Hildenbrand has gone to town on the rmap code. Cleanups, more pte batching, folio conversions and more. See the series "mm/rmap: interface overhaul". - Kinsey Ho has contributed some maintenance work on the MGLRU code in the series "mm/mglru: Kconfig cleanup". - Matthew Wilcox has contributed lruvec page accounting code cleanups in the series "Remove some lruvec page accounting functions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27 Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU= =0NHs -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Peng Zhang has done some mapletree maintainance work in the series 'maple_tree: add mt_free_one() and mt_attr() helpers' 'Some cleanups of maple tree' - In the series 'mm: use memmap_on_memory semantics for dax/kmem' Vishal Verma has altered the interworking between memory-hotplug and dax/kmem so that newly added 'device memory' can more easily have its memmap placed within that newly added memory. - Matthew Wilcox continues folio-related work (including a few fixes) in the patch series 'Add folio_zero_tail() and folio_fill_tail()' 'Make folio_start_writeback return void' 'Fix fault handler's handling of poisoned tail pages' 'Convert aops->error_remove_page to ->error_remove_folio' 'Finish two folio conversions' 'More swap folio conversions' - Kefeng Wang has also contributed folio-related work in the series 'mm: cleanup and use more folio in page fault' - Jim Cromie has improved the kmemleak reporting output in the series 'tweak kmemleak report format'. - In the series 'stackdepot: allow evicting stack traces' Andrey Konovalov to permits clients (in this case KASAN) to cause eviction of no longer needed stack traces. - Charan Teja Kalla has fixed some accounting issues in the page allocator's atomic reserve calculations in the series 'mm: page_alloc: fixes for high atomic reserve caluculations'. - Dmitry Rokosov has added to the samples/ dorectory some sample code for a userspace memcg event listener application. See the series 'samples: introduce cgroup events listeners'. - Some mapletree maintanance work from Liam Howlett in the series 'maple_tree: iterator state changes'. - Nhat Pham has improved zswap's approach to writeback in the series 'workload-specific and memory pressure-driven zswap writeback'. - DAMON/DAMOS feature and maintenance work from SeongJae Park in the series 'mm/damon: let users feed and tame/auto-tune DAMOS' 'selftests/damon: add Python-written DAMON functionality tests' 'mm/damon: misc updates for 6.8' - Yosry Ahmed has improved memcg's stats flushing in the series 'mm: memcg: subtree stats flushing and thresholds'. - In the series 'Multi-size THP for anonymous memory' Ryan Roberts has added a runtime opt-in feature to transparent hugepages which improves performance by allocating larger chunks of memory during anonymous page faults. - Matthew Wilcox has also contributed some cleanup and maintenance work against eh buffer_head code int he series 'More buffer_head cleanups'. - Suren Baghdasaryan has done work on Andrea Arcangeli's series 'userfaultfd move option'. UFFDIO_MOVE permits userspace heap compaction algorithms to move userspace's pages around rather than UFFDIO_COPY'a alloc/copy/free. - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm: Add ksm advisor'. This is a governor which tunes KSM's scanning aggressiveness in response to userspace's current needs. - Chengming Zhou has optimized zswap's temporary working memory use in the series 'mm/zswap: dstmem reuse optimizations and cleanups'. - Matthew Wilcox has performed some maintenance work on the writeback code, both code and within filesystems. The series is 'Clean up the writeback paths'. - Andrey Konovalov has optimized KASAN's handling of alloc and free stack traces for secondary-level allocators, in the series 'kasan: save mempool stack traces'. - Andrey also performed some KASAN maintenance work in the series 'kasan: assorted clean-ups'. - David Hildenbrand has gone to town on the rmap code. Cleanups, more pte batching, folio conversions and more. See the series 'mm/rmap: interface overhaul'. - Kinsey Ho has contributed some maintenance work on the MGLRU code in the series 'mm/mglru: Kconfig cleanup'. - Matthew Wilcox has contributed lruvec page accounting code cleanups in the series 'Remove some lruvec page accounting functions'" * tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits) mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER mm, treewide: introduce NR_PAGE_ORDERS selftests/mm: add separate UFFDIO_MOVE test for PMD splitting selftests/mm: skip test if application doesn't has root privileges selftests/mm: conform test to TAP format output selftests: mm: hugepage-mmap: conform to TAP format output selftests/mm: gup_test: conform test to TAP format output mm/selftests: hugepage-mremap: conform test to TAP format output mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large mm/memcontrol: remove __mod_lruvec_page_state() mm/khugepaged: use a folio more in collapse_file() slub: use a folio in __kmalloc_large_node slub: use folio APIs in free_large_kmalloc() slub: use alloc_pages_node() in alloc_slab_page() mm: remove inc/dec lruvec page state functions mm: ratelimit stat flush from workingset shrinker kasan: stop leaking stack trace handles mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE mm/mglru: add dummy pmd_dirty() ... |
||
Linus Torvalds
|
aac4de465a |
Performance events changes for v6.8 are:
- Add branch stack counters ABI extension to better capture the growing amount of information the PMU exposes via branch stack sampling. There's matching tooling support. - Fix race when creating the nr_addr_filters sysfs file - Add Intel Sierra Forest and Grand Ridge intel/cstate PMU support. - Add Intel Granite Rapids, Sierra Forest and Grand Ridge uncore PMU support. - Misc cleanups & fixes. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWb4lURHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1jlnQ/+NSzrPQ9hEiS5a1iMMxdwC6IoXCmeFVsv s5NsGaVC7FEgjm3oCfvQlP63HolMO9R7TNLZsgINzOda5IHtE7WUcgBK7gbZr+NT WabdTyFrdmUr+Br0rLrEe0bxDSQU7r41ptqKE5HZRM9/3SbLhWgaXSJbfFAG2JV0 xboZ/2qzb7Puch6VTWv1YhuIpr1Pi817As4SOo7JR4V8jBB2bh2eZ7XBN1z23aw2 xuglbYml5gs4dOaFTqkRLWyn2PmrZ9wYKcdp63FVUscZ4LxvSw749BxEcNpTbxLp PT6uXIKw9PnStNfscfrsk6fDocVJzqrOK71blgiOKbmhWTE0UimEpFf1Hd3ooewg hFp3hmkE5Bc2MTUnwivkBxj96fz5rXH+3+Cue/5NsvDNlhlkswIIxzDw8M1G4rOI KQMDUYFOhQPa3Hi1lSp2SgHI5AcYHudepr/Z3QMxD3iLs+Wo2cmDcp8d2VrMLfb7 GHSITG592iYcZPYsJosxby8CSFaUPxIl9l3AODQwWuEjd4PcOYa6iB2HbEa/mC3R wXcs8mFIMAaH/HRYUlqUDA5pOqN5chb13iDtS4JqJqBKyWgdrDLCVxoZSQvB64+I bldyy1e5oQSVVwJ42WLkUK3Eld2x75ki1JLZFwMgYuOgQv3jfu2VNenUWJ5ig0La dPpHP8PwOoc= =2O/5 -----END PGP SIGNATURE----- Merge tag 'perf-core-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull performance events updates from Ingo Molnar: - Add branch stack counters ABI extension to better capture the growing amount of information the PMU exposes via branch stack sampling. There's matching tooling support. - Fix race when creating the nr_addr_filters sysfs file - Add Intel Sierra Forest and Grand Ridge intel/cstate PMU support - Add Intel Granite Rapids, Sierra Forest and Grand Ridge uncore PMU support - Misc cleanups & fixes * tag 'perf-core-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/uncore: Factor out topology_gidnid_map() perf/x86/intel/uncore: Fix NULL pointer dereference issue in upi_fill_topology() perf/x86/amd: Reject branch stack for IBS events perf/x86/intel/uncore: Support Sierra Forest and Grand Ridge perf/x86/intel/uncore: Support IIO free-running counters on GNR perf/x86/intel/uncore: Support Granite Rapids perf/x86/uncore: Use u64 to replace unsigned for the uncore offsets array perf/x86/intel/uncore: Generic uncore_get_uncores and MMIO format of SPR perf: Fix the nr_addr_filters fix perf/x86/intel/cstate: Add Grand Ridge support perf/x86/intel/cstate: Add Sierra Forest support x86/smp: Export symbol cpu_clustergroup_mask() perf/x86/intel/cstate: Cleanup duplicate attr_groups perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file perf/x86/intel: Support branch counters logging perf/x86/intel: Reorganize attrs and is_visible perf: Add branch_sample_call_stack perf/x86: Add PERF_X86_EVENT_NEEDS_BRANCH_STACK flag perf: Add branch stack counters |
