mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-04 04:02:26 +00:00
04d9741493
480 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
6a34dfa15d |
Kbuild updates for v6.13
- Add generic support for built-in boot DTB files - Enable TAB cycling for dialog buttons in nconfig - Fix issues in streamline_config.pl - Refactor Kconfig - Add support for Clang's AutoFDO (Automatic Feedback-Directed Optimization) - Add support for Clang's Propeller, a profile-guided optimization. - Change the working directory to the external module directory for M= builds - Support building external modules in a separate output directory - Enable objtool for *.mod.o and additional kernel objects - Use lz4 instead of deprecated lz4c - Work around a performance issue with "git describe" - Refactor modpost -----BEGIN PGP SIGNATURE----- iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmdKGgEVHG1hc2FoaXJv eUBrZXJuZWwub3JnAAoJED2LAQed4NsGrFoQAIgioJPRG+HC6bGmjy4tL4bq1RAm 78nbD12grrAa+NvQGRZYRs264rWxBGwrNfGGS9BDvlWJZ3fmKEuPlfCIxC0nkKk8 LVLNxSVvgpHE47RQ+E4V+yYhrlZKb4aWZjH3ZICn7vxRgbQ5Veq61aatluVHyn9c I8g+APYN/S1A4JkFzaLe8GV7v5OM3+zGSn3M9n7/DxVkoiNrMOXJm5hRdRgYfEv/ kMppheY2PPshZsaL+yLAdrJccY5au5vYE/v8wHkMtvM/LF6YwjgqPVDRFQ30BuLM sAMMd6AUoopiDZQOpqmXYukU0b0MQPswg3jmB+PWUBrlsuydRa8kkyPwUaFrDd+w 9d0jZRc8/O/lxUdD1AefRkNcA/dIJ4lTPr+2NpxwHuj2UFo0gLQmtjBggMFHaWvs 0NQRBPlxfOE4+Htl09gyg230kHuWq+rh7xqbyJCX+hBOaZ6kI2lryl6QkgpAoS+x KDOcUKnsgGMGARQRrvCOAXnQs+rjkW8fEm6t7eSBFPuWJMK85k4LmxOog8GVYEdM JcwCnCHt9TtcHlSxLRnVXj2aqGTFNLJXE1aLyCp9u8MxZ7qcx01xOuCmwp6FRzNq ghal7ngA58Y/S4K/oJ+CW2KupOb6CFne8mpyotpYeWI7MR64t0YWs4voZkuK46E2 CEBfA4PDehA4BxQe =GDKD -----END PGP SIGNATURE----- Merge tag 'kbuild-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Add generic support for built-in boot DTB files - Enable TAB cycling for dialog buttons in nconfig - Fix issues in streamline_config.pl - Refactor Kconfig - Add support for Clang's AutoFDO (Automatic Feedback-Directed Optimization) - Add support for Clang's Propeller, a profile-guided optimization. - Change the working directory to the external module directory for M= builds - Support building external modules in a separate output directory - Enable objtool for *.mod.o and additional kernel objects - Use lz4 instead of deprecated lz4c - Work around a performance issue with "git describe" - Refactor modpost * tag 'kbuild-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (85 commits) kbuild: rename .tmp_vmlinux.kallsyms0.syms to .tmp_vmlinux0.syms gitignore: Don't ignore 'tags' directory kbuild: add dependency from vmlinux to resolve_btfids modpost: replace tdb_hash() with hash_str() kbuild: deb-pkg: add python3:native to build dependency genksyms: reduce indentation in export_symbol() modpost: improve error messages in device_id_check() modpost: rename alias symbol for MODULE_DEVICE_TABLE() modpost: rename variables in handle_moddevtable() modpost: move strstarts() to modpost.h modpost: convert do_usb_table() to a generic handler modpost: convert do_of_table() to a generic handler modpost: convert do_pnp_device_entry() to a generic handler modpost: convert do_pnp_card_entries() to a generic handler modpost: call module_alias_printf() from all do_*_entry() functions modpost: pass (struct module *) to do_*_entry() functions modpost: remove DEF_FIELD_ADDR_VAR() macro modpost: deduplicate MODULE_ALIAS() for all drivers modpost: introduce module_alias_printf() helper modpost: remove unnecessary check in do_acpi_entry() ... |
||
Masahiro Yamada
|
dbefa1f31a |
Rename .data.once to .data..once to fix resetting WARN*_ONCE
Commit |
||
Maíra Canal
|
1c8d484975 |
mm: move `get_order_from_str() ` to internal.h
In order to implement a kernel parameter similar to ``thp_anon=`` for shmem, we'll need the function ``get_order_from_str()``. Instead of duplicating the function, move the function to a shared header, in which both mm/shmem.c and mm/huge_memory.c will be able to use it. Link: https://lkml.kernel.org/r/20241101165719.1074234-5-mcanal@igalia.com Signed-off-by: Maíra Canal <mcanal@igalia.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Lance Yang <ioworker0@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
5f6170a469 |
mm: pagewalk: add the ability to install PTEs
Patch series "implement lightweight guard pages", v4. Userland library functions such as allocators and threading implementations often require regions of memory to act as 'guard pages' - mappings which, when accessed, result in a fatal signal being sent to the accessing process. The current means by which these are implemented is via a PROT_NONE mmap() mapping, which provides the required semantics however incur an overhead of a VMA for each such region. With a great many processes and threads, this can rapidly add up and incur a significant memory penalty. It also has the added problem of preventing merges that might otherwise be permitted. This series takes a different approach - an idea suggested by Vlastimil Babka (and before him David Hildenbrand and Jann Horn - perhaps more - the provenance becomes a little tricky to ascertain after this - please forgive any omissions!) - rather than locating the guard pages at the VMA layer, instead placing them in page tables mapping the required ranges. Early testing of the prototype version of this code suggests a 5 times speed up in memory mapping invocations (in conjunction with use of process_madvise()) and a 13% reduction in VMAs on an entirely idle android system and unoptimised code. We expect with optimisation and a loaded system with a larger number of guard pages this could significantly increase, but in any case these numbers are encouraging. This way, rather than having separate VMAs specifying which parts of a range are guard pages, instead we have a VMA spanning the entire range of memory a user is permitted to access and including ranges which are to be 'guarded'. After mapping this, a user can specify which parts of the range should result in a fatal signal when accessed. By restricting the ability to specify guard pages to memory mapped by existing VMAs, we can rely on the mappings being torn down when the mappings are ultimately unmapped and everything works simply as if the memory were not faulted in, from the point of view of the containing VMAs. This mechanism in effect poisons memory ranges similar to hardware memory poisoning, only it is an entirely software-controlled form of poisoning. The mechanism is implemented via madvise() behaviour - MADV_GUARD_INSTALL which installs page table-level guard page markers - and MADV_GUARD_REMOVE - which clears them. Guard markers can be installed across multiple VMAs and any existing mappings will be cleared, that is zapped, before installing the guard page markers in the page tables. There is no concept of 'nested' guard markers, multiple attempts to install guard markers in a range will, after the first attempt, have no effect. Importantly, removing guard markers over a range that contains both guard markers and ordinary backed memory has no effect on anything but the guard markers (including leaving huge pages un-split), so a user can safely remove guard markers over a range of memory leaving the rest intact. The actual mechanism by which the page table entries are specified makes use of existing logic - PTE markers, which are used for the userfaultfd UFFDIO_POISON mechanism. Unfortunately PTE_MARKER_POISONED is not suited for the guard page mechanism as it results in VM_FAULT_HWPOISON semantics in the fault handler, so we add our own specific PTE_MARKER_GUARD and adapt existing logic to handle it. We also extend the generic page walk mechanism to allow for installation of PTEs (carefully restricted to memory management logic only to prevent unwanted abuse). We ensure that zapping performed by MADV_DONTNEED and MADV_FREE do not remove guard markers, nor does forking (except when VM_WIPEONFORK is specified for a VMA which implies a total removal of memory characteristics). It's important to note that the guard page implementation is emphatically NOT a security feature, so a user can remove the markers if they wish. We simply implement it in such a way as to provide the least surprising behaviour. An extensive set of self-tests are provided which ensure behaviour is as expected and additionally self-documents expected behaviour of guard ranges. This patch (of 5): The existing generic pagewalk logic permits the walking of page tables, invoking callbacks at individual page table levels via user-provided mm_walk_ops callbacks. This is useful for traversing existing page table entries, but precludes the ability to establish new ones. Existing mechanism for performing a walk which also installs page table entries if necessary are heavily duplicated throughout the kernel, each with semantic differences from one another and largely unavailable for use elsewhere. Rather than add yet another implementation, we extend the generic pagewalk logic to enable the installation of page table entries by adding a new install_pte() callback in mm_walk_ops. If this is specified, then upon encountering a missing page table entry, we allocate and install a new one and continue the traversal. If a THP huge page is encountered at either the PMD or PUD level we split it only if there are ops->pte_entry() (or ops->pmd_entry at PUD level), otherwise if there is only an ops->install_pte(), we avoid the unnecessary split. We do not support hugetlb at this stage. If this function returns an error, or an allocation fails during the operation, we abort the operation altogether. It is up to the caller to deal appropriately with partially populated page table ranges. If install_pte() is defined, the semantics of pte_entry() change - this callback is then only invoked if the entry already exists. This is a useful property, as it allows a caller to handle existing PTEs while installing new ones where necessary in the specified range. If install_pte() is not defined, then there is no functional difference to this patch, so all existing logic will work precisely as it did before. As we only permit the installation of PTEs where a mapping does not already exist there is no need for TLB management, however we do invoke update_mmu_cache() for architectures which require manual maintenance of mappings for other CPUs. We explicitly do not allow the existing page walk API to expose this feature as it is dangerous and intended for internal mm use only. Therefore we provide a new walk_page_range_mm() function exposed only to mm/internal.h. We take the opportunity to additionally clean up the page walker logic to be a little easier to follow. Link: https://lkml.kernel.org/r/cover.1730123433.git.lorenzo.stoakes@oracle.com Link: https://lkml.kernel.org/r/51b432ebef013e3fdf9f92101533435de1bffadf.1730123433.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Jann Horn <jannh@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Jann Horn <jannh@google.com> Suggested-by: David Hildenbrand <david@redhat.com> Cc: Arnd Bergmann <arnd@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Chris Zankel <chris@zankel.net> Cc: Helge Deller <deller@gmx.de> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jeff Xu <jeffxu@chromium.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Vlastimil Babka <vbabkba@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
68158bfa3d |
mm: mass constification of folio/page pointers
Now that page_pgoff() takes const pointers, we can constify the pointers to a lot of functions. Link: https://lkml.kernel.org/r/20241005200121.3231142-5-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
713da0b33b |
mm: renovate page_address_in_vma()
This function doesn't modify any of its arguments, so if we make a few other functions take const pointers, we can make page_address_in_vma() take const pointers too. All of its callers have the containing folio already, so pass that in as an argument instead of recalculating it. Also add kernel-doc Link: https://lkml.kernel.org/r/20241005200121.3231142-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
0f9b685626 |
alloc_tag: populate memory for module tags as needed
The memory reserved for module tags does not need to be backed by physical pages until there are tags to store there. Change the way we reserve this memory to allocate only virtual area for the tags and populate it with physical pages as needed when we load a module. [surenb@google.com: avoid execmem_vmap() when !MMU] Link: https://lkml.kernel.org/r/20241031233611.3833002-1-surenb@google.com Link: https://lkml.kernel.org/r/20241023170759.999909-5-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Gomez <da.gomez@samsung.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Minchan Kim <minchan@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Petr Pavlu <petr.pavlu@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Sourav Panda <souravpanda@google.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Huth <thuth@redhat.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xiongwei Song <xiongwei.song@windriver.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Rapoport (Microsoft)
|
2e45474ab1 |
execmem: add support for cache of large ROX pages
Using large pages to map text areas reduces iTLB pressure and improves performance. Extend execmem_alloc() with an ability to use huge pages with ROX permissions as a cache for smaller allocations. To populate the cache, a writable large page is allocated from vmalloc with VM_ALLOW_HUGE_VMAP, filled with invalid instructions and then remapped as ROX. The direct map alias of that large page is exculded from the direct map. Portions of that large page are handed out to execmem_alloc() callers without any changes to the permissions. When the memory is freed with execmem_free() it is invalidated again so that it won't contain stale instructions. An architecture has to implement execmem_fill_trapping_insns() callback and select ARCH_HAS_EXECMEM_ROX configuration option to be able to use the ROX cache. The cache is enabled on per-range basis when an architecture sets EXECMEM_ROX_CACHE flag in definition of an execmem_range. Link: https://lkml.kernel.org/r/20241023162711.2579610-8-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Tested-by: kdevops <kdevops@lists.linux.dev> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Song Liu <song@kernel.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zi Yan
|
5708d96da2 |
mm: avoid zeroing user movable page twice with init_on_alloc=1
Commit
|
||
Matthew Wilcox (Oracle)
|
b9a256352f |
mm: remove PageKsm()
All callers have been converted to use folio_test_ksm() or PageAnonNotKsm(), so we can remove this wrapper. Link: https://lkml.kernel.org/r/20241002152533.1350629-6-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alex Shi <alexs@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
4080ef1579 |
mm: unconditionally close VMAs on error
Incorrect invocation of VMA callbacks when the VMA is no longer in a
consistent state is bug prone and risky to perform.
With regards to the important vm_ops->close() callback We have gone to
great lengths to try to track whether or not we ought to close VMAs.
Rather than doing so and risking making a mistake somewhere, instead
unconditionally close and reset vma->vm_ops to an empty dummy operations
set with a NULL .close operator.
We introduce a new function to do so - vma_close() - and simplify existing
vms logic which tracked whether we needed to close or not.
This simplifies the logic, avoids incorrect double-calling of the .close()
callback and allows us to update error paths to simply call vma_close()
unconditionally - making VMA closure idempotent.
Link: https://lkml.kernel.org/r/28e89dda96f68c505cb6f8e9fc9b57c3e9f74b42.1730224667.git.lorenzo.stoakes@oracle.com
Fixes:
|
||
Lorenzo Stoakes
|
3dd6ed34ce |
mm: avoid unsafe VMA hook invocation when error arises on mmap hook
Patch series "fix error handling in mmap_region() and refactor
(hotfixes)", v4.
mmap_region() is somewhat terrifying, with spaghetti-like control flow and
numerous means by which issues can arise and incomplete state, memory
leaks and other unpleasantness can occur.
A large amount of the complexity arises from trying to handle errors late
in the process of mapping a VMA, which forms the basis of recently
observed issues with resource leaks and observable inconsistent state.
This series goes to great lengths to simplify how mmap_region() works and
to avoid unwinding errors late on in the process of setting up the VMA for
the new mapping, and equally avoids such operations occurring while the
VMA is in an inconsistent state.
The patches in this series comprise the minimal changes required to
resolve existing issues in mmap_region() error handling, in order that
they can be hotfixed and backported. There is additionally a follow up
series which goes further, separated out from the v1 series and sent and
updated separately.
This patch (of 5):
After an attempted mmap() fails, we are no longer in a situation where we
can safely interact with VMA hooks. This is currently not enforced,
meaning that we need complicated handling to ensure we do not incorrectly
call these hooks.
We can avoid the whole issue by treating the VMA as suspect the moment
that the file->f_ops->mmap() function reports an error by replacing
whatever VMA operations were installed with a dummy empty set of VMA
operations.
We do so through a new helper function internal to mm - mmap_file() -
which is both more logically named than the existing call_mmap() function
and correctly isolates handling of the vm_op reassignment to mm.
All the existing invocations of call_mmap() outside of mm are ultimately
nested within the call_mmap() from mm, which we now replace.
It is therefore safe to leave call_mmap() in place as a convenience
function (and to avoid churn). The invokers are:
ovl_file_operations -> mmap -> ovl_mmap() -> backing_file_mmap()
coda_file_operations -> mmap -> coda_file_mmap()
shm_file_operations -> shm_mmap()
shm_file_operations_huge -> shm_mmap()
dma_buf_fops -> dma_buf_mmap_internal -> i915_dmabuf_ops
-> i915_gem_dmabuf_mmap()
None of these callers interact with vm_ops or mappings in a problematic
way on error, quickly exiting out.
Link: https://lkml.kernel.org/r/cover.1730224667.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/d41fd763496fd0048a962f3fd9407dc72dd4fd86.1730224667.git.lorenzo.stoakes@oracle.com
Fixes:
|
||
Hugh Dickins
|
f8f931bba0 |
mm/thp: fix deferred split unqueue naming and locking
Recent changes are putting more pressure on THP deferred split queues: under load revealing long-standing races, causing list_del corruptions, "Bad page state"s and worse (I keep BUGs in both of those, so usually don't get to see how badly they end up without). The relevant recent changes being 6.8's mTHP, 6.10's mTHP swapout, and 6.12's mTHP swapin, improved swap allocation, and underused THP splitting. Before fixing locking: rename misleading folio_undo_large_rmappable(), which does not undo large_rmappable, to folio_unqueue_deferred_split(), which is what it does. But that and its out-of-line __callee are mm internals of very limited usability: add comment and WARN_ON_ONCEs to check usage; and return a bool to say if a deferred split was unqueued, which can then be used in WARN_ON_ONCEs around safety checks (sparing callers the arcane conditionals in __folio_unqueue_deferred_split()). Just omit the folio_unqueue_deferred_split() from free_unref_folios(), all of whose callers now call it beforehand (and if any forget then bad_page() will tell) - except for its caller put_pages_list(), which itself no longer has any callers (and will be deleted separately). Swapout: mem_cgroup_swapout() has been resetting folio->memcg_data 0 without checking and unqueueing a THP folio from deferred split list; which is unfortunate, since the split_queue_lock depends on the memcg (when memcg is enabled); so swapout has been unqueueing such THPs later, when freeing the folio, using the pgdat's lock instead: potentially corrupting the memcg's list. __remove_mapping() has frozen refcount to 0 here, so no problem with calling folio_unqueue_deferred_split() before resetting memcg_data. That goes back to 5.4 commit |
||
Linus Torvalds
|
617a814f14 |
ALong with the usual shower of singleton patches, notable patch series in
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ... |
||
Vishal Moola (Oracle)
|
2a058ab328 |
mm: change vmf_anon_prepare() to __vmf_anon_prepare()
Some callers of vmf_anon_prepare() may not want us to release the per-VMA
lock ourselves. Rename vmf_anon_prepare() to __vmf_anon_prepare() and let
the callers drop the lock when desired.
Also, make vmf_anon_prepare() a wrapper that releases the per-VMA lock
itself for any callers that don't care.
This is in preparation to fix this bug reported by syzbot:
https://lore.kernel.org/linux-mm/00000000000067c20b06219fbc26@google.com/
Link: https://lkml.kernel.org/r/20240914194243.245-1-vishal.moola@gmail.com
Fixes:
|
||
Kefeng Wang
|
24f937796c |
mm: remove putback_lru_page()
There are no more callers of putback_lru_page(), remove it. Link: https://lkml.kernel.org/r/20240826065814.1336616-7-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kefeng Wang
|
775d28fd45 |
mm: remove isolate_lru_page()
There are no more callers of isolate_lru_page(), remove it. [wangkefeng.wang@huawei.com: convert page to folio in comment and document, per Matthew] Link: https://lkml.kernel.org/r/20240826144114.1928071-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20240826065814.1336616-6-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kefeng Wang
|
5c8525a37b |
mm: migrate_device: convert to migrate_device_coherent_folio()
Patch series "mm: finish isolate/putback_lru_page()". Convert to use more folios in migrate_device.c, then we could remove isolate_lru_page() and putback_lru_page(). This patch (of 6): Save a few calls to compound_head() and use folio throughout. Link: https://lkml.kernel.org/r/20240826065814.1336616-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20240826065814.1336616-2-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kefeng Wang
|
16038c4fff |
mm: memory-failure: add unmap_poisoned_folio()
Add unmap_poisoned_folio() helper which will be reused by do_migrate_range() from memory hotplug soon. [akpm@linux-foundation.org: whitespace tweak, per Miaohe Lin] Link: https://lkml.kernel.org/r/1f80c7e3-c30d-1ac1-6a36-d1a5f5907f7c@huawei.com Link: https://lkml.kernel.org/r/20240827114728.3212578-3-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
e27ad6560e |
printf: remove %pGt support
Patch series "Increase the number of bits available in page_type". Kent wants more than 16 bits in page_type, so I resurrected this old patch and expanded it a bit. It's a bit more efficient than our current scheme (1 4-byte insn vs 3 insns of 13 bytes total) to test a single page type. This patch (of 4): An upcoming patch will convert page type from being a bitfield to a single byte, so we will not be able to use %pG to print the page type any more. The printing of the symbolic name will be restored in that patch. Link: https://lkml.kernel.org/r/20240821173914.2270383-1-willy@infradead.org Link: https://lkml.kernel.org/r/20240821173914.2270383-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: David Hildenbrand <david@redhat.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Pedro Falcato
|
5b3db2b812 |
mm: remove can_modify_mm()
With no more users in the tree, we can finally remove can_modify_mm(). Link: https://lkml.kernel.org/r/20240817-mseal-depessimize-v3-6-d8d2e037df30@gmail.com Signed-off-by: Pedro Falcato <pedro.falcato@gmail.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Jeff Xu <jeffxu@chromium.org> Cc: Kees Cook <kees@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Pedro Falcato
|
23c57d1fa2 |
mseal: replace can_modify_mm_madv with a vma variant
Replace can_modify_mm_madv() with a single vma variant, and associated checks in madvise. While we're at it, also invert the order of checks in: if (unlikely(is_ro_anon(vma) && !can_modify_vma(vma)) Checking if we can modify the vma itself (through vm_flags) is certainly cheaper than is_ro_anon() due to arch_vma_access_permitted() looking at e.g pkeys registers (with extra branches) in some architectures. This patch allows for partial madvise success when finding a sealed VMA, which historically has been allowed in Linux. Link: https://lkml.kernel.org/r/20240817-mseal-depessimize-v3-5-d8d2e037df30@gmail.com Signed-off-by: Pedro Falcato <pedro.falcato@gmail.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Jeff Xu <jeffxu@chromium.org> Cc: Kees Cook <kees@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Barry Song
