Enable initial Rust support for LoongArch.
Tested-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: WANG Rui <wangrui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Now that GENERIC_CPU_DEVICES calls arch_register_cpu(), which can be
overridden by the arch code, switch over to this to allow common code
to choose when the register_cpu() call is made.
This allows topology_init() to be removed.
This is an intermediate step to the logic being moved to drivers/acpi,
where GENERIC_CPU_DEVICES will do the work when booting with acpi=off.
This is a subtle change. Originally:
- on boot, topology_init() would have marked present CPUs that
io_master() is true for as hotplug-incapable.
- if a CPU is hotplugged that is an io_master(), it can later be
hot-unplugged.
The new behaviour is that any CPU that io_master() is true for will
now always be marked as hotplug-incapable, thus even if it was
hotplugged, it can no longer be hot-unplugged.
This patch also has the effect of moving the registration of CPUs from
subsys to driver core initialisation, prior to any initcalls running.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/E1r5R41-00Ct04-Bg@rmk-PC.armlinux.org.uk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Neither arm64 nor riscv support physical hotadd of CPUs that were not
present at boot. For arm64 much of the platform description is in static
tables which do not have update methods. arm64 does support HOTPLUG_CPU,
which is backed by a firmware interface to turn CPUs on and off.
acpi_processor_hotadd_init() and acpi_processor_remove() are for adding
and removing CPUs that were not present at boot. arm64 systems that do this
are not supported as there is currently insufficient information in the
platform description. (e.g. did the GICR get removed too?)
arm64 currently relies on the MADT enabled flag check in map_gicc_mpidr()
to prevent CPUs that were not described as present at boot from being
added to the system. Similarly, riscv relies on the same check in
map_rintc_hartid(). Both architectures also rely on the weak 'always fails'
definitions of acpi_map_cpu() and arch_register_cpu().
Subsequent changes will redefine ACPI_HOTPLUG_CPU as making possible
CPUs present. Neither arm64 nor riscv support this.
Disable ACPI_HOTPLUG_CPU for arm64 and riscv by removing 'default y' and
selecting it on the other three ACPI architectures. This allows the weak
definitions of some symbols to be removed.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/E1r5R31-00Csyt-Jq@rmk-PC.armlinux.org.uk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1, Support PREEMPT_DYNAMIC with static keys;
2, Relax memory ordering for atomic operations;
3, Support BPF CPU v4 instructions for LoongArch;
4, Some build and runtime warning fixes.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmVQWXgWHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImepDTEACS808EsgSNIM1+JwldhdqKOErt
XDWlLuIddVpenInx8F+9GnZJzKBU+wl+Ow5ejcVarjcecIJDv5UhoVrbhpeOHkfv
RszRXQR4p/ZNSFvdraYDjjJ9UX6bp5rq7vMUC2d9bLazMauAfwf7T/HJ5qj9OYZi
RLlcwaKo2UQHYsT7nJicjh0qpH1YpZQBYTaUUCwzilzB6vAIOTf6X12vFmhtM/i+
5RIPnesMA1IQSm2ywUODpDHCs7Pirvy8aJvx0CsYdi3xl1yg3pUS6u69Ms61uWlw
29yYhNbWmVnDikTVLTNISDb/jwto5SAVB2KQKBhF1trF4ZBNE6r7sP4m2tfllYo9
KXK9tm0U8McS5o46Qd5er6eEnxL7mEeAsc12tNKUYOMe3SIkmHJmj/rZQOtpsiBg
zqQsYkGUfO2VAwMWiGke8dxPZElOYwZ3UCOpbEpXEXy3NW71VJTIuQFGmsYKJhdy
3xaAtQxdffE5yUTt2j3Y8Mex2b2oSUBSF263imsZjzWOOxd480iaoejtamf1V779
bElevzZjMDmbiQ7kiVSf96TWc7iYcSv33jhP4DorKIqnPseYPfrXEeD1xY7JV+IU
kkvSlO0hAJzVMmQgu5n0PPT1wrVpuvwtbsfcRobIkr1vktZyLaKHRq7rh4R5HTRL
ZUUm6c0kUDywGT+J4A==
=bmFe
-----END PGP SIGNATURE-----
Merge tag 'loongarch-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- support PREEMPT_DYNAMIC with static keys
- relax memory ordering for atomic operations
- support BPF CPU v4 instructions for LoongArch
- some build and runtime warning fixes
* tag 'loongarch-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson:
selftests/bpf: Enable cpu v4 tests for LoongArch
LoongArch: BPF: Support signed mod instructions
LoongArch: BPF: Support signed div instructions
LoongArch: BPF: Support 32-bit offset jmp instructions
LoongArch: BPF: Support unconditional bswap instructions
LoongArch: BPF: Support sign-extension mov instructions
LoongArch: BPF: Support sign-extension load instructions
LoongArch: Add more instruction opcodes and emit_* helpers
LoongArch/smp: Call rcutree_report_cpu_starting() earlier
LoongArch: Relax memory ordering for atomic operations
LoongArch: Mark __percpu functions as always inline
LoongArch: Disable module from accessing external data directly
LoongArch: Support PREEMPT_DYNAMIC with static keys
Since commit 4e90d0522a ("riscv: support PREEMPT_DYNAMIC with
static keys"), the infrastructure is complete and we can simply select
HAVE_PREEMPT_DYNAMIC_KEY to enable PREEMPT_DYNAMIC on LoongArch because
we already support static keys.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
1, Allow usage of LSX/LASX in the kernel;
2, Add SIMD-optimized RAID5/RAID6 routines;
3, Add Loongson Binary Translation (LBT) extension support;
4, Add basic KGDB & KDB support;
5, Add building with kcov coverage;
6, Add KFENCE (Kernel Electric-Fence) support;
7, Add KASAN (Kernel Address Sanitizer) support;
8, Some bug fixes and other small changes;
9, Update the default config file.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmT5TfMWHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImeqd3EACjqCaHNlp33kwufSPpGuQw9a8I
F7JW1KzBOoWELch5nFRjfQClROBWRmM4jN5YnxENBQ5K2F1K6gfxdkfjew+KV2mn
ki9ByamCfFVJDZXo9wavUD2LBrVakEFmLT+SyXBxdWwJ3fDivHjF6A0qs9ltp7dq
Bttq4bkw1mZsU6MnViRwPKVROtNUVrd9mwYSTq0iXviVEbWhPHQQTxRizNra9Z6X
7XWxO0ODHl0WVvdOJU+F16mBRS3Bs1g/HHAIDc41yrYEHFFOeFCEUAQSF/4Nj5wj
BAfAB8WOa9+vPH8fTnrpCt2RtGJmkz71TM49DdXB7jpGaWIyc4WDi9MXeeBiJ0wE
vQg8IECc9POC1sH4/6BMwq2qkrWRj2PYFYof0fP66iWNjmodtNUf7GOVHy8MTQan
xHWizJFAdY/u/bwbF9tRQ+EVeot/844CkjtZxkgTfV8shN6kCMEVAamwBItZ7TXN
g/oc1ORM6nsKHBDQF3r2LSY0Gbf3OSfMJVL8SLEQ9hAhgGhotmJ36B4bdvyO7T0Q
gNn//U+p4IIMFRKRxreEz9P0KjTOJrHAAxNzu1oZebhGZd5WI+i0PHYkkBDKZTXc
7qaEdM2cX8Wd0ePIXOHQnSItwYO7ilrviHyeCM8wd/g2/W/00jvnpF3J+2rk7eJO
rcfAr8+V5ylYBQzp6Q==
=NXy2
-----END PGP SIGNATURE-----
Merge tag 'loongarch-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- Allow usage of LSX/LASX in the kernel, and use them for
SIMD-optimized RAID5/RAID6 routines
- Add Loongson Binary Translation (LBT) extension support
- Add basic KGDB & KDB support
- Add building with kcov coverage
- Add KFENCE (Kernel Electric-Fence) support
- Add KASAN (Kernel Address Sanitizer) support
- Some bug fixes and other small changes
- Update the default config file
* tag 'loongarch-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (25 commits)
LoongArch: Update Loongson-3 default config file
LoongArch: Add KASAN (Kernel Address Sanitizer) support
LoongArch: Simplify the processing of jumping new kernel for KASLR
kasan: Add (pmd|pud)_init for LoongArch zero_(pud|p4d)_populate process
kasan: Add __HAVE_ARCH_SHADOW_MAP to support arch specific mapping
LoongArch: Add KFