Commit Graph

794 Commits

Author SHA1 Message Date
Dr. David Alan Gilbert
bc07eea2f3 KVM: Remove unused kvm_vcpu_gfn_to_pfn_atomic
The last use of kvm_vcpu_gfn_to_pfn_atomic was removed by commit
1bbc60d0c7 ("KVM: x86/mmu: Remove MMU auditing")

Remove it.

Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Message-ID: <20241001141354.18009-3-linux@treblig.org>
[Adjust Documentation/virt/kvm/locking.rst. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-20 07:05:51 -04:00
Dr. David Alan Gilbert
88a387cf9e KVM: Remove unused kvm_vcpu_gfn_to_pfn
The last use of kvm_vcpu_gfn_to_pfn was removed by commit
b1624f99aa ("KVM: Remove kvm_vcpu_gfn_to_page() and kvm_vcpu_gpa_to_page()")

Remove it.

Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Message-ID: <20241001141354.18009-2-linux@treblig.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-20 07:04:52 -04:00
Paolo Bonzini
c09dd2bb57 Merge branch 'kvm-redo-enable-virt' into HEAD
Register KVM's cpuhp and syscore callbacks when enabling virtualization in
hardware, as the sole purpose of said callbacks is to disable and re-enable
virtualization as needed.

The primary motivation for this series is to simplify dealing with enabling
virtualization for Intel's TDX, which needs to enable virtualization
when kvm-intel.ko is loaded, i.e. long before the first VM is created.

That said, this is a nice cleanup on its own.  By registering the callbacks
on-demand, the callbacks themselves don't need to check kvm_usage_count,
because their very existence implies a non-zero count.

Patch 1 (re)adds a dedicated lock for kvm_usage_count.  This avoids a
lock ordering issue between cpus_read_lock() and kvm_lock.  The lock
ordering issue still exist in very rare cases, and will be fixed for
good by switching vm_list to an (S)RCU-protected list.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-17 11:38:20 -04:00
Sean Christopherson
b67107a251 KVM: Add arch hooks for enabling/disabling virtualization
Add arch hooks that are invoked when KVM enables/disable virtualization.
x86 will use the hooks to register an "emergency disable" callback, which
is essentially an x86-specific shutdown notifier that is used when the
kernel is doing an emergency reboot/shutdown/kexec.

Add comments for the declarations to help arch code understand exactly
when the callbacks are invoked.  Alternatively, the APIs themselves could
communicate most of the same info, but kvm_arch_pre_enable_virtualization()
and kvm_arch_post_disable_virtualization() are a bit cumbersome, and make
it a bit less obvious that they are intended to be implemented as a pair.

Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Farrah Chen <farrah.chen@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240830043600.127750-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-04 11:02:33 -04:00
Sean Christopherson
071f24ad28 KVM: Rename arch hooks related to per-CPU virtualization enabling
Rename the per-CPU hooks used to enable virtualization in hardware to
align with the KVM-wide helpers in kvm_main.c, and to better capture that
the callbacks are invoked on every online CPU.

No functional change intended.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240830043600.127750-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-04 11:02:33 -04:00
Leonardo Bras
593377036e kvm: Note an RCU quiescent state on guest exit
As of today, KVM notes a quiescent state only in guest entry, which is good
as it avoids the guest being interrupted for current RCU operations.

While the guest vcpu runs, it can be interrupted by a timer IRQ that will
check for any RCU operations waiting for this CPU. In case there are any of
such, it invokes rcu_core() in order to sched-out the current thread and
note a quiescent state.

This occasional schedule work will introduce tens of microsseconds of
latency, which is really bad for vcpus running latency-sensitive
applications, such as real-time workloads.

So, note a quiescent state in guest exit, so the interrupted guests is able
to deal with any pending RCU operations before being required to invoke
rcu_core(), and thus avoid the overhead of related scheduler work.

Signed-off-by: Leonardo Bras <leobras@redhat.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240511020557.1198200-1-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-09-04 10:44:42 -04:00
Sean Christopherson
66155de93b KVM: x86: Disallow read-only memslots for SEV-ES and SEV-SNP (and TDX)
Disallow read-only memslots for SEV-{ES,SNP} VM types, as KVM can't
directly emulate instructions for ES/SNP, and instead the guest must
explicitly request emulation.  Unless the guest explicitly requests
emulation without accessing memory, ES/SNP relies on KVM creating an MMIO
SPTE, with the subsequent #NPF being reflected into the guest as a #VC.

But for read-only memslots, KVM deliberately doesn't create MMIO SPTEs,
because except for ES/SNP, doing so requires setting reserved bits in the
SPTE, i.e. the SPTE can't be readable while also generating a #VC on
writes.  Because KVM never creates MMIO SPTEs and jumps directly to
emulation, the guest never gets a #VC.  And since KVM simply resumes the
guest if ES/SNP guests trigger emulation, KVM effectively puts the vCPU
into an infinite #NPF loop if the vCPU attempts to write read-only memory.

Disallow read-only memory for all VMs with protected state, i.e. for
upcoming TDX VMs as well as ES/SNP VMs.  For TDX, it's actually possible
to support read-only memory, as TDX uses EPT Violation #VE to reflect the
fault into the guest, e.g. KVM could configure read-only SPTEs with RX
protections and SUPPRESS_VE=0.  But there is no strong use case for
supporting read-only memslots on TDX, e.g. the main historical usage is
to emulate option ROMs, but TDX disallows executing from shared memory.
And if someone comes along with a legitimate, strong use case, the
restriction can always be lifted for TDX.

Don't bother trying to retroactively apply the restriction to SEV-ES
VMs that are created as type KVM_X86_DEFAULT_VM.  Read-only memslots can't
possibly work for SEV-ES, i.e. disallowing such memslots is really just
means reporting an error to userspace instead of silently hanging vCPUs.
Trying to deal with the ordering between KVM_SEV_INIT and memslot creation
isn't worth the marginal benefit it would provide userspace.

Fixes: 26c44aa9e0 ("KVM: SEV: define VM types for SEV and SEV-ES")
Fixes: 1dfe571c12 ("KVM: SEV: Add initial SEV-SNP support")
Cc: Peter Gonda <pgonda@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerly Tng <ackerleytng@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240809190319.1710470-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-08-14 12:28:24 -04:00
Paolo Bonzini
e4ee544792 KVM: guest_memfd: let kvm_gmem_populate() operate only on private gfns
This check is currently performed by sev_gmem_post_populate(), but it
applies to all callers of kvm_gmem_populate(): the point of the function
is that the memory is being encrypted and some work has to be done
on all the gfns in order to encrypt them.

Therefore, check the KVM_MEMORY_ATTRIBUTE_PRIVATE attribute prior
to invoking the callback, and stop the operation if a shared page
is encountered.  Because CONFIG_KVM_PRIVATE_MEM in principle does
not require attributes, this makes kvm_gmem_populate() depend on
CONFIG_KVM_GENERIC_PRIVATE_MEM (which does require them).

Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26 14:46:15 -04:00
Paolo Bonzini
4b5f67120a KVM: extend kvm_range_has_memory_attributes() to check subset of attributes
While currently there is no other attribute than KVM_MEMORY_ATTRIBUTE_PRIVATE,
KVM code such as kvm_mem_is_private() is written to expect their existence.
Allow using kvm_range_has_memory_attributes() as a multi-page version of
kvm_mem_is_private(), without it breaking later when more attributes are
introduced.

Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26 14:46:15 -04:00
Paolo Bonzini
7239ed7467 KVM: remove kvm_arch_gmem_prepare_needed()
It is enough to return 0 if a guest need not do any preparation.
This is in fact how sev_gmem_prepare() works for non-SNP guests,
and it extends naturally to Intel hosts: the x86 callback for
gmem_prepare is optional and returns 0 if not defined.

Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26 14:46:14 -04:00
Paolo Bonzini
564429a6bd KVM: rename CONFIG_HAVE_KVM_GMEM_* to CONFIG_HAVE_KVM_ARCH_GMEM_*
Add "ARCH" to the symbols; shortly, the "prepare" phase will include both
the arch-independent step to clear out contents left in the page by the
host, and the arch-dependent step enabled by CONFIG_HAVE_KVM_GMEM_PREPARE.
For consistency do the same for CONFIG_HAVE_KVM_GMEM_INVALIDATE as well.

Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-26 14:46:14 -04:00
Paolo Bonzini
86014c1e20 KVM generic changes for 6.11
- Enable halt poll shrinking by default, as Intel found it to be a clear win.
 
  - Setup empty IRQ routing when creating a VM to avoid having to synchronize
    SRCU when creating a split IRQCHIP on x86.
 
  - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag
    that arch code can use for hooking both sched_in() and sched_out().
 
  - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
    truncating a bogus value from userspace, e.g. to help userspace detect bugs.
 
  - Mark a vCPU as preempted if and only if it's scheduled out while in the
    KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest
    memory when retrieving guest state during live migration blackout.
 
  - A few minor cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRuOYACgkQOlYIJqCj
 N/1UnQ/8CI5Qfr+/0gzYgtWmtEMczGG+rMNpzD3XVqPjJjXcMcBiQnplnzUVLhha
 vlPdYVK7vgmEt003XGzV55mik46LHL+DX/v4hI3HEdblfyCeNLW3fKEWVRB44qJe
 o+YUQwSK42SORUp9oXuQINxhA//U9EnI7CQxlJ8w8wenv5IJKfIGr01DefmfGPAV
 PKm9t6WLcNqvhZMEyy/zmzM3KVPCJL0NcwI97x6sHxFpQYIDtL0E/VexA4AFqMoT
 QK7cSDC/2US41Zvem/r/GzM/ucdF6vb9suzZYBohwhxtVhwJe2CDeYQZvtNKJ1U7
 GOHPaKL6nBWdZCm/yyWbbX2nstY1lHqxhN3JD0X8wqU5rNcwm2b8Vfyav0Ehc7H+
 jVbDTshOx4YJmIgajoKjgM050rdBK59TdfVL+l+AAV5q/TlHocalYtvkEBdGmIDg
 2td9UHSime6sp20vQfczUEz4bgrQsh4l2Fa/qU2jFwLievnBw0AvEaMximkSGMJe
 b8XfjmdTjlOesWAejANKtQolfrq14+1wYw0zZZ8PA+uNVpKdoovmcqSOcaDC9bT8
 GO/NFUvoG+lkcvJcIlo1SSl81SmGLosijwxWfGvFAqsgpR3/3l3dYp0QtztoCNJO
 d3+HnjgYn5o5FwufuTD3eUOXH4AFjG108DH0o25XrIkb2Kymy0o=
 =BalU
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-generic-6.11' of https://github.com/kvm-x86/linux into HEAD

KVM generic changes for 6.11

 - Enable halt poll shrinking by default, as Intel found it to be a clear win.

 - Setup empty IRQ routing when creating a VM to avoid having to synchronize
   SRCU when creating a split IRQCHIP on x86.

 - Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag
   that arch code can use for hooking both sched_in() and sched_out().

 - Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
   truncating a bogus value from userspace, e.g. to help userspace detect bugs.

 - Mark a vCPU as preempted if and only if it's scheduled out while in the
   KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest
   memory when retrieving guest state during live migration blackout.

 - A few minor cleanups
2024-07-16 09:51:36 -04:00
Isaku Yamahata
bc1a5cd002 KVM: Add KVM_PRE_FAULT_MEMORY vcpu ioctl to pre-populate guest memory
Add a new ioctl KVM_PRE_FAULT_MEMORY in the KVM common code. It iterates on the
memory range and calls the arch-specific function.  The implementation is
optional and enabled by a Kconfig symbol.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <819322b8f25971f2b9933bfa4506e618508ad782.1712785629.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-12 11:17:35 -04:00
David Matlack
a6816314af KVM: Introduce vcpu->wants_to_run
Introduce vcpu->wants_to_run to indicate when a vCPU is in its core run
loop, i.e. when the vCPU is running the KVM_RUN ioctl and immediate_exit
was not set.

Replace all references to vcpu->run->immediate_exit with
!vcpu->wants_to_run to avoid TOCTOU races with userspace. For example, a
malicious userspace could invoked KVM_RUN with immediate_exit=true and
then after KVM reads it to set wants_to_run=false, flip it to false.
This would result in the vCPU running in KVM_RUN with
wants_to_run=false. This wouldn't cause any real bugs today but is a
dangerous landmine.

Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20240503181734.1467938-2-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-18 09:20:01 -07:00
Sean Christopherson
2a27c43140 KVM: Delete the now unused kvm_arch_sched_in()
Delete kvm_arch_sched_in() now that all implementations are nops.

Reviewed-by: Bibo Mao <maobibo@loongson.cn>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240522014013.1672962-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-11 14:18:45 -07:00
Sean Christopherson
d1ae567fb8 KVM: Add a flag to track if a loaded vCPU is scheduled out
Add a kvm_vcpu.scheduled_out flag to track if a vCPU is in the process of
being scheduled out (vCPU put path), or if the vCPU is being reloaded
after being scheduled out (vCPU load path).  In the short term, this will
allow dropping kvm_arch_sched_in(), as arch code can query scheduled_out
during kvm_arch_vcpu_load().

Longer term, scheduled_out opens up other potential optimizations, without
creating subtle/brittle dependencies.  E.g. it allows KVM to keep guest
state (that is managed via kvm_arch_vcpu_{load,put}()) loaded across
kvm_sched_{out,in}(), if KVM knows the state isn't accessed by the host
kernel.  Forcing arch code to coordinate between kvm_arch_sched_{in,out}()
and kvm_arch_vcpu_{load,put}() is awkward, not reusable, and relies on the
exact ordering of calls into arch code.

Adding scheduled_out also obviates the need for a kvm_arch_sched_out()
hook, e.g. if arch code needs to do something novel when putting vCPU
state.

And even if KVM never uses scheduled_out for anything beyond dropping
kvm_arch_sched_in(), just being able to remove all of the arch stubs makes
it worth adding the flag.

Link: https://lore.kernel.org/all/20240430224431.490139-1-seanjc@google.com
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240522014013.1672962-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-11 14:18:42 -07:00
Yi Wang
fbe4a7e881 KVM: Setup empty IRQ routing when creating a VM
Setup empty IRQ routing during VM creation so that x86 and s390 don't need
to set empty/dummy IRQ routing during KVM_CREATE_IRQCHIP (in future
patches).  Initializing IRQ routing before there are any potential readers
allows KVM to avoid the synchronize_srcu() in kvm_set_irq_routing(), which
can introduces 20+ milliseconds of latency in the VM creation path.

Ensuring that all VMs have non-NULL IRQ routing also hardens KVM against
misbehaving userspace VMMs, e.g. RISC-V dynamically instantiates its
interrupt controller, but doesn't override kvm_arch_intc_initialized() or
kvm_arch_irqfd_allowed(), and so can likely reach kvm_irq_map_gsi()
without fully initialized IRQ routing.

Signed-off-by: Yi Wang <foxywang@tencent.com>
Acked-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20240506101751.3145407-2-foxywang@tencent.com
[sean: init refcount after IRQ routing, fix stub, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-11 14:18:34 -07:00
Borislav Petkov
96a02b9fa9 KVM: Unexport kvm_debugfs_dir
After

  faf01aef05 ("KVM: PPC: Merge powerpc's debugfs entry content into generic entry")

kvm_debugfs_dir is not used anywhere else outside of kvm_main.c

Unexport it and make it static.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240515150804.9354-1-bp@kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-03 08:22:59 -07:00
Paolo Bonzini
7323260373 Merge branch 'kvm-coco-hooks' into HEAD
Common patches for the target-independent functionality and hooks
that are needed by SEV-SNP and TDX.
2024-05-12 04:07:01 -04:00
Paolo Bonzini
f4bc1373d5 KVM cleanups for 6.10:
- Misc cleanups extracted from the "exit on missing userspace mapping" series,
    which has been put on hold in anticipation of a "KVM Userfault" approach,
    which should provide a superset of functionality.
 
  - Remove kvm_make_all_cpus_request_except(), which got added to hack around an
    AVIC bug, and then became dead code when a more robust fix came along.
 
  - Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmY+oHQACgkQOlYIJqCj
 N/3c/w//dmgqxFGpPoCvZ2+pVarrbpsMdfO5skaMF0EN1a0Rb0oJcVYj7z1zqsjQ
 4DCCANxVrcEGVBZG5I8nhk1lDlGS7zOTOBBovgVDNj7wL9p/fzOhR6UlLKG5QMMn
 0nWY9raC8ubcrtKgOm/qOtSgZrL9rEWh3QUK1FRPKaF12r1CLPmJIvVvpCm8t//f
 YZrqpHj/JqXbc8V8toBHqvi3DaMIOA2gWRvjfwSWfCL+x7ZPYny3Q+nw9fl2fSR6
 f6w1lB6VhyDudzscu4l7U4y5wI0LMmYhJ5p5tvQBB5qtbAJ7vpIUxxYh4CT/YdbH
 WLQCIBr2wR0Mkl0g4FwNlnnt6a5Sa6V4nVKfzkl37L0Ucyu+SpP8t6YO4nb/dJmb
 Sicx3qqeHC7N9Y9VVKzK3Kb33KVaBFawvzjIcc+GFXMDFZ35b33vWhYzTl3sJpLY
 hjfGpYTB1zHSj6f7a9mW7d15E/lyfqMKCzewZWnko0hISM8Jm1LxU3PMFJa8TR2/
 yB6IUDDJnEk6fSwUwaCluAJv3kfnhs/S3fMFw+5cYkcmgW7yaE+K9nJ3aEkx5l7x
 9sXjAtc7zbAwEuJZ+5C1+CgwWGKsfLKtXbjqMYAIAYep5oa+UrJ4L77aZyTV1mSD
 oRJs0LmNmachV5nxKFHAaijVc6vmZNhcD9ygbM5qeLGoGby+W8g=
 =dgM4
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-generic-6.10' of https://github.com/kvm-x86/linux into HEAD

KVM cleanups for 6.10:

 - Misc cleanups extracted from the "exit on missing userspace mapping" series,
   which has been put on hold in anticipation of a "KVM Userfault" approach,
   which should provide a superset of functionality.