|
bea67dcc5e |
mm: attempt to batch free swap entries for zap_pte_range()
Zhiguo reported that swap release could be a serious bottleneck during process exits[1]. With mTHP, we have the opportunity to batch free swaps. Thanks to the work of Chris and Kairui[2], I was able to achieve this optimization with minimal code changes by building on their efforts. If swap_count is 1, which is likely true as most anon memory are private, we can free all contiguous swap slots all together. Ran the below test program for measuring the bandwidth of munmap using zRAM and 64KiB mTHP: #include <sys/mman.h> #include <sys/time.h> #include <stdlib.h> unsigned long long tv_to_ms(struct timeval tv) { return tv.tv_sec * 1000 + tv.tv_usec / 1000; } main() { struct timeval tv_b, tv_e; int i; #define SIZE 1024*1024*1024 void *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (!p) { perror("fail to get memory"); exit(-1); } madvise(p, SIZE, MADV_HUGEPAGE); memset(p, 0x11, SIZE); /* write to get mem */ madvise(p, SIZE, MADV_PAGEOUT); gettimeofday(&tv_b, NULL); munmap(p, SIZE); gettimeofday(&tv_e, NULL); printf("munmap in bandwidth: %ld bytes/ms\n", SIZE/(tv_to_ms(tv_e) - tv_to_ms(tv_b))); } The result is as below (munmap bandwidth): mm-unstable mm-unstable-with-patch round1 21053761 63161283 round2 21053761 63161283 round3 21053761 63161283 round4 20648881 67108864 round5 20648881 67108864 munmap bandwidth becomes 3X faster. [1] https://lore.kernel.org/linux-mm/20240731133318.527-1-justinjiang@vivo.com/ [2] https://lore.kernel.org/linux-mm/20240730-swap-allocator-v5-0-cb9c148b9297@kernel.org/ [v-songbaohua@oppo.com: check all swaps belong to same swap_cgroup in swap_pte_batch()] Link: https://lkml.kernel.org/r/20240815215308.55233-1-21cnbao@gmail.com [hughd@google.com: add mem_cgroup_disabled() check] Link: https://lkml.kernel.org/r/33f34a88-0130-5444-9b84-93198eeb50e7@google.com [21cnbao@gmail.com: add missing zswap_invalidate()] Link: https://lkml.kernel.org/r/20240821054921.43468-1-21cnbao@gmail.com Link: https://lkml.kernel.org/r/20240807215859.57491-3-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Kairui Song <kasong@tencent.com> Cc: Chris Li <chrisl@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Barry Song <baohua@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kirill A. Shutemov
|
55ad43e8ba |
mm: add a helper to accept page
Accept a given struct page and add it free list. The help is useful for physical memory scanners that want to use free unaccepted memory. Link: https://lkml.kernel.org/r/20240809114854.3745464-7-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zi Yan
|
727d50a7e0 |
mm/migrate: move common code to numa_migrate_check (was numa_migrate_prep)
do_numa_page() and do_huge_pmd_numa_page() share a lot of common code. To reduce redundancy, move common code to numa_migrate_prep() and rename the function to numa_migrate_check() to reflect its functionality. Now do_huge_pmd_numa_page() also checks shared folios to set TNF_SHARED flag. Link: https://lkml.kernel.org/r/20240809145906.1513458-4-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Suggested-by: David Hildenbrand <david@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
49b1b8d6f6 |
mm: move internal core VMA manipulation functions to own file
This patch introduces vma.c and moves internal core VMA manipulation functions to this file from mmap.c. This allows us to isolate VMA functionality in a single place such that we can create userspace testing code that invokes this functionality in an environment where we can implement simple unit tests of core functionality. This patch ensures that core VMA functionality is explicitly marked as such by its presence in mm/vma.h. It also places the header includes required by vma.c in vma_internal.h, which is simply imported by vma.c. This makes the VMA functionality testable, as userland testing code can simply stub out functionality as required. Link: https://lkml.kernel.org/r/c77a6aafb4c42aaadb8e7271a853658cbdca2e22.1722251717.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Gow <davidgow@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Jan Kara <jack@suse.cz> Cc: Kees Cook <kees@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Rae Moar <rmoar@google.com> Cc: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Pengfei Xu <pengfei.xu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
d61f0d5968 |
mm: move vma_shrink(), vma_expand() to internal header
The vma_shrink() and vma_expand() functions are internal VMA manipulation functions which we ought to abstract for use outside of memory management code. To achieve this, we replace shift_arg_pages() in fs/exec.c with an invocation of a new relocate_vma_down() function implemented in mm/mmap.c, which enables us to also move move_page_tables() and vma_iter_prev_range() to internal.h. The purpose of doing this is to isolate key VMA manipulation functions in order that we can both abstract them and later render them easily testable. Link: https://lkml.kernel.org/r/3cfcd9ec433e032a85f636fdc0d7d98fafbd19c5.1722251717.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Gow <davidgow@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Jan Kara <jack@suse.cz> Cc: Kees Cook <kees@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Rae Moar <rmoar@google.com> Cc: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Pengfei Xu <pengfei.xu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lorenzo Stoakes
|
fa04c08f3c |
mm: move vma_modify() and helpers to internal header
These are core VMA manipulation functions which invoke VMA splitting and merging and should not be directly accessed from outside of mm/. Link: https://lkml.kernel.org/r/5efde0c6342a8860d5ffc90b415f3989fd8ed0b2.1722251717.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Gow <davidgow@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Jan Kara <jack@suse.cz> Cc: Kees Cook <kees@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Rae Moar <rmoar@google.com> Cc: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Pengfei Xu <pengfei.xu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
8ef6fd0e9e |
Merge branch 'mm-hotfixes-stable' into mm-stable to pick up "mm: fix
crashes from deferred split racing folio migration", needed by "mm: migrate: split folio_migrate_mapping()". |
||
Yang Shi
|
f442fa6141 |
mm: gup: stop abusing try_grab_folio
A kernel warning was reported when pinning folio in CMA memory when
launching SEV virtual machine. The splat looks like:
[ 464.325306] WARNING: CPU: 13 PID: 6734 at mm/gup.c:1313 __get_user_pages+0x423/0x520
[ 464.325464] CPU: 13 PID: 6734 Comm: qemu-kvm Kdump: loaded Not tainted 6.6.33+ #6
[ 464.325477] RIP: 0010:__get_user_pages+0x423/0x520
[ 464.325515] Call Trace:
[ 464.325520] <TASK>
[ 464.325523] ? __get_user_pages+0x423/0x520
[ 464.325528] ? __warn+0x81/0x130
[ 464.325536] ? __get_user_pages+0x423/0x520
[ 464.325541] ? report_bug+0x171/0x1a0
[ 464.325549] ? handle_bug+0x3c/0x70
[ 464.325554] ? exc_invalid_op+0x17/0x70
[ 464.325558] ? asm_exc_invalid_op+0x1a/0x20
[ 464.325567] ? __get_user_pages+0x423/0x520
[ 464.325575] __gup_longterm_locked+0x212/0x7a0
[ 464.325583] internal_get_user_pages_fast+0xfb/0x190
[ 464.325590] pin_user_pages_fast+0x47/0x60
[ 464.325598] sev_pin_memory+0xca/0x170 [kvm_amd]
[ 464.325616] sev_mem_enc_register_region+0x81/0x130 [kvm_amd]
Per the analysis done by yangge, when starting the SEV virtual machine, it
will call pin_user_pages_fast(..., FOLL_LONGTERM, ...) to pin the memory.
But the page is in CMA area, so fast GUP will fail then fallback to the
slow path due to the longterm pinnalbe check in try_grab_folio().