||
Kirill A. Shutemov
|
5e0a760b44 |
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has changed the definition of MAX_ORDER to be inclusive. This has caused issues with code that was not yet upstream and depended on the previous definition. To draw attention to the altered meaning of the define, rename MAX_ORDER to MAX_PAGE_ORDER. Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
5cc9695f06 |
kernel/events/uprobes: page_remove_rmap() -> folio_remove_rmap_pte()
Let's convert __replace_page(). Link: https://lkml.kernel.org/r/20231220224504.646757-25-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
2853b66b60 |
mm: remove some calls to page_add_new_anon_rmap()
We already have the folio in these functions, we just need to use it. folio_add_new_anon_rmap() didn't exist at the time they were converted to folios. Link: https://lkml.kernel.org/r/20231211162214.2146080-5-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mark Rutland
|
7e2c1e4b34 |
perf: Fix perf_event_validate_size() lockdep splat
When lockdep is enabled, the for_each_sibling_event(sibling, event) macro checks that event->ctx->mutex is held. When creating a new group leader event, we call perf_event_validate_size() on a partially initialized event where event->ctx is NULL, and so when for_each_sibling_event() attempts to check event->ctx->mutex, we get a splat, as reported by Lucas De Marchi: WARNING: CPU: 8 PID: 1471 at kernel/events/core.c:1950 __do_sys_perf_event_open+0xf37/0x1080 This only happens for a new event which is its own group_leader, and in this case there cannot be any sibling events. Thus it's safe to skip the check for siblings, which avoids having to make invasive and ugly changes to for_each_sibling_event(). Avoid the splat by bailing out early when the new event is its own group_leader. Fixes: 382c27f4ed28f803 ("perf: Fix perf_event_validate_size()") Closes: https://lore.kernel.org/lkml/20231214000620.3081018-1-lucas.demarchi@intel.com/ Closes: https://lore.kernel.org/lkml/ZXpm6gQ%2Fd59jGsuW@xpf.sh.intel.com/ Reported-by: Lucas De Marchi <lucas.demarchi@intel.com> Reported-by: Pengfei Xu <pengfei.xu@intel.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231215112450.3972309-1-mark.rutland@arm.com |
||
Peter Zijlstra
|
382c27f4ed |
perf: Fix perf_event_validate_size()
Budimir noted that perf_event_validate_size() only checks the size of the newly added event, even though the sizes of all existing events can also change due to not all events having the same read_format. When we attach the new event, perf_group_attach(), we do re-compute the size for all events. Fixes: a723968c0ed3 ("perf: Fix u16 overflows") Reported-by: Budimir Markovic <markovicbudimir@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> |
||
Peter Zijlstra
|
388a1fb7da |
perf: Fix the nr_addr_filters fix
Thomas reported that commit 652ffc2104ec ("perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file") made the entire attribute group vanish, instead of only the nr_addr_filters attribute. Additionally a stray return. Insufficient coffee was involved with both writing and merging the patch. Fixes: 652ffc2104ec ("perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file") Reported-by: Thomas Richter <tmricht@linux.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Thomas Richter <tmricht@linux.ibm.com> Link: https://lkml.kernel.org/r/20231122100756.GP8262@noisy.programming.kicks-ass.net |
||
Greg KH
|
652ffc2104 |
perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/2023061204-decal-flyable-6090@gregkh |
||
Peter Zijlstra
|
5d2d4a9f60 |
Merge branch 'tip/perf/urgent'
Avoid conflicts, base on fixes. Signed-off-by: Peter Zijlstra <peterz@infradead.org> |