8 Commits

Author SHA1 Message Date
Trond Myklebust
5dd3177ae5 NFSv4: Fix a use-after-free issue with the nfs server.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:54 -04:00
Chuck Lever
41877d207c NFS: Convert NFS client to use new rpc_create() API
Convert NFS client mount logic to use rpc_create() instead of the old
xprt_create_proto/rpc_create_client API.

Test plan:
Mount stress tests.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:50 -04:00
Trond Myklebust
9c5bf38d85 NFS: Fix nfs_alloc_client()
The scheme to indicate which services have been started up appears to be
seriously broken.

Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:38 -04:00
David Howells
27ba851244 NFS: Fix error handling
Fix an error handling problem: nfs_put_client() can be given a NULL pointer if
nfs_free_server() is asked to destroy a partially initialised record.

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:37 -04:00
David Howells
6aaca56650 NFS: Add server and volume lists to /proc
Make two new proc files available:

	/proc/fs/nfsfs/servers
	/proc/fs/nfsfs/volumes

The first lists the servers with which we are currently dealing (struct
nfs_client), and the second lists the volumes we have on those servers (struct
nfs_server).

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:37 -04:00
David Howells
54ceac4515 NFS: Share NFS superblocks per-protocol per-server per-FSID
The attached patch makes NFS share superblocks between mounts from the same
server and FSID over the same protocol.

It does this by creating each superblock with a false root and returning the
real root dentry in the vfsmount presented by get_sb(). The root dentry set
starts off as an anonymous dentry if we don't already have the dentry for its
inode, otherwise it simply returns the dentry we already have.

We may thus end up with several trees of dentries in the superblock, and if at
some later point one of anonymous tree roots is discovered by normal filesystem
activity to be located in another tree within the superblock, the anonymous
root is named and materialises attached to the second tree at the appropriate
point.

Why do it this way? Why not pass an extra argument to the mount() syscall to
indicate the subpath and then pathwalk from the server root to the desired
directory? You can't guarantee this will work for two reasons:

 (1) The root and intervening nodes may not be accessible to the client.

     With NFS2 and NFS3, for instance, mountd is called on the server to get
     the filehandle for the tip of a path. mountd won't give us handles for
     anything we don't have permission to access, and so we can't set up NFS
     inodes for such nodes, and so can't easily set up dentries (we'd have to
     have ghost inodes or something).

     With this patch we don't actually create dentries until we get handles
     from the server that we can use to set up their inodes, and we don't
     actually bind them into the tree until we know for sure where they go.

 (2) Inaccessible symbolic links.

     If we're asked to mount two exports from the server, eg:

	mount warthog:/warthog/aaa/xxx /mmm
	mount warthog:/warthog/bbb/yyy /nnn

     We may not be able to access anything nearer the root than xxx and yyy,
     but we may find out later that /mmm/www/yyy, say, is actually the same
     directory as the one mounted on /nnn. What we might then find out, for
     example, is that /warthog/bbb was actually a symbolic link to
     /warthog/aaa/xxx/www, but we can't actually determine that by talking to
     the server until /warthog is made available by NFS.

     This would lead to having constructed an errneous dentry tree which we
     can't easily fix. We can end up with a dentry marked as a directory when
     it should actually be a symlink, or we could end up with an apparently
     hardlinked directory.

     With this patch we need not make assumptions about the type of a dentry
     for which we can't retrieve information, nor need we assume we know its
     place in the grand scheme of things until we actually see that place.

This patch reduces the possibility of aliasing in the inode and page caches for
inodes that may be accessed by more than one NFS export. It also reduces the
number of superblocks required for NFS where there are many NFS exports being
used from a server (home directory server + autofs for example).

This in turn makes it simpler to do local caching of network filesystems, as it
can then be guaranteed that there won't be links from multiple inodes in
separate superblocks to the same cache file.

Obviously, cache aliasing between different levels of NFS protocol could still
be a problem, but at least that gives us another key to use when indexing the
cache.

This patch makes the following changes:

 (1) The server record construction/destruction has been abstracted out into
     its own set of functions to make things easier to get right.  These have
     been moved into fs/nfs/client.c.

     All the code in fs/nfs/client.c has to do with the management of
     connections to servers, and doesn't touch superblocks in any way; the
     remaining code in fs/nfs/super.c has to do with VFS superblock management.

 (2) The sequence of events undertaken by NFS mount is now reordered:

     (a) A volume representation (struct nfs_server) is allocated.

     (b) A server representation (struct nfs_client) is acquired.  This may be
     	 allocated or shared, and is keyed on server address, port and NFS
     	 version.

     (c) If allocated, the client representation is initialised.  The state
     	 member variable of nfs_client is used to prevent a race during
     	 initialisation from two mounts.

     (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
     	 the root filehandle for the mount (fs/nfs/getroot.c).  For NFS2/3 we
     	 are given the root FH in advance.

     (e) The volume FSID is probed for on the root FH.

     (f) The volume representation is initialised from the FSINFO record
     	 retrieved on the root FH.

     (g) sget() is called to acquire a superblock.  This may be allocated or
     	 shared, keyed on client pointer and FSID.

     (h) If allocated, the superblock is initialised.

     (i) If the superblock is shared, then the new nfs_server record is
     	 discarded.

     (j) The root dentry for this mount is looked up from the root FH.

     (k) The root dentry for this mount is assigned to the vfsmount.

 (3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
     returns; this function now attaches disconnected trees from alternate
     roots that happen to be discovered attached to a directory being read (in
     the same way nfs_lookup() is made to do for lookup ops).

     The new d_materialise_unique() function is now used to do this, thus
     permitting the whole thing to be done under one set of locks, and thus
     avoiding any race between mount and lookup operations on the same
     directory.

 (4) The client management code uses a new debug facility: NFSDBG_CLIENT which
     is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.

 (5) Clone mounts are now called xdev mounts.

 (6) Use the dentry passed to the statfs() op as the handle for retrieving fs
     statistics rather than the root dentry of the superblock (which is now a
     dummy).

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:37 -04:00
David Howells
5006a76cca NFS: Eliminate client_sys in favour of cl_rpcclient
Eliminate nfs_server::client_sys in favour of nfs_client::cl_rpcclient as we
only really need one per server that we're talking to since it doesn't have any
security on it.

The retransmission management variables are also moved to the common struct as
they're required to set up the cl_rpcclient connection.

The NFS2/3 client and client_acl connections are thenceforth derived by cloning
the cl_rpcclient connection and post-applying the authorisation flavour.

The code for setting up the initial common connection has been moved to
client.c as nfs_create_rpc_client().  All the NFS program definition tables are
also moved there as that's where they're now required rather than super.c.

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:36 -04:00
David Howells
24c8dbbb5f NFS: Generalise the nfs_client structure
Generalise the nfs_client structure by:

 (1) Moving nfs_client to a more general place (nfs_fs_sb.h).

 (2) Renaming its maintenance routines to be non-NFS4 specific.

 (3) Move those maintenance routines to a new non-NFS4 specific file (client.c)
     and move the declarations to internal.h.

 (4) Make nfs_find/get_client() take a full sockaddr_in to include the port
     number (will be required for NFS2/3).

 (5) Make nfs_find/get_client() take the NFS protocol version (again will be
     required to differentiate NFS2, 3 & 4 client records).

Also:

 (6) Make nfs_client construction proceed akin to inodes, marking them as under
     construction and providing a function to indicate completion.

 (7) Make nfs_get_client() wait interruptibly if it finds a client that it can
     share, but that client is currently being constructed.

 (8) Make nfs4_create_client() use (6) and (7) instead of locking cl_sem.

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-09-22 23:24:33 -04:00