 - Remove kvm_make_all_cpus_request_except(), which got added to hack around an
   AVIC bug, and then became dead code when a more robust fix came along.

 - Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation.
2024-05-12 03:16:47 -04:00
Michael Roth
a90764f0e4 KVM: guest_memfd: Add hook for invalidating memory
In some cases, like with SEV-SNP, guest memory needs to be updated in a
platform-specific manner before it can be safely freed back to the host.
Wire up arch-defined hooks to the .free_folio kvm_gmem_aops callback to
allow for special handling of this sort when freeing memory in response
to FALLOC_FL_PUNCH_HOLE operations and when releasing the inode, and go
ahead and define an arch-specific hook for x86 since it will be needed
for handling memory used for SEV-SNP guests.

Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20231230172351.574091-6-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10 13:11:48 -04:00
Paolo Bonzini
1f6c06b177 KVM: guest_memfd: Add interface for populating gmem pages with user data
During guest run-time, kvm_arch_gmem_prepare() is issued as needed to
prepare newly-allocated gmem pages prior to mapping them into the guest.
In the case of SEV-SNP, this mainly involves setting the pages to
private in the RMP table.

However, for the GPA ranges comprising the initial guest payload, which
are encrypted/measured prior to starting the guest, the gmem pages need
to be accessed prior to setting them to private in the RMP table so they
can be initialized with the userspace-provided data. Additionally, an
SNP firmware call is needed afterward to encrypt them in-place and
measure the contents into the guest's launch digest.

While it is possible to bypass the kvm_arch_gmem_prepare() hooks so that
this handling can be done in an open-coded/vendor-specific manner, this
may expose more gmem-internal state/dependencies to external callers
than necessary. Try to avoid this by implementing an interface that
tries to handle as much of the common functionality inside gmem as
possible, while also making it generic enough to potentially be
usable/extensible for TDX as well.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10 13:11:47 -04:00
Paolo Bonzini
3bb2531e20 KVM: guest_memfd: Add hook for initializing memory
guest_memfd pages are generally expected to be in some arch-defined
initial state prior to using them for guest memory. For SEV-SNP this
initial state is 'private', or 'guest-owned', and requires additional
operations to move these pages into a 'private' state by updating the
corresponding entries the RMP table.

Allow for an arch-defined hook to handle updates of this sort, and go
ahead and implement one for x86 so KVM implementations like AMD SVM can
register a kvm_x86_ops callback to handle these updates for SEV-SNP
guests.

The preparation callback is always called when allocating/grabbing
folios via gmem, and it is up to the architecture to keep track of
whether or not the pages are already in the expected state (e.g. the RMP
table in the case of SEV-SNP).

In some cases, it is necessary to defer the preparation of the pages to
handle things like in-place encryption of initial guest memory payloads
before marking these pages as 'private'/'guest-owned'.  Add an argument
(always true for now) to kvm_gmem_get_folio() that allows for the
preparation callback to be bypassed.  To detect possible issues in
the way userspace initializes memory, it is only possible to add an
unprepared page if it is not already included in the filemap.

Link: https://lore.kernel.org/lkml/ZLqVdvsF11Ddo7Dq@google.com/
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20231230172351.574091-5-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10 13:11:46 -04:00
Venkatesh Srinivas
82e9c84d87 KVM: Remove kvm_make_all_cpus_request_except()
Remove kvm_make_all_cpus_request_except() as it effectively has no users,
and arguably should never have been added in the first place.

Commit 54163a346d ("KVM: Introduce kvm_make_all_cpus_request_except()")
added the "except" variation for use in SVM's AVIC update path, which used
it to skip sending a request to the current vCPU (commit 7d611233b0
("KVM: SVM: Disable AVIC before setting V_IRQ")).

But the AVIC usage of kvm_make_all_cpus_request_except() was essentially a
hack-a-fix that simply squashed the most likely scenario of a racy WARN
without addressing the underlying problem(s).  Commit f1577ab214 ("KVM:
SVM: svm_set_vintr don't warn if AVIC is active but is about to be
deactivated") eventually fixed the WARN itself, and the "except" usage was
subsequently dropped by df63202fe5 ("KVM: x86: APICv: drop immediate
APICv disablement on current vCPU").

That kvm_make_all_cpus_request_except() hasn't gained any users in the
last ~3 years isn't a coincidence.  If a VM-wide broadcast *needs* to skip
the current vCPU, then odds are very good that there is underlying bug
that could be better fixed elsewhere.

Signed-off-by: Venkatesh Srinivas <venkateshs@chromium.org>
Link: https://lore.kernel.org/r/20240404232651.1645176-1-venkateshs@chromium.org
[sean: rewrite changelog with --verbose]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-05-02 07:47:03 -07:00
Paolo Bonzini
f3b65bbaed KVM: delete .change_pte MMU notifier callback
The .change_pte() MMU notifier callback was intended as an
optimization. The original point of it was that KSM could tell KVM to flip
its secondary PTE to a new location without having to first zap it. At
the time there was also an .invalidate_page() callback; both of them were
*not* bracketed by calls to mmu_notifier_invalidate_range_{start,end}(),
and .invalidate_page() also doubled as a fallback implementation of
.change_pte().

Later on, however, both callbacks were changed to occur within an
invalidate_range_start/end() block.

In the case of .change_pte(), commit 6bdb913f0a ("mm: wrap calls to
set_pte_at_notify with invalidate_range_start and invalidate_range_end",
2012-10-09) did so to remove the fallback from .invalidate_page() to
.change_pte() and allow sleepable .invalidate_page() hooks.

This however made KVM's usage of the .change_pte() callback completely
moot, because KVM unmaps the sPTEs during .invalidate_range_start()
and therefore .change_pte() has no hope of finding a sPTE to change.
Drop the generic KVM code that dispatches to kvm_set_spte_gfn(), as
well as all the architecture specific implementations.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Anup Patel <anup@brainfault.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Bibo Mao <maobibo@loongson.cn>
Message-ID: <20240405115815.3226315-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:18:27 -04:00
Linus Torvalds
4f712ee0cb S390:
* Changes to FPU handling came in via the main s390 pull request
 
 * Only deliver to the guest the SCLP events that userspace has
   requested.
 
 * More virtual vs physical address fixes (only a cleanup since
   virtual and physical address spaces are currently the same).
 
 * Fix selftests undefined behavior.
 
 x86:
 
 * Fix a restriction that the guest can't program a PMU event whose
   encoding matches an architectural event that isn't included in the
   guest CPUID.  The enumeration of an architectural event only says
   that if a CPU supports an architectural event, then the event can be
   programmed *using the architectural encoding*.  The enumeration does
   NOT say anything about the encoding when the CPU doesn't report support
   the event *in general*.  It might support it, and it might support it
   using the same encoding that made it into the architectural PMU spec.
 
 * Fix a variety of bugs in KVM's emulation of RDPMC (more details on
   individual commits) and add a selftest to verify KVM correctly emulates
   RDMPC, counter availability, and a variety of other PMC-related
   behaviors that depend on guest CPUID and therefore are easier to
   validate with selftests than with custom guests (aka kvm-unit-tests).
 
 * Zero out PMU state on AMD if the virtual PMU is disabled, it does not
   cause any bug but it wastes time in various cases where KVM would check
   if a PMC event needs to be synthesized.
 
 * Optimize triggering of emulated events, with a nice ~10% performance
   improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
   guest.
 
 * Tighten the check for "PMI in guest" to reduce false positives if an NMI
   arrives in the host while KVM is handling an IRQ VM-Exit.
 
 * Fix a bug where KVM would report stale/bogus exit qualification information
   when exiting to userspace with an internal error exit code.
 
 * Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
 
 * Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
   read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
 
 * Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB).  KVM
   doesn't support yielding in the middle of processing a zap, and 1GiB
   granularity resulted in multi-millisecond lags that are quite impolite
   for CONFIG_PREEMPT kernels.
 
 * Allocate write-tracking metadata on-demand to avoid the memory overhead when
   a kernel is built with i915 virtualization support but the workloads use
   neither shadow paging nor i915 virtualization.
 
 * Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives.
 
 * Fix the debugregs ABI for 32-bit KVM.
 
 * Rework the "force immediate exit" code so that vendor code ultimately decides
   how and when to force the exit, which allowed some optimization for both
   Intel and AMD.
 
 * Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, causing extra unnecessary work.
 
 * Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
 
 * Harden against underflowing the active mmu_notifier invalidation
   count, so that "bad" invalidations (usually due to bugs elsehwere in the
   kernel) are detected earlier and are less likely to hang the kernel.
 
 x86 Xen emulation:
 
 * Overlay pages can now be cached based on host virtual address,
   instead of guest physical addresses.  This removes the need to
   reconfigure and invalidate the cache if the guest changes the
   gpa but the underlying host virtual address remains the same.
 
 * When possible, use a single host TSC value when computing the deadline for
   Xen timers in order to improve the accuracy of the timer emulation.
 
 * Inject pending upcall events when the vCPU software-enables its APIC to fix
   a bug where an upcall can be lost (and to follow Xen's behavior).
 
 * Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
   events fails, e.g. if the guest has aliased xAPIC IDs.
 
 RISC-V:
 
 * Support exception and interrupt handling in selftests
 
 * New self test for RISC-V architectural timer (Sstc extension)
 
 * New extension support (Ztso, Zacas)
 
 * Support userspace emulation of random number seed CSRs.
 
 ARM:
 
 * Infrastructure for building KVM's trap configuration based on the
   architectural features (or lack thereof) advertised in the VM's ID
   registers
 
 * Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
   x86's WC) at stage-2, improving the performance of interacting with
   assigned devices that can tolerate it
 
 * Conversion of KVM's representation of LPIs to an xarray, utilized to
   address serialization some of the serialization on the LPI injection
   path
 
 * Support for _architectural_ VHE-only systems, advertised through the
   absence of FEAT_E2H0 in the CPU's ID register
 
 * Miscellaneous cleanups, fixes, and spelling corrections to KVM and
   selftests
 
 LoongArch:
 
 * Set reserved bits as zero in CPUCFG.
 
 * Start SW timer only when vcpu is blocking.
 
 * Do not restart SW timer when it is expired.
 
 * Remove unnecessary CSR register saving during enter guest.
 
 * Misc cleanups and fixes as usual.
 
 Generic:
 
 * cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
   true on all architectures except MIPS (where Kconfig determines the
   available depending on CPU capabilities).  It is replaced either by
   an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
   everywhere else.
 
 * Factor common "select" statements in common code instead of requiring
   each architecture to specify it
 
 * Remove thoroughly obsolete APIs from the uapi headers.
 
 * Move architecture-dependent stuff to uapi/asm/kvm.h
 
 * Always flush the async page fault workqueue when a work item is being
   removed, especially during vCPU destruction, to ensure that there are no
   workers running in KVM code when all references to KVM-the-module are gone,
   i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
 
 * Grab a reference to the VM's mm_struct in the async #PF worker itself instead
   of gifting the worker a reference, so that there's no need to remember
   to *conditionally* clean up after the worker.
 
 Selftests:
 
 * Reduce boilerplate especially when utilize selftest TAP infrastructure.
 
 * Add basic smoke tests for SEV and SEV-ES, along with a pile of library
   support for handling private/encrypted/protected memory.
 
 * Fix benign bugs where tests neglect to close() guest_memfd files.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
 eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
 6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
 j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
 Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
 5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
 =mqOV
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "S390:

   - Changes to FPU handling came in via the main s390 pull request

   - Only deliver to the guest the SCLP events that userspace has
     requested

   - More virtual vs physical address fixes (only a cleanup since
     virtual and physical address spaces are currently the same)

   - Fix selftests undefined behavior

  x86:

   - Fix a restriction that the guest can't program a PMU event whose
     encoding matches an architectural event that isn't included in the
     guest CPUID. The enumeration of an architectural event only says
     that if a CPU supports an architectural event, then the event can
     be programmed *using the architectural encoding*. The enumeration
     does NOT say anything about the encoding when the CPU doesn't
     report support the event *in general*. It might support it, and it
     might support it using the same encoding that made it into the
     architectural PMU spec

   - Fix a variety of bugs in KVM's emulation of RDPMC (more details on
     individual commits) and add a selftest to verify KVM correctly
     emulates RDMPC, counter availability, and a variety of other
     PMC-related behaviors that depend on guest CPUID and therefore are
     easier to validate with selftests than with custom guests (aka
     kvm-unit-tests)

   - Zero out PMU state on AMD if the virtual PMU is disabled, it does
     not cause any bug but it wastes time in various cases where KVM
     would check if a PMC event needs to be synthesized

   - Optimize triggering of emulated events, with a nice ~10%
     performance improvement in VM-Exit microbenchmarks when a vPMU is
     exposed to the guest

   - Tighten the check for "PMI in guest" to reduce false positives if
     an NMI arrives in the host while KVM is handling an IRQ VM-Exit

   - Fix a bug where KVM would report stale/bogus exit qualification
     information when exiting to userspace with an internal error exit
     code

   - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support

   - Rework TDP MMU root unload, free, and alloc to run with mmu_lock
     held for read, e.g. to avoid serializing vCPUs when userspace
     deletes a memslot

   - Tear down TDP MMU page tables at 4KiB granularity (used to be
     1GiB). KVM doesn't support yielding in the middle of processing a
     zap, and 1GiB granularity resulted in multi-millisecond lags that
     are quite impolite for CONFIG_PREEMPT kernels

   - Allocate write-tracking metadata on-demand to avoid the memory
     overhead when a kernel is built with i915 virtualization support
     but the workloads use neither shadow paging nor i915 virtualization

   - Explicitly initialize a variety of on-stack variables in the
     emulator that triggered KMSAN false positives

   - Fix the debugregs ABI for 32-bit KVM

   - Rework the "force immediate exit" code so that vendor code
     ultimately decides how and when to force the exit, which allowed
     some optimization for both Intel and AMD

   - Fix a long-standing bug where kvm_has_noapic_vcpu could be left
     elevated if vCPU creation ultimately failed, causing extra
     unnecessary work

   - Cleanup the logic for checking if the currently loaded vCPU is
     in-kernel

   - Harden against underflowing the active mmu_notifier invalidation
     count, so that "bad" invalidations (usually due to bugs elsehwere
     in the kernel) are detected earlier and are less likely to hang the
     kernel

  x86 Xen emulation:

   - Overlay pages can now be cached based on host virtual address,
     instead of guest physical addresses. This removes the need to
     reconfigure and invalidate the cache if the guest changes the gpa
     but the underlying host virtual address remains the same

   - When possible, use a single host TSC value when computing the
     deadline for Xen timers in order to improve the accuracy of the
     timer emulation

   - Inject pending upcall events when the vCPU software-enables its
     APIC to fix a bug where an upcall can be lost (and to follow Xen's
     behavior)

   - Fall back to the slow path instead of warning if "fast" IRQ
     delivery of Xen events fails, e.g. if the guest has aliased xAPIC
     IDs

  RISC-V:

   - Support exception and interrupt handling in selftests

   - New self test for RISC-V architectural timer (Sstc extension)

   - New extension support (Ztso, Zacas)

   - Support userspace emulation of random number seed CSRs

  ARM:

   - Infrastructure for building KVM's trap configuration based on the
     architectural features (or lack thereof) advertised in the VM's ID
     registers

   - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
     x86's WC) at stage-2, improving the performance of interacting with
     assigned devices that can tolerate it

   - Conversion of KVM's representation of LPIs to an xarray, utilized
     to address serialization some of the serialization on the LPI
     injection path

   - Support for _architectural_ VHE-only systems, advertised through
     the absence of FEAT_E2H0 in the CPU's ID register

   - Miscellaneous cleanups, fixes, and spelling corrections to KVM and
     selftests

  LoongArch:

   - Set reserved bits as zero in CPUCFG

   - Start SW timer only when vcpu is blocking

   - Do not restart SW timer when it is expired

   - Remove unnecessary CSR register saving during enter guest

   - Misc cleanups and fixes as usual

  Generic:

   - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
     always true on all architectures except MIPS (where Kconfig
     determines the available depending on CPU capabilities). It is
     replaced either by an architecture-dependent symbol for MIPS, and
     IS_ENABLED(CONFIG_KVM) everywhere else

   - Factor common "select" statements in common code instead of
     requiring each architecture to specify it

   - Remove thoroughly obsolete APIs from the uapi headers

   - Move architecture-dependent stuff to uapi/asm/kvm.h

   - Always flush the async page fault workqueue when a work item is
     being removed, especially during vCPU destruction, to ensure that
     there are no workers running in KVM code when all references to
     KVM-the-module are gone, i.e. to prevent a very unlikely
     use-after-free if kvm.ko is unloaded

   - Grab a reference to the VM's mm_struct in the async #PF worker
     itself instead of gifting the worker a reference, so that there's
     no need to remember to *conditionally* clean up after the worker

  Selftests:

   - Reduce boilerplate especially when utilize selftest TAP
     infrastructure

   - Add basic smoke tests for SEV and SEV-ES, along with a pile of
     library support for handling private/encrypted/protected memory

   - Fix benign bugs where tests neglect to close() guest_memfd files"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
  selftests: kvm: remove meaningless assignments in Makefiles
  KVM: riscv: selftests: Add Zacas extension to get-reg-list test
  RISC-V: KVM: Allow Zacas extension for Guest/VM
  KVM: riscv: selftests: Add Ztso extension to get-reg-list test
  RISC-V: KVM: Allow Ztso extension for Guest/VM
  RISC-V: KVM: Forward SEED CSR access to user space
  KVM: riscv: selftests: Add sstc timer test
  KVM: riscv: selftests: Change vcpu_has_ext to a common function
  KVM: riscv: selftests: Add guest helper to get vcpu id
  KVM: riscv: selftests: Add exception handling support
  LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
  LoongArch: KVM: Do not restart SW timer when it is expired
  LoongArch: KVM: Start SW timer only when vcpu is blocking
  LoongArch: KVM: Set reserved bits as zero in CPUCFG
  KVM: selftests: Explicitly close guest_memfd files in some gmem tests
  KVM: x86/xen: fix recursive deadlock in timer injection
  KVM: pfncache: simplify locking and make more self-contained
  KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
  KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
  KVM: x86/xen: improve accuracy of Xen timers
  ...
2024-03-15 13:03:13 -07:00
Paolo Bonzini
e9a2bba476 KVM Xen and pfncache changes for 6.9:
- Rip out the half-baked support for using gfn_to_pfn caches to manage pages
    that are "mapped" into guests via physical addresses.
 
  - Add support for using gfn_to_pfn caches with only a host virtual address,
    i.e. to bypass the "gfn" stage of the cache.  The primary use case is
    overlay pages, where the guest may change the gfn used to reference the
    overlay page, but the backing hva+pfn remains the same.
 
  - Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
    of a gpa, so that userspace doesn't need to reconfigure and invalidate the
    cache/mapping if the guest changes the gpa (but userspace keeps the resolved
    hva the same).
 
  - When possible, use a single host TSC value when computing the deadline for
    Xen timers in order to improve the accuracy of the timer emulation.
 
  - Inject pending upcall events when the vCPU software-enables its APIC to fix
    a bug where an upcall can be lost (and to follow Xen's behavior).
 
  - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
    events fails, e.g. if the guest has aliased xAPIC IDs.
 
  - Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
    refresh), and drop a now-redundant acquisition of xen_lock (that was
    protecting the shared_info cache) to fix a deadlock due to recursively
    acquiring xen_lock.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrblYACgkQOlYIJqCj
 N/3K4Q/+KZ8lrnNXvdHNCQdosA5DDXpqUcRzhlTUp82fncpdJ0LqrSMzMots2Eh9
 KC0jSPo8EkivF+Epug0+bpQBEaLXzTWhRcS1grePCDz2lBnxoHFSWjvaK2p14KlC
 LvxCJZjxyfLKHwKHpSndvO9hVFElCY3mvvE9KRcKeQAmrz1cz+DDMKelo1MuV8D+
 GfymhYc+UXpY41+6hQdznx+WoGoXKRameo3iGYuBoJjvKOyl4Wxkx9WSXIxxxuqG
 kHxjiWTR/jF1ITJl6PeMrFcGl3cuGKM/UfTOM6W2h6Wi3mhLpXveoVLnqR1kipIj
 btSzSVHL7C4WTPwOcyhwPzap+dJmm31c6N0uPScT7r9yhs+q5BDj26vcVcyPZUHo
 efIwmsnO2eQvuw+f8C6QqWCPaxvw46N0zxzwgc5uA3jvAC93y0l4v+xlAQsC0wzV
 0+BwU00cutH/3t3c/WPD5QcmRLH726VoFuTlaDufpoMU7gBVJ8rzjcusxR+5BKT+
 GJcAgZxZhEgvnzmTKd4Ec/mt+xZ2Erd+kV3MKCHvDPyj8jqy8FQ4DAWKGBR+h3WR
 rqAs2k8NPHyh3i1a3FL1opmxEGsRS+Cnc6Bi77cj9DxTr22JkgDJEuFR+Ues1z6/
 SpE889kt3w5zTo34+lNxNPlIKmO0ICwwhDL6pxJTWU7iWQnKypU=
 =GliW
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-xen-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM Xen and pfncache changes for 6.9:

 - Rip out the half-baked support for using gfn_to_pfn caches to manage pages
   that are "mapped" into guests via physical addresses.

 - Add support for using gfn_to_pfn caches with only a host virtual address,
   i.e. to bypass the "gfn" stage of the cache.  The primary use case is
   overlay pages, where the guest may change the gfn used to reference the
   overlay page, but the backing hva+pfn remains the same.

 - Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
   of a gpa, so that userspace doesn't need to reconfigure and invalidate the
   cache/mapping if the guest changes the gpa (but userspace keeps the resolved
   hva the same).

 - When possible, use a single host TSC value when computing the deadline for
   Xen timers in order to improve the accuracy of the timer emulation.

 - Inject pending upcall events when the vCPU software-enables its APIC to fix
   a bug where an upcall can be lost (and to follow Xen's behavior).

 - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
   events fails, e.g. if the guest has aliased xAPIC IDs.

 - Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
   refresh), and drop a now-redundant acquisition of xen_lock (that was
   protecting the shared_info cache) to fix a deadlock due to recursively
   acquiring xen_lock.
2024-03-11 10:42:55 -04:00
Paolo Bonzini
c9cd0beae9 KVM x86 misc changes for 6.9:
- Explicitly initialize a variety of on-stack variables in the emulator that
    triggered KMSAN false positives (though in fairness in KMSAN, it's comically
    difficult to see that the uninitialized memory is never truly consumed).
 
  - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
    DR6 and DR7.
 
  - Rework the "force immediate exit" code so that vendor code ultimately
    decides how and when to force the exit.  This allows VMX to further optimize
    handling preemption timer exits, and allows SVM to avoid sending a duplicate
    IPI (SVM also has a need to force an exit).
 
  - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
    vCPU creation ultimately failed, and add WARN to guard against similar bugs.
 
  - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
    (for directed yield), and simplify the logic for checking if the currently
    loaded vCPU is in-kernel.
 
  - Misc cleanups and fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrRjQACgkQOlYIJqCj
 N/2Dzw//b+ptSBAl1kGBRmk/DqsX7J9ZkQYCQOTeh1vXiUM+XRTSQoArN0Oo1roy
 3wcEnQ0beVw7jMuzZ8UUuTfU8WUMja/kwltnqXYNHwLnb6yH0I/BIengXWdUdAMc
 FmgPZ4qJR2IzKYzvDsc3eEQ515O8UHWakyVDnmLBtiakAeBcUTYceHpEEPpzE5y5
 ODASTQKM9o/h8R8JwKFTJ8/mrOLNcsu5SycwFdnmubLJCrNWtJWTijA6y1lh6shn
 hbEJex+ESoC2v8p7IP53u1SGJubVlPajt+RkYJtlEI3WVsevp024eYcF4nb1OjXi
 qS2Y3W7DQGWvyCBoSzoMY+9nRMgyOOpHYetdiz+9oZOmnjiYWY0ku59U7Gv+Aotj
 AUbCn4Ry/OpqsuZ7Oo7i3IT8R7uzsTeNNdxhYBn1OQquBEZ0KBYXlZkGfTk9K0t0
 Fhka/5Zu6fBlg5J+zCyaXUGmsGWBo/9HxsC5z1JuKo8fatro5qyqYE5KiM01dkqc
 6FET6gL+fFprC5c67JGRPdEtk6F9Emb+6oiTTA8/8q8JQQAKiJKk95Nlq7KzPfVS
 A5RQPTuTJ7acE/5CY4zB1DdxCjqgnonBEA2ULnA/J10Rk8orHJRnGJcEwKEyDrZh
 HpsxIIqt++i8KffORpCym6zSAVYuQjn1mu7MGth+zuCqhcEpBfc=
 =GX0O
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-misc-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 misc changes for 6.9:

 - Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives (though in fairness in KMSAN, it's comically
   difficult to see that the uninitialized memory is never truly consumed).

 - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
   DR6 and DR7.

 - Rework the "force immediate exit" code so that vendor code ultimately
   decides how and when to force the exit.  This allows VMX to further optimize
   handling preemption timer exits, and allows SVM to avoid sending a duplicate
   IPI (SVM also has a need to force an exit).

 - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, and add WARN to guard against similar bugs.

 - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
   (for directed yield), and simplify the logic for checking if the currently
   loaded vCPU is in-kernel.

 - Misc cleanups and fixes.
2024-03-11 10:24:56 -04:00
Paolo Bonzini
a81d95ae8c KVM async page fault changes for 6.9:
- Always flush the async page fault workqueue when a work item is being
    removed, especially during vCPU destruction, to ensure that there are no
    workers running in KVM code when all references to KVM-the-module are gone,
    i.e. to prevent a use-after-free if kvm.ko is unloaded.
 
  - Grab a reference to the VM's mm_struct in the async #PF worker itself instead
    of gifting the worker a reference, e.g. so that there's no need to remember
    to *conditionally* clean up after the worker.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrhPAACgkQOlYIJqCj
 N/3gYQ/+KIMCqcckstiHOu8euOVBt8yZSeIb7vYuu8gpAH2Z1UsvIfF4O4d0uFzz
 9KCaMi+/F62CfT2FUHDjxI33FqN/mPIV+lP6LTeYEnmYtBWM7SmqNWpidKcbLxnp
 IJ6lSuxTEjkJSA0lDb7f49ctEFXr6VadklTQbGrTSeyWmhoipXWkPGjGj7R9gMPM
 dXaRWFTKm95bkrir656cZQngivzqzrFqI+fez9eK0dMDCmCSyTZ1YmqWc0w2KiiV
 oCjRWJqfCRd6+6reN/bYsMOFQ/BWnZlrTnWNOQMMdg9VHGaKvMjsHUcHfira04qU
 uZgHbSTLJLyOIhRSS0l+iIgBylWZMg7QUepcSQwbf2iAtK7W0NeXgWqArl01KZDg
 0eiHSSh4QKKjEgcw1MFRY/8WQtz2xPTCc1cnJ1m4Z2pm0+qscdQitdcSmkgClGMb
 sXbiNC0C8H6fJd0BfuwvtSAl5vT1C0qT8tL55Ca6zwMSZjmOiwcisWn1QAyFGuog
 n0k/7hF4LCJliK3uy+j7NAp0OGaV32ysSm5s1mzm/ezQVacjcntidp3cgN7UYmGn
 cwIhhAVEN7njK2V9dXz5/s7f7S6eE9O/oIeF9nWWyqb53b50122ZxXP23Q6dUTAT
 XpUbim6XgI6vdcwafgl89kFxho6ZYftoerfnwJUMHGuAsVN8omA=
 =J5Ug
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-asyncpf-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM async page fault changes for 6.9:

 - Always flush the async page fault workqueue when a work item is being
   removed, especially during vCPU destruction, to ensure that there are no
   workers running in KVM code when all references to KVM-the-module are gone,
   i.e. to prevent a use-after-free if kvm.ko is unloaded.

 - Grab a reference to the VM's mm_struct in the async #PF worker itself instead
   of gifting the worker a reference, e.g. so that there's no need to remember
   to *conditionally* clean up after the worker.
2024-03-11 10:22:41 -04:00
Oliver Upton
284851ee5c KVM: Get rid of return value from kvm_arch_create_vm_debugfs()
The general expectation with debugfs is that any initialization failure
is nonfatal. Nevertheless, kvm_arch_create_vm_debugfs() allows
implementations to return an error and kvm_create_vm_debugfs() allows
that to fail VM creation.

Change to a void return to discourage architectures from making debugfs
failures fatal for the VM. Seems like everyone already had the right
idea, as all implementations already return 0 unconditionally.

Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20240216155941.2029458-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2024-02-23 21:44:58 +00:00
Sean Christopherson
d02c357e5b KVM: x86/mmu: Retry fault before acquiring mmu_lock if mapping is changing
Retry page faults without acquiring mmu_lock, and without even faulting
the page into the primary MMU, if the resolved gfn is covered by an active
invalidation.  Contending for mmu_lock is especially problematic on
preemptible kernels as the mmu_notifier invalidation task will yield
mmu_lock (see rwlock_needbreak()), delay the in-progress invalidation, and
ultimately increase the latency of resolving the page fault.  And in the
worst case scenario, yielding will be accompanied by a remote TLB flush,
e.g. if the invalidation covers a large range of memory and vCPUs are
accessing addresses that were already zapped.

Faulting the page into the primary MMU is similarly problematic, as doing
so may acquire locks that need to be taken for the invalidation to
complete (the primary MMU has finer grained locks than KVM's MMU), and/or
may cause unnecessary churn (getting/putting pages, marking them accessed,
etc).

Alternatively, the yielding issue could be mitigated by teaching KVM's MMU
iterators to perform more work before yielding, but that wouldn't solve
the lock contention and would negatively affect scenarios where a vCPU is
trying to fault in an address that is NOT covered by the in-progress
invalidation.

Add a dedicated lockess version of the range-based retry check to avoid
false positives on the sanity check on start+end WARN, and so that it's
super obvious that checking for a racing invalidation without holding
mmu_lock is unsafe (though obviously useful).

Wrap mmu_invalidate_in_progress in READ_ONCE() to ensure that pre-checking
invalidation in a loop won't put KVM into an infinite loop, e.g. due to
caching the in-progress flag and never seeing it go to '0'.

Force a load of mmu_invalidate_seq as well, even though it isn't strictly
necessary to avoid an infinite loop, as doing so improves the probability
that KVM will detect an invalidation that already completed before
acquiring mmu_lock and bailing anyways.

Do the pre-check even for non-preemptible kernels, as waiting to detect
the invalidation until mmu_lock is held guarantees the vCPU will observe
the worst case latency in terms of handling the fault, and can generate
even more mmu_lock contention.  E.g. the vCPU will acquire mmu_lock,
detect retry, drop mmu_lock, re-enter the guest, retake the fault, and
eventually re-acquire mmu_lock.  This behavior is also why there are no
new starvation issues due to losing the fairness guarantees provided by
rwlocks: if the vCPU needs to retry, it _must_ drop mmu_lock, i.e. waiting
on mmu_lock doesn't guarantee forward progress in the face of _another_
mmu_notifier invalidation event.

Note, adding READ_ONCE() isn't entirely free, e.g. on x86, the READ_ONCE()
may generate a load into a register instead of doing a direct comparison
(MOV+TEST+Jcc instead of CMP+Jcc), but practically speaking the added cost
is a few bytes of code and maaaaybe a cycle or three.

Reported-by: Yan Zhao <yan.y.zhao@intel.com>
Closes: https://lore.kernel.org/all/ZNnPF4W26ZbAyGto@yzhao56-desk.sh.intel.com
Reported-by: Friedrich Weber <f.weber@proxmox.com>
Cc: Kai Huang <kai.huang@intel.com>
Cc: Yan Zhao <yan.y.zhao@intel.com>
Cc: Yuan Yao <yuan.yao@linux.intel.com>
Cc: Xu Yilun <yilun.xu@linux.intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20240222012640.2820927-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-23 10:14:34 -08:00
Sean Christopherson
77bcd9e623 KVM: Add dedicated arch hook for querying if vCPU was preempted in-kernel
Plumb in a dedicated hook for querying whether or not a vCPU was preempted
in-kernel.  Unlike literally every other architecture, x86's VMX can check
if a vCPU is in kernel context if and only if the vCPU is loaded on the
current pCPU.

x86's kvm_arch_vcpu_in_kernel() works around the limitation by querying
kvm_get_running_vcpu() and redirecting to vcpu->arch.preempted_in_kernel
as needed.  But that's unnecessary, confusing, and fragile, e.g. x86 has
had at least one bug where KVM incorrectly used a stale
preempted_in_kernel.

No functional change intended.

Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240110003938.490206-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:26:26 -08:00
Paul Durrant
721f5b0dda KVM: pfncache: allow a cache to be activated with a fixed (userspace) HVA
Some pfncache pages may actually be overlays on guest memory that have a
fixed HVA within the VMM. It's pointless to invalidate such cached
mappings if the overlay is moved so allow a cache to be activated directly
with the HVA to cater for such cases. A subsequent patch will make use
of this facility.

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-10-paul@xen.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-20 07:37:46 -08:00
Sean Christopherson
9e7325acb3 KVM: s390: Refactor kvm_is_error_gpa() into kvm_is_gpa_in_memslot()
Rename kvm_is_error_gpa() to kvm_is_gpa_in_memslot() and invert the
polarity accordingly in order to (a) free up kvm_is_error_gpa() to match
with kvm_is_error_{hva,page}(), and (b) to make it more obvious that the
helper is doing a memslot lookup, i.e. not simply checking for INVALID_GPA.

No functional change intended.

Link: https://lore.kernel.org/r/20240215152916.1158-9-paul@xen.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-20 07:37:45 -08:00
Paul Durrant
a4bff3df51 KVM: pfncache: remove KVM_GUEST_USES_PFN usage
As noted in [1] the KVM_GUEST_USES_PFN usage flag is never set by any
callers of kvm_gpc_init(), and for good reason: the implementation is
incomplete/broken.  And it's not clear that there will ever be a user of
KVM_GUEST_USES_PFN, as coordinating vCPUs with mmu_notifier events is
non-trivial.

Remove KVM_GUEST_USES_PFN and all related code, e.g. dropping
KVM_GUEST_USES_PFN also makes the 'vcpu' argument redundant, to avoid
having to reason about broken code as __kvm_gpc_refresh() evolves.

Moreover, all existing callers specify KVM_HOST_USES_PFN so the usage
check in hva_to_pfn_retry() and hence the 'usage' argument to
kvm_gpc_init() are also redundant.

[1] https://lore.kernel.org/all/ZQiR8IpqOZrOpzHC@google.com

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-6-paul@xen.org
[sean: explicitly call out that guest usage is incomplete]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-20 07:37:43 -08:00
Paul Durrant
78b74638eb KVM: pfncache: add a mark-dirty helper
At the moment pages are marked dirty by open-coded calls to
mark_page_dirty_in_slot(), directly deferefencing the gpa and memslot
from the cache. After a subsequent patch these may not always be set
so add a helper now so that caller will protected from the need to know
about this detail.

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-5-paul@xen.org
[sean: decrease indentation, use gpa_to_gfn()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-20 07:37:42 -08:00
Sean Christopherson
8284765f03 KVM: Get reference to VM's address space in the async #PF worker
Get a reference to the target VM's address space in async_pf_execute()
instead of gifting a reference from kvm_setup_async_pf().  Keeping the
address space alive just to service an async #PF is counter-productive,
i.e. if the process is exiting and all vCPUs are dead, then NOT doing
get_user_pages_remote() and freeing the address space asap is desirable.

Handling the mm reference entirely within async_pf_execute() also
simplifies the async #PF flows as a whole, e.g. it's not immediately
obvious when the worker task vs. the vCPU task is responsible for putting
the gifted mm reference.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Xu Yilun <yilun.xu@intel.com>
Link: https://lore.kernel.org/r/20240110011533.503302-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-06 11:04:11 -08:00
Paolo Bonzini
8ed26ab8d5 KVM: clean up directives to compile out irqfds
Keep all #ifdef CONFIG_HAVE_KVM_IRQCHIP parts of eventfd.c together, and
compile out the irqfds field of struct kvm if the symbol is not defined.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-12-08 15:43:34 -05:00
Paolo Bonzini
c5b31cc237 KVM: remove CONFIG_HAVE_KVM_IRQFD
All platforms with a kernel irqchip have support for irqfd.  Unify the
two configuration items so that userspace can expect to use irqfd to
inject interrupts into the irqchip.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-12-08 15:43:33 -05:00
Paolo Bonzini
8132d887a7 KVM: remove CONFIG_HAVE_KVM_EVENTFD
virt/kvm/eventfd.c is compiled unconditionally, meaning that the ioeventfds
member of struct kvm is accessed unconditionally.  CONFIG_HAVE_KVM_EVENTFD
therefore must be defined for KVM common code to compile successfully,
remove it.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-12-08 15:43:33 -05:00
Paolo Bonzini
6c370dc653 Merge branch 'kvm-guestmemfd' into HEAD
Introduce several new KVM uAPIs to ultimately create a guest-first memory
subsystem within KVM, a.k.a. guest_memfd.  Guest-first memory allows KVM
to provide features, enhancements, and optimizations that are kludgly
or outright impossible to implement in a generic memory subsystem.

The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which
similar to the generic memfd_create(), creates an anonymous file and
returns a file descriptor that refers to it.  Again like "regular"
memfd files, guest_memfd files live in RAM, have volatile storage,
and are automatically released when the last reference is dropped.
The key differences between memfd files (and every other memory subystem)
is that guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
convert a guest memory area between the shared and guest-private states.

A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to
specify attributes for a given page of guest memory.  In the long term,
it will likely be extended to allow userspace to specify per-gfn RWX
protections, including allowing memory to be writable in the guest
without it also being writable in host userspace.

The immediate and driving use case for guest_memfd are Confidential
(CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM.
For such use cases, being able to map memory into KVM guests without
requiring said memory to be mapped into the host is a hard requirement.
While SEV+ and TDX prevent untrusted software from reading guest private
data by encrypting guest memory, pKVM provides confidentiality and
integrity *without* relying on memory encryption.  In addition, with
SEV-SNP and especially TDX, accessing guest private memory can be fatal
to the host, i.e. KVM must be prevent host userspace from accessing
guest memory irrespective of hardware behavior.

Long term, guest_memfd may be useful for use cases beyond CoCo VMs,
for example hardening userspace against unintentional accesses to guest
memory.  As mentioned earlier, KVM's ABI uses userspace VMA protections to
define the allow guest protection (with an exception granted to mapping
guest memory executable), and similarly KVM currently requires the guest
mapping size to be a strict subset of the host userspace mapping size.
Decoupling the mappings sizes would allow userspace to precisely map
only what is needed and with the required permissions, without impacting
guest performance.

A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to DMA from or into guest memory).

guest_memfd is the result of 3+ years of development and exploration;
taking on memory management responsibilities in KVM was not the first,
second, or even third choice for supporting CoCo VMs.  But after many
failed attempts to avoid KVM-specific backing memory, and looking at
where things ended up, it is quite clear that of all approaches tried,
guest_memfd is the simplest, most robust, and most extensible, and the
right thing to do for KVM and the kernel at-large.

The "development cycle" for this version is going to be very short;
ideally, next week I will merge it as is in kvm/next, taking this through
the KVM tree for 6.8 immediately after the end of the merge window.
The series is still based on 6.6 (plus KVM changes for 6.7) so it
will require a small fixup for changes to get_file_rcu() introduced in
6.7 by commit 0ede61d858 ("file: convert to SLAB_TYPESAFE_BY_RCU").
The fixup will be done as part of the merge commit, and most of the text
above will become the commit message for the merge.

Pending post-merge work includes:
- hugepage support
- looking into using the restrictedmem framework for guest memory
- introducing a testing mechanism to poison memory, possibly using
  the same memory attributes introduced here
- SNP and TDX support

There are two non-KVM patches buried in the middle of this series:

  fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
  mm: Add AS_UNMOVABLE to mark mapping as completely unmovable

The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
2023-11-14 08:31:31 -05:00
Sean Christopherson
eed52e434b KVM: Allow arch code to track number of memslot address spaces per VM
Let x86 track the number of address spaces on a per-VM basis so that KVM
can disallow SMM memslots for confidential VMs.  Confidentials VMs are
fundamentally incompatible with emulating SMM, which as the name suggests
requires being able to read and write guest memory and register state.

Disallowing SMM will simplify support for guest private memory, as KVM
will not need to worry about tracking memory attributes for multiple
address spaces (SMM is the only "non-default" address space across all
architectures).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-14 08:01:05 -05:00
Sean Christopherson
2333afa17a KVM: Drop superfluous __KVM_VCPU_MULTIPLE_ADDRESS_SPACE macro
Drop __KVM_VCPU_MULTIPLE_ADDRESS_SPACE and instead check the value of
KVM_ADDRESS_SPACE_NUM.

No functional change intended.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-14 08:01:04 -05:00
Chao Peng
8dd2eee9d5 KVM: x86/mmu: Handle page fault for private memory
Add support for resolving page faults on guest private memory for VMs
that differentiate between "shared" and "private" memory.  For such VMs,
KVM_MEM_GUEST_MEMFD memslots can include both fd-based private memory and
hva-based shared memory, and KVM needs to map in the "correct" variant,
i.e. KVM needs to map the gfn shared/private as appropriate based on the
current state of the gfn's KVM_MEMORY_ATTRIBUTE_PRIVATE flag.

For AMD's SEV-SNP and Intel's TDX, the guest effectively gets to request
shared vs. private via a bit in the guest page tables, i.e. what the guest
wants may conflict with the current memory attributes.  To support such
"implicit" conversion requests, exit to user with KVM_EXIT_MEMORY_FAULT
to forward the request to userspace.  Add a new flag for memory faults,
KVM_MEMORY_EXIT_FLAG_PRIVATE, to communicate whether the guest wants to
map memory as shared vs. private.

Like KVM_MEMORY_ATTRIBUTE_PRIVATE, use bit 3 for flagging private memory
so that KVM can use bits 0-2 for capturing RWX behavior if/when userspace
needs such information, e.g. a likely user of KVM_EXIT_MEMORY_FAULT is to
exit on missing mappings when handling guest page fault VM-Exits.  In
that case, userspace will want to know RWX information in order to
correctly/precisely resolve the fault.

Note, private memory *must* be backed by guest_memfd, i.e. shared mappings
always come from the host userspace page tables, and private mappings
always come from a guest_memfd instance.

Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-14 08:01:04 -05:00
Sean Christopherson
a7800aa80e KVM: Add KVM_CREATE_GUEST_MEMFD ioctl() for guest-specific backing memory
Introduce an ioctl(), KVM_CREATE_GUEST_MEMFD, to allow creating file-based
memory that is tied to a specific KVM virtual machine and whose primary
purpose is to serve guest memory.

A guest-first memory subsystem allows for optimizations and enhancements
that are kludgy or outright infeasible to implement/support in a generic
memory subsystem.  With guest_memfd, guest protections and mapping sizes
are fully decoupled from host userspace mappings.   E.g. KVM currently
doesn't support mapping memory as writable in the guest without it also
being writable in host userspace, as KVM's ABI uses VMA protections to
define the allow guest protection.  Userspace can fudge this by
establishing two mappings, a writable mapping for the guest and readable
one for itself, but that’s suboptimal on multiple fronts.

Similarly, KVM currently requires the guest mapping size to be a strict
subset of the host userspace mapping size, e.g. KVM doesn’t support
creating a 1GiB guest mapping unless userspace also has a 1GiB guest
mapping.  Decoupling the mappings sizes would allow userspace to precisely
map only what is needed without impacting guest performance, e.g. to
harden against unintentional accesses to guest memory.

Decoupling guest and userspace mappings may also allow for a cleaner
alternative to high-granularity mappings for HugeTLB, which has reached a
bit of an impasse and is unlikely to ever be merged.

A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to mmap() guest memory).

More immediately, being able to map memory into KVM guests without mapping
said memory into the host is critical for Confidential VMs (CoCo VMs), the
initial use case for guest_memfd.  While AMD's SEV and Intel's TDX prevent
untrusted software from reading guest private data by encrypting guest
memory with a key that isn't usable by the untrusted host, projects such
as Protected KVM (pKVM) provide confidentiality and integrity *without*
relying on memory encryption.  And with SEV-SNP and TDX, accessing guest
private memory can be fatal to the host, i.e. KVM must be prevent host
userspace from accessing guest memory irrespective of hardware behavior.

Attempt #1 to support CoCo VMs was to add a VMA flag to mark memory as
being mappable only by KVM (or a similarly enlightened kernel subsystem).
That approach was abandoned largely due to it needing to play games with
PROT_NONE to prevent userspace from accessing guest memory.

Attempt #2 to was to usurp PG_hwpoison to prevent the host from mapping
guest private memory into userspace, but that approach failed to meet
several requirements for software-based CoCo VMs, e.g. pKVM, as the kernel
wouldn't easily be able to enforce a 1:1 page:guest association, let alone
a 1:1 pfn:gfn mapping.  And using PG_hwpoison does not work for memory
that isn't backed by 'struct page', e.g. if devices gain support for
exposing encrypted memory regions to guests.

Attempt #3 was to extend the memfd() syscall and wrap shmem to provide
dedicated file-based guest memory.  That approach made it as far as v10
before feedback from Hugh Dickins and Christian Brauner (and others) led
to it demise.

Hugh's objection was that piggybacking shmem made no sense for KVM's use
case as KVM didn't actually *want* the features provided by shmem.  I.e.
KVM was using memfd() and shmem to avoid having to manage memory directly,
not because memfd() and shmem were the optimal solution, e.g. things like
read/write/mmap in shmem were dead weight.

Christian pointed out flaws with implementing a partial overlay (wrapping
only _some_ of shmem), e.g. poking at inode_operations or super_operations
would show shmem stuff, but address_space_operations and file_operations
would show KVM's overlay.  Paraphrashing heavily, Christian suggested KVM
stop being lazy and create a proper API.

Link: https://lore.kernel.org/all/20201020061859.18385-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210416154106.23721-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210824005248.200037-1-seanjc@google.com
Link: https://lore.kernel.org/all/20211111141352.26311-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/20221202061347.1070246-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/ff5c5b97-acdf-9745-ebe5-c6609dd6322e@google.com
Link: https://lore.kernel.org/all/20230418-anfallen-irdisch-6993a61be10b@brauner
Link: https://lore.kernel.org/all/ZEM5Zq8oo+xnApW9@google.com
Link: https://lore.kernel.org/linux-mm/20230306191944.GA15773@monkey
Link: https://lore.kernel.org/linux-mm/ZII1p8ZHlHaQ3dDl@casper.infradead.org
Cc: Fuad Tabba <tabba@google.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerley Tng <ackerleytng@google.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Maciej Szmigiero <mail@maciej.szmigiero.name>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Quentin Perret <qperret@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Wang <wei.w.wang@intel.com>
Cc: Liam Merwick <liam.merwick@oracle.com>
Cc: Isaku Yamahata <isaku.yamahata@gmail.com>
Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Co-developed-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Ackerley Tng <ackerleytng@google.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-17-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-14 08:01:03 -05:00
Chao Peng
5a475554db KVM: Introduce per-page memory attributes
In confidential computing usages, whether a page is private or shared is
necessary information for KVM to perform operations like page fault
handling, page zapping etc. There are other potential use cases for
per-page memory attributes, e.g. to make memory read-only (or no-exec,
or exec-only, etc.) without having to modify memslots.

Introduce the KVM_SET_MEMORY_ATTRIBUTES ioctl, advertised by
KVM_CAP_MEMORY_ATTRIBUTES, to allow userspace to set the per-page memory
attributes to a guest memory range.

Use an xarray to store the per-page attributes internally, with a naive,
not fully optimized implementation, i.e. prioritize correctness over
performance for the initial implementation.

Use bit 3 for the PRIVATE attribute so that KVM can use bits 0-2 for RWX
attributes/protections in the future, e.g. to give userspace fine-grained
control over read, write, and execute protections for guest memory.

Provide arch hooks for handling attribute changes before and after common
code sets the new attributes, e.g. x86 will use the "pre" hook to zap all
relevant mappings, and the "post" hook to track whether or not hugepages
can be used to map the range.

To simplify the implementation wrap the entire sequence with
kvm_mmu_invalidate_{begin,end}() even though the operation isn't strictly
guaranteed to be an invalidation.  For the initial use case, x86 *will*
always invalidate memory, and preventing arch code from creating new
mappings while the attributes are in flux makes it much easier to reason
about the correctness of consuming attributes.

It's possible that future usages may not require an invalidation, e.g.
if KVM ends up supporting RWX protections and userspace grants _more_
protections, but again opt for simplicity and punt optimizations to
if/when they are needed.

Suggested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/Y2WB48kD0J4VGynX@google.com
Cc: Fuad Tabba <tabba@google.com>
Cc: Xu Yilun <yilun.xu@intel.com>
Cc: Mickaël Salaün <mic@digikod.net>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-13 05:31:38 -05:00
Chao Peng
16f95f3b95 KVM: Add KVM_EXIT_MEMORY_FAULT exit to report faults to userspace
Add a new KVM exit type to allow userspace to handle memory faults that
KVM cannot resolve, but that userspace *may* be able to handle (without
terminating the guest).

KVM will initially use KVM_EXIT_MEMORY_FAULT to report implicit
conversions between private and shared memory.  With guest private memory,
there will be two kind of memory conversions:

  - explicit conversion: happens when the guest explicitly calls into KVM
    to map a range (as private or shared)

  - implicit conversion: happens when the guest attempts to access a gfn
    that is configured in the "wrong" state (private vs. shared)

On x86 (first architecture to support guest private memory), explicit
conversions will be reported via KVM_EXIT_HYPERCALL+KVM_HC_MAP_GPA_RANGE,
but reporting KVM_EXIT_HYPERCALL for implicit conversions is undesriable
as there is (obviously) no hypercall, and there is no guarantee that the
guest actually intends to convert between private and shared, i.e. what
KVM thinks is an implicit conversion "request" could actually be the
result of a guest code bug.

KVM_EXIT_MEMORY_FAULT will be used to report memory faults that appear to
be implicit conversions.

Note!  To allow for future possibilities where KVM reports
KVM_EXIT_MEMORY_FAULT and fills run->memory_fault on _any_ unresolved
fault, KVM returns "-EFAULT" (-1 with errno == EFAULT from userspace's
perspective), not '0'!  Due to historical baggage within KVM, exiting to
userspace with '0' from deep callstacks, e.g. in emulation paths, is
infeasible as doing so would require a near-complete overhaul of KVM,
whereas KVM already propagates -errno return codes to userspace even when
the -errno originated in a low level helper.

Report the gpa+size instead of a single gfn even though the initial usage
is expected to always report single pages.  It's entirely possible, likely
even, that KVM will someday support sub-page granularity faults, e.g.
Intel's sub-page protection feature allows for additional protections at
128-byte granularity.

Link: https://lore.kernel.org/all/20230908222905.1321305-5-amoorthy@google.com
Link: https://lore.kernel.org/all/ZQ3AmLO2SYv3DszH@google.com
Cc: Anish Moorthy <amoorthy@google.com>
Cc: David Matlack <dmatlack@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20231027182217.3615211-10-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-13 05:31:11 -05:00
Sean Christopherson
bb58b90b1a KVM: Introduce KVM_SET_USER_MEMORY_REGION2
Introduce a "version 2" of KVM_SET_USER_MEMORY_REGION so that additional
information can be supplied without setting userspace up to fail.  The
padding in the new kvm_userspace_memory_region2 structure will be used to
pass a file descriptor in addition to the userspace_addr, i.e. allow
userspace to point at a file descriptor and map memory into a guest that
is NOT mapped into host userspace.

Alternatively, KVM could simply add "struct kvm_userspace_memory_region2"
without a new ioctl(), but as Paolo pointed out, adding a new ioctl()
makes detection of bad flags a bit more robust, e.g. if the new fd field
is guarded only by a flag and not a new ioctl(), then a userspace bug
(setting a "bad" flag) would generate out-of-bounds access instead of an
-EINVAL error.

Cc: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-9-seanjc@google.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-13 05:30:41 -05:00
Sean Christopherson
f128cf8cfb KVM: Convert KVM_ARCH_WANT_MMU_NOTIFIER to CONFIG_KVM_GENERIC_MMU_NOTIFIER
Convert KVM_ARCH_WANT_MMU_NOTIFIER into a Kconfig and select it where
appropriate to effectively maintain existing behavior.  Using a proper
Kconfig will simplify building more functionality on top of KVM's
mmu_notifier infrastructure.

Add a forward declaration of kvm_gfn_range to kvm_types.h so that
including arch/powerpc/include/asm/kvm_ppc.h's with CONFIG_KVM=n doesn't
generate warnings due to kvm_gfn_range being undeclared.  PPC defines
hooks for PR vs. HV without guarding them via #ifdeffery, e.g.

  bool (*unmap_gfn_range)(struct kvm *kvm, struct kvm_gfn_range *range);
  bool (*age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
  bool (*test_age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
  bool (*set_spte_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);

Alternatively, PPC could forward declare kvm_gfn_range, but there's no
good reason not to define it in common KVM.

Acked-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-13 05:29:09 -05:00
Chao Peng
8569992d64 KVM: Use gfn instead of hva for mmu_notifier_retry
Currently in mmu_notifier invalidate path, hva range is recorded and then
checked against by mmu_invalidate_retry_hva() in the page fault handling
path. However, for the soon-to-be-introduced private memory, a page fault
may not have a hva associated, checking gfn(gpa) makes more sense.

For existing hva based shared memory, gfn is expected to also work. The
only downside is when aliasing multiple gfns to a single hva, the
current algorithm of checking multiple ranges could result in a much
larger range being rejected. Such aliasing should be uncommon, so the
impact is expected small.

Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
[sean: convert vmx_set_apic_access_page_addr() to gfn-based API]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xu Yilun <yilun.xu@linux.intel.com>
Message-Id: <20231027182217.3615211-4-seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-13 05:28:53 -05:00