The slow path will try to pin the pages then migrate them out of CMA area.
But the slow path also uses try_grab_folio() to pin the page, it will
also fail due to the same check then the above warning is triggered.
In addition, the try_grab_folio() is supposed to be used in fast path and
it elevates folio refcount by using add ref unless zero. We are guaranteed
to have at least one stable reference in slow path, so the simple atomic add
could be used. The performance difference should be trivial, but the
misuse may be confusing and misleading.
Redefined try_grab_folio() to try_grab_folio_fast(), and try_grab_page()
to try_grab_folio(), and use them in the proper paths. This solves both
the abuse and the kernel warning.
The proper naming makes their usecase more clear and should prevent from
abusing in the future.
peterx said:
: The user will see the pin fails, for gpu-slow it further triggers the WARN
: right below that failure (as in the original report):
:
: folio = try_grab_folio(page, page_increm - 1,
: foll_flags);
: if (WARN_ON_ONCE(!folio)) { <------------------------ here
: /*
: * Release the 1st page ref if the
: * folio is problematic, fail hard.
: */
: gup_put_folio(page_folio(page), 1,
: foll_flags);
: ret = -EFAULT;
: goto out;
: }
[1] https://lore.kernel.org/linux-mm/1719478388-31917-1-git-send-email-yangge1116@126.com/
[shy828301@gmail.com: fix implicit declaration of function try_grab_folio_fast]
Link: https://lkml.kernel.org/r/CAHbLzkowMSso-4Nufc9hcMehQsK9PNz3OSu-+eniU-2Mm-xjhA@mail.gmail.com
Link: https://lkml.kernel.org/r/20240628191458.2605553-1-yang@os.amperecomputing.com
Fixes:
|
||
Kefeng Wang
|
593a10dabe |
mm: refactor folio_undo_large_rmappable()
Folios of order <= 1 are not in deferred list, the check of order is added
into folio_undo_large_rmappable() from commit
|
||
David Hildenbrand
|
13c526540b |
mm: pass meminit_context to __free_pages_core()
Patch series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". This can be a considered a long-overdue follow-up to some parts of [1]. The patches are based on [2], but they are not strictly required -- just makes it clearer why we can use adjust_managed_page_count() for memory hotplug without going into details about highmem. We stop initializing pages with PageReserved() in memory hotplug code -- except when dealing with ZONE_DEVICE for now. Instead, we use PageOffline(): all pages are initialized to PageOffline() when onlining a memory section, and only the ones actually getting exposed to the system/page allocator will get PageOffline cleared. This way, we enlighten memory hotplug more about PageOffline() pages and can cleanup some hacks we have in virtio-mem code. What about ZONE_DEVICE? PageOffline() is wrong, but we might just stop using PageReserved() for them later by simply checking for is_zone_device_page() at suitable places. That will be a separate patch set / proposal. This primarily affects virtio-mem, HV-balloon and XEN balloon. I only briefly tested with virtio-mem, which benefits most from these cleanups. [1] https://lore.kernel.org/all/20191024120938.11237-1-david@redhat.com/ [2] https://lkml.kernel.org/r/20240607083711.62833-1-david@redhat.com This patch (of 3): In preparation for further changes, let's teach __free_pages_core() about the differences of memory hotplug handling. Move the memory hotplug specific handling from generic_online_page() to __free_pages_core(), use adjust_managed_page_count() on the memory hotplug path, and spell out why memory freed via memblock cannot currently use adjust_managed_page_count(). [david@redhat.com: add missed CONFIG_DEFERRED_STRUCT_PAGE_INIT] Link: https://lkml.kernel.org/r/b72e6efd-fb0a-459c-b1a0-88a98e5b19e2@redhat.com [david@redhat.com: fix up the memblock comment, per Oscar] Link: https://lkml.kernel.org/r/2ed64218-7f3b-4302-a5dc-27f060654fe2@redhat.com [david@redhat.com: add the parameter name also in the declaration] Link: https://lkml.kernel.org/r/ca575956-f0dd-4fb9-a307-6b7621681ed9@redhat.com Link: https://lkml.kernel.org/r/20240607090939.89524-1-david@redhat.com Link: https://lkml.kernel.org/r/20240607090939.89524-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dexuan Cui <decui@microsoft.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eugenio Pérez <eperezma@redhat.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Marco Elver <elver@google.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Wei Liu <wei.liu@kernel.org> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Honggyu Kim
|
8f75267d22 |
mm: rename alloc_demote_folio to alloc_migrate_folio
The alloc_demote_folio can also be used for general migration including both demotion and promotion so it'd be better to rename it from alloc_demote_folio to alloc_migrate_folio. Link: https://lkml.kernel.org/r/20240614030010.751-3-honggyu.kim@sk.com Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Hyeongtak Ji <hyeongtak.ji@sk.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Honggyu Kim
|
a00ce85af2 |
mm: make alloc_demote_folio externally invokable for migration
Patch series "DAMON based tiered memory management for CXL memory", v6. Introduction ============ With the advent of CXL/PCIe attached DRAM, which will be called simply as CXL memory in this cover letter, some systems are becoming more heterogeneous having memory systems with different latency and bandwidth characteristics. They are usually handled as different NUMA nodes in separate memory tiers and CXL memory is used as slow tiers because of its protocol overhead compared to local DRAM. In this kind of systems, we need to be careful placing memory pages on proper NUMA nodes based on the memory access frequency. Otherwise, some frequently accessed pages might reside on slow tiers and it makes performance degradation unexpectedly. Moreover, the memory access patterns can be changed at runtime. To handle this problem, we need a way to monitor the memory access patterns and migrate pages based on their access temperature. The DAMON(Data Access MONitor) framework and its DAMOS(DAMON-based Operation Schemes) can be useful features for monitoring and migrating pages. DAMOS provides multiple actions based on DAMON monitoring results and it can be used for proactive reclaim, which means swapping cold pages out with DAMOS_PAGEOUT action, but it doesn't support migration actions such as demotion and promotion between tiered memory nodes. This series supports two new DAMOS actions; DAMOS_MIGRATE_HOT for promotion from slow tiers and DAMOS_MIGRATE_COLD for demotion from fast tiers. This prevents hot pages from being stuck on slow tiers, which makes performance degradation and cold pages can be proactively demoted to slow tiers so that the system can increase the chance to allocate more hot pages to fast tiers. The DAMON provides various tuning knobs but we found that the proactive demotion for cold pages is especially useful when the system is running out of memory on its fast tier nodes. Our evaluation result shows that it reduces the performance slowdown compared to the default memory policy from 11% to 3~5% when the system runs under high memory pressure on its fast tier DRAM nodes. DAMON configuration =================== The specific DAMON configuration doesn't have to be in the scope of this patch series, but some rough idea is better to be shared to explain the evaluation result. The DAMON provides many knobs for fine tuning but its configuration file is generated by HMSDK[3]. It includes gen_config.py script that generates a json file with the full config of DAMON knobs and it creates multiple kdamonds for each NUMA node when the DAMON is enabled so that it can run hot/cold based migration for tiered memory. Evaluation Workload =================== The performance evaluation is done with redis[4], which is a widely used in-memory database and the memory access patterns are generated via YCSB[5]. We have measured two different workloads with zipfian and latest distributions but their configs are slightly modified to make memory usage higher and execution time longer for better evaluation. The idea of evaluation using these migrate_{hot,cold} actions covers system-wide memory management rather than partitioning hot/cold pages of a single workload. The default memory allocation policy creates pages to the fast tier DRAM node first, then allocates newly created pages to the slow tier CXL node when the DRAM node has insufficient free space. Once the page allocation is done then those pages never move between NUMA nodes. It's not true when using numa balancing, but it is not the scope of this DAMON based tiered memory management support. If the working set of redis can be fit fully into the DRAM node, then the redis will access the fast DRAM only. Since the performance of DRAM only is faster than partially accessing CXL memory in slow tiers, this environment is not useful to evaluate this patch series. To make pages of redis be distributed across fast DRAM node and slow CXL node to evaluate our migrate_{hot,cold} actions, we pre-allocate some cold memory externally using mmap and memset before launching redis-server. We assumed that there are enough amount of cold memory in datacenters as TMO[6] and TPP[7] papers mentioned. The evaluation sequence is as follows. 1. Turn on DAMON with DAMOS_MIGRATE_COLD action for DRAM node and DAMOS_MIGRATE_HOT action for CXL node. It demotes cold pages on DRAM node and promotes hot pages on CXL node in a regular interval. 2. Allocate a huge block of cold memory by calling mmap and memset at the fast tier DRAM node, then make the process sleep to make the fast tier has insufficient space for redis-server. 3. Launch redis-server and load prebaked snapshot image, dump.rdb. The redis-server consumes 52GB of anon pages and 33GB of file pages, but due to the cold memory allocated at 2, it fails allocating the entire memory of redis-server on the fast tier DRAM node so it partially allocates the remaining on the slow tier CXL node. The ratio of DRAM:CXL depends on the size of the pre-allocated cold memory. 4. Run YCSB to make zipfian or latest distribution of memory accesses to redis-server, then measure its execution time when it's completed. 5. Repeat 4 over 50 times to measure the average execution time for each run. 6. Increase the cold memory size then repeat goes to 2. For each test at 4 took about a minute so repeating it 50 times almost took about 1 hour for each test with a specific cold memory from 440GB to 500GB in 10GB increments for each evaluation. So it took about more than 10 hours for both zipfian and latest workloads to get the entire evaluation results. Repeating the same test set multiple times doesn't show much difference so I think it might be enough to make the result reliable. Evaluation Results ================== All the result values are normalized to DRAM-only execution time because the workload cannot be faster than DRAM-only unless the workload hits the peak bandwidth but our redis test doesn't go beyond the bandwidth limit. So the DRAM-only execution time is the ideal result without affected by the gap between DRAM and CXL performance difference. The NUMA node environment is as follows. node0 - local DRAM, 512GB with a CPU socket (fast tier) node1 - disabled node2 - CXL DRAM, 96GB, no CPU attached (slow tier) The following is the result of generating zipfian distribution to redis-server and the numbers are averaged by 50 times of execution. 1. YCSB zipfian distribution read only workload memory pressure with cold memory on node0 with 512GB of local DRAM. ====================+================================================+========= | cold memory occupied by mmap and memset | | 0G 440G 450G 460G 470G 480G 490G 500G | ====================+================================================+========= Execution time normalized to DRAM-only values | GEOMEAN --------------------+------------------------------------------------+--------- DRAM-only | 1.00 - - - - - - - | 1.00 CXL-only | 1.19 - - - - - - - | 1.19 default | - 1.00 1.05 1.08 1.12 1.14 1.18 1.18 | 1.11 DAMON tiered | - 1.03 1.03 1.03 1.03 1.03 1.07 *1.05 | 1.04 DAMON lazy | - 1.04 1.03 1.04 1.05 1.06 1.06 *1.06 | 1.05 ====================+================================================+========= CXL usage of redis-server in GB | AVERAGE --------------------+------------------------------------------------+--------- DRAM-only | 0.0 - - - - - - - | 0.0 CXL-only | 51.4 - - - - - - - | 51.4 default | - 0.6 10.6 20.5 30.5 40.5 47.6 50.4 | 28.7 DAMON tiered | - 0.6 0.5 0.4 0.7 0.8 7.1 5.6 | 2.2 DAMON lazy | - 0.5 3.0 4.5 5.4 6.4 9.4 9.1 | 5.5 ====================+================================================+========= Each test result is based on the execution environment as follows. DRAM-only: redis-server uses only local DRAM memory. CXL-only: redis-server uses only CXL memory. default: default memory policy(MPOL_DEFAULT). numa balancing disabled. DAMON tiered: DAMON enabled with DAMOS_MIGRATE_COLD for DRAM nodes and DAMOS_MIGRATE_HOT for CXL nodes. DAMON lazy: same as DAMON tiered, but turn on DAMON just before making memory access request via YCSB. The above result shows the "default" execution time goes up as the size of cold memory is increased from 440G to 500G because the more cold memory used, the more CXL memory is used for the target redis workload and this makes the execution time increase. However, "DAMON tiered" and other DAMON results show less slowdown because the DAMOS_MIGRATE_COLD action at DRAM node proactively demotes pre-allocated cold memory to CXL node and this free space at DRAM increases more chance to allocate hot or warm pages of redis-server to fast DRAM node. Moreover, DAMOS_MIGRATE_HOT action at CXL node also promotes hot pages of redis-server to DRAM node actively. As a result, it makes more memory of redis-server stay in DRAM node compared to "default" memory policy and this makes the performance improvement. Please note that the result numbers of "DAMON tiered" and "DAMON lazy" at 500G are marked with * stars, which means their test results are replaced with reproduced tests that didn't have OOM issue. That was needed because sometimes the test processes get OOM when DRAM has insufficient space. The DAMOS_MIGRATE_HOT doesn't kick reclaim but just gives up migration when there is not enough space at DRAM side. The problem happens when there is competition between normal allocation and migration and the migration is done before normal allocation, then the completely unrelated normal allocation can trigger reclaim, which incurs OOM. Because of this issue, I have also tested more cases with "demotion_enabled" flag enabled to make such reclaim doesn't trigger OOM, but just demote reclaimed pages. The following test results show more tests with "kswapd" marked. 2. YCSB zipfian distribution read only workload (with demotion_enabled true) memory pressure with cold memory on node0 with 512GB of local DRAM. ====================+================================================+========= | cold memory occupied by mmap and memset | | 0G 440G 450G 460G 470G 480G 490G 500G | ====================+================================================+========= Execution time normalized to DRAM-only values | GEOMEAN --------------------+------------------------------------------------+--------- DAMON tiered | - 1.03 1.03 1.03 1.03 1.03 1.07 1.05 | 1.04 DAMON lazy | - 1.04 1.03 1.04 1.05 1.06 1.06 1.06 | 1.05 DAMON tiered kswapd | - 1.03 1.03 1.03 1.03 1.02 1.02 1.03 | 1.03 DAMON lazy kswapd | - 1.04 1.04 1.04 1.03 1.05 1.04 1.05 | 1.04 ====================+================================================+========= CXL usage of redis-server in GB | AVERAGE --------------------+------------------------------------------------+--------- DAMON tiered | - 0.6 0.5 0.4 0.7 0.8 7.1 5.6 | 2.2 DAMON lazy | - 0.5 3.0 4.5 5.4 6.4 9.4 9.1 | 5.5 DAMON tiered kswapd | - 0.0 0.0 0.4 0.5 0.1 0.8 1.0 | 0.4 DAMON lazy kswapd | - 4.2 4.6 5.3 1.7 6.8 8.1 5.8 | 5.2 ====================+================================================+========= Each test result is based on the exeuction environment as follows. DAMON tiered: same as before DAMON lazy: same as before DAMON tiered kswapd: same as DAMON tiered, but turn on /sys/kernel/mm/numa/demotion_enabled to make kswapd or direct reclaim does demotion. DAMON lazy kswapd: same as DAMON lazy, but turn on /sys/kernel/mm/numa/demotion_enabled to make kswapd or direct reclaim does demotion. The "DAMON tiered kswapd" and "DAMON lazy kswapd" didn't trigger OOM at all unlike other tests because kswapd and direct reclaim from DRAM node can demote reclaimed pages to CXL node independently from DAMON actions and their results are slightly better than without having "demotion_enabled". In summary, the evaluation results show that DAMON memory management with DAMOS_MIGRATE_{HOT,COLD} actions reduces the performance slowdown compared to the "default" memory policy from 11% to 3~5% when the system runs with high memory pressure on its fast tier DRAM nodes. Having these DAMOS_MIGRATE_HOT and DAMOS_MIGRATE_COLD actions can make tiered memory systems run more efficiently under high memory pressures. This patch (of 7): The alloc_demote_folio can be used out of vmscan.c so it'd be better to remove static keyword from it. Link: https://lkml.kernel.org/r/20240614030010.751-1-honggyu.kim@sk.com Link: https://lkml.kernel.org/r/20240614030010.751-2-honggyu.kim@sk.com Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Hyeongtak Ji <hyeongtak.ji@sk.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
3a78f77fd1 |
mm/memory-failure: move some function declarations into internal.h
There are some functions only used inside mm. Move them into internal.h. No functional change intended. Link: https://lkml.kernel.org/r/20240612071835.157004-11-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202405251049.hxjwX7zO-lkp@intel.com/ Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: David Hildenbrand <david@redhat.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Barry Song
|
f38ee28519 |
mm: introduce pmd|pte_needs_soft_dirty_wp helpers for softdirty write-protect
Patch series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them", v2. This patchset introduces the pte_need_soft_dirty_wp and pmd_need_soft_dirty_wp helpers to determine if write protection is required for softdirty tracking. These helpers enhance code readability and improve the overall appearance. They are then utilized in gup, mprotect, swap, and other related functions. This patch (of 2): This patch introduces the pte_needs_soft_dirty_wp and pmd_needs_soft_dirty_wp helpers to determine if write protection is required for softdirty tracking. This can enhance code readability and improve its overall appearance. These new helpers are then utilized in gup, huge_memory, and mprotect. Link: https://lkml.kernel.org/r/20240607211358.4660-1-21cnbao@gmail.com Link: https://lkml.kernel.org/r/20240607211358.4660-2-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Suggested-by: David Hildenbrand <david@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Chris Li <chrisl@kernel.org> Cc: Kairui Song <kasong@tencent.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Barry Song
|
3f9abcaa3e |
mm: introduce pte_move_swp_offset() helper which can move offset bidirectionally
There could arise a necessity to obtain the first pte_t from a swap pte_t located in the middle. For instance, this may occur within the context of do_swap_page(), where a page fault can potentially occur in any PTE of a large folio. To address this, the following patch introduces pte_move_swp_offset(), a function capable of bidirectional movement by a specified delta argument. Consequently, pte_next_swp_offset() will directly invoke it with delta = 1. Link: https://lkml.kernel.org/r/20240529082824.150954-4-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Suggested-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Chris Li <chrisl@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Chuanhua Han <hanchuanhua@oppo.com> Cc: David Hildenbrand <david@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Gao Xiang <xiang@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kairui Song <kasong@tencent.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Len Brown <len.brown@intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mateusz Guzik
|
3577dbb192 |
mm: batch unlink_file_vma calls in free_pgd_range
Execs of dynamically linked binaries at 20-ish cores are bottlenecked on the i_mmap_rwsem semaphore, while the biggest singular contributor is free_pgd_range inducing the lock acquire back-to-back for all consecutive mappings of a given file. Tracing the count of said acquires while building the kernel shows: [1, 2) 799579 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@| [2, 3) 0 | | [3, 4) 3009 | | [4, 5) 3009 | | [5, 6) 326442 |@@@@@@@@@@@@@@@@@@@@@ | So in particular there were 326442 opportunities to coalesce 5 acquires into 1. Doing so increases execs per second by 4% (~50k to ~52k) when running the benchmark linked below. The lock remains the main bottleneck, I have not looked at other spots yet. Bench can be found here: http://apollo.backplane.com/DFlyMisc/doexec.c $ cc -O2 -o shared-doexec doexec.c $ ./shared-doexec $(nproc) Note this particular test makes sure binaries are separate, but the loader is shared. Stats collected on the patched kernel (+ "noinline") with: bpftrace -e 'kprobe:unlink_file_vma_batch_process { @ = lhist(((struct unlink_vma_file_batch *)arg0)->count, 0, 8, 1); }' Link: https://lkml.kernel.org/r/20240521234321.359501-1-mjguzik@gmail.com Signed-off-by: Mateusz Guzik <mjguzik@gmail.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Jeff Xu
|
399ab86ea5 |
/proc/pid/smaps: add mseal info for vma
Add sl in /proc/pid/smaps to indicate vma is sealed
Link: https://lkml.kernel.org/r/20240614232014.806352-2-jeffxu@google.com
Fixes:
|
||
David Hildenbrand
|
384a746bb5 |
Revert "mm: init_mlocked_on_free_v3"
There was insufficient review and no agreement that this is the right
approach.
There are serious flaws with the implementation that make processes using
mlock() not even work with simple fork() [1] and we get reliable crashes
when rebooting.
Further, simply because we might be unmapping a single PTE of a large
mlocked folio, we shouldn't zero out the whole folio.
... especially because the code can also *corrupt* urelated memory because
kernel_init_pages(page, folio_nr_pages(folio));
Could end up writing outside of the actual folio if we work with a tail
page.
Let's revert it. Once there is agreement that this is the right approach,
the issues were fixed and there was reasonable review and proper testing,
we can consider it again.
[1] https://lkml.kernel.org/r/4da9da2f-73e4-45fd-b62f-a8a513314057@redhat.com
Link: https://lkml.kernel.org/r/20240605091710.38961-1-david@redhat.com
Fixes:
|
||
Jeff Xu
|
8be7258aad |
mseal: add mseal syscall
The new mseal() is an syscall on 64 bit CPU, and with following signature: int mseal(void addr, size_t len, unsigned long flags) addr/len: memory range. flags: reserved. mseal() blocks following operations for the given memory range. 1> Unmapping, moving to another location, and shrinking the size, via munmap() and mremap(), can leave an empty space, therefore can be replaced with a VMA with a new set of attributes. 2> Moving or expanding a different VMA into the current location, via mremap(). 3> Modifying a VMA via mmap(MAP_FIXED). 4> Size expansion, via mremap(), does not appear to pose any specific risks to sealed VMAs. It is included anyway because the use case is unclear. In any case, users can rely on merging to expand a sealed VMA. 5> mprotect() and pkey_mprotect(). 6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous memory, when users don't have write permission to the memory. Those behaviors can alter region contents by discarding pages, effectively a memset(0) for anonymous memory. Following input during RFC are incooperated into this patch: Jann Horn: raising awareness and providing valuable insights on the destructive madvise operations. Linus Torvalds: assisting in defining system call signature and scope. Liam R. Howlett: perf optimization. Theo de Raadt: sharing the experiences and insight gained from implementing mimmutable() in OpenBSD. Finally, the idea that inspired this patch comes from Stephen Röttger's work in Chrome V8 CFI. [jeffxu@chromium.org: add branch prediction hint, per Pedro] Link: https://lkml.kernel.org/r/20240423192825.1273679-2-jeffxu@chromium.org Link: https://lkml.kernel.org/r/20240415163527.626541-3-jeffxu@chromium.org Signed-off-by: Jeff Xu <jeffxu@chromium.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Pedro Falcato <pedro.falcato@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <groeck@chromium.org> Cc: Jann Horn <jannh@google.com> Cc: Jeff Xu <jeffxu@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Jorge Lucangeli Obes <jorgelo@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Pedro Falcato <pedro.falcato@gmail.com> Cc: Stephen Röttger <sroettger@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Amer Al Shanawany <amer.shanawany@gmail.com> Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
SeongJae Park
|
14f5be2a2d |
mm/vmscan: remove ignore_references argument of reclaim_pages()
All reclaim_pages() callers are setting 'ignore_references' parameter 'true'. In other words, the parameter is not really being used. Remove the argument to make it simple. Link: https://lkml.kernel.org/r/20240429224451.67081-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
fed5348ee2 |
mm/memory-failure: convert shake_page() to shake_folio()
Removes two calls to compound_head(). Move the prototype to internal.h; we definitely don't want code outside mm using it. Link: https://lkml.kernel.org/r/20240412193510.2356957-6-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Jane Chu <jane.chu@oracle.com> Acked-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Lance Yang
|
96ebdb0320 |
mm/memory: add any_dirty optional pointer to folio_pte_batch()
This commit adds the any_dirty pointer as an optional parameter to folio_pte_batch() function. By using both the any_young and any_dirty pointers, madvise_free can make smarter decisions about whether to clear the PTEs when marking large folios as lazyfree. Link: https://lkml.kernel.org/r/20240418134435.6092-4-ioworker0@gmail.com Signed-off-by: Lance Yang <ioworker0@gmail.com> Suggested-by: David Hildenbrand <david@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Barry Song <21cnbao@gmail.com> Cc: Jeff Xie <xiehuan09@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: Zach O'Keefe <zokeefe@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
05c5323b2a |
mm: track mapcount of large folios in single value
Let's track the mapcount of large folios in a single value. The mapcount of a large folio currently corresponds to the sum of the entire mapcount and all page mapcounts. This sum is what we actually want to know in folio_mapcount() and it is also sufficient for implementing folio_mapped(). With PTE-mapped THP becoming more important and more widely used, we want to avoid looping over all pages of a folio just to obtain the mapcount of large folios. The comment "In the common case, avoid the loop when no pages mapped by PTE" in folio_total_mapcount() does no longer hold for mTHP that are always mapped by PTE. Further, we are planning on using folio_mapcount() more frequently, and might even want to remove page mapcounts for large folios in some kernel configs. Therefore, allow for reading the mapcount of large folios efficiently and atomically without looping over any pages. Maintain the mapcount also for hugetlb pages for simplicity. Use the new mapcount to implement folio_mapcount() and folio_mapped(). Make page_mapped() simply call folio_mapped(). We can now get rid of folio_large_is_mapped(). _nr_pages_mapped is now only used in rmap code and for debugging purposes. Keep folio_nr_pages_mapped() around, but document that its use should be limited to rmap internals and debugging purposes. This change implies one additional atomic add/sub whenever mapping/unmapping (parts of) a large folio. As we now batch RMAP operations for PTE-mapped THP during fork(), during unmap/zap, and when PTE-remapping a PMD-mapped THP, and we adjust the large mapcount for a PTE batch only once, the added overhead in the common case is small. Only when unmapping individual pages of a large folio (e.g., during COW), the overhead might be bigger in comparison, but it's essentially one additional atomic operation. Note that before the new mapcount would overflow, already our refcount would overflow: each mapping requires a folio reference. Extend the focumentation of folio_mapcount(). Link: https://lkml.kernel.org/r/20240409192301.907377-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yin Fengwei <fengwei.yin@intel.com> Cc: Chris Zankel <chris@zankel.net> Cc: Hugh Dickins <hughd@google.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Richard Chang <richardycc@google.com> Cc: Rich Felker <dalias@libc.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
9f100e3b37 |
mm: convert free_zone_device_page to free_zone_device_folio
Both callers already have a folio; pass it in and save a few calls to compound_head(). Link: https://lkml.kernel.org/r/20240405153228.2563754-6-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
25176ad09c |
mm/treewide: rename CONFIG_HAVE_FAST_GUP to CONFIG_HAVE_GUP_FAST
Nowadays, we call it "GUP-fast", the external interface includes functions like "get_user_pages_fast()", and we renamed all internal functions to reflect that as well. Let's make the config option reflect that. Link: https://lkml.kernel.org/r/20240402125516.223131-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ryan Roberts
|
3931b871c4 |
mm: madvise: avoid split during MADV_PAGEOUT and MADV_COLD
Rework madvise_cold_or_pageout_pte_range() to avoid splitting any large folio that is fully and contiguously mapped in the pageout/cold vm range. This change means that large folios will be maintained all the way to swap storage. This both improves performance during swap-out, by eliding the cost of splitting the folio, and sets us up nicely for maintaining the large folio when it is swapped back in (to be covered in a separate series). Folios that are not fully mapped in the target range are still split, but note that behavior is changed so that if the split fails for any reason (folio locked, shared, etc) we now leave it as is and move to the next pte in the range and continue work on the proceeding folios. Previously any failure of this sort would cause the entire operation to give up and no folios mapped at higher addresses were paged out or made cold. Given large folios are becoming more common, this old behavior would have likely lead to wasted opportunities. While we are at it, change the code that clears young from the ptes to use ptep_test_and_clear_young(), via the new mkold_ptes() batch helper function. This is more efficent than get_and_clear/modify/set, especially for contpte mappings on arm64, where the old approach would require unfolding/refolding and the new approach can be done in place. Link: https://lkml.kernel.org/r/20240408183946.2991168-8-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Barry Song <v-songbaohua@oppo.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Barry Song <21cnbao@gmail.com> Cc: Chris Li <chrisl@kernel.org> Cc: Gao Xiang <xiang@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ryan Roberts
|
a62fb92ac1 |
mm: swap: free_swap_and_cache_nr() as batched free_swap_and_cache()
Now that we no longer have a convenient flag in the cluster to determine if a folio is large, free_swap_and_cache() will take a reference and lock a large folio much more often, which could lead to contention and (e.g.) failure to split large folios, etc. Let's solve that problem by batch freeing swap and cache with a new function, free_swap_and_cache_nr(), to free a contiguous range of swap entries together. This allows us to first drop a reference to each swap slot before we try to release the cache folio. This means we only try to release the folio once, only taking the reference and lock once - much better than the previous 512 times for the 2M THP case. Contiguous swap entries are gathered in zap_pte_range() and madvise_free_pte_range() in a similar way to how present ptes are already gathered in zap_pte_range(). While we are at it, let's simplify by converting the return type of both functions to void. The return value was used only by zap_pte_range() to print a bad pte, and was ignored by everyone else, so the extra reporting wasn't exactly guaranteed. We will still get the warning with most of the information from get_swap_device(). With the batch version, we wouldn't know which pte was bad anyway so could print the wrong one. [ryan.roberts@arm.com: fix a build warning on parisc] Link: https://lkml.kernel.org/r/20240409111840.3173122-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20240408183946.2991168-3-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Barry Song <21cnbao@gmail.com> Cc: Barry Song <v-songbaohua@oppo.com> Cc: Chris Li <chrisl@kernel.org> Cc: Gao Xiang <xiang@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
e0abfbb671 |
mm: rename vma_pgoff_address back to vma_address
With all callers converted, we can use the nice shorter name. Take this opportunity to reorder the arguments to the logical order (larger object first). Link: https://lkml.kernel.org/r/20240328225831.1765286-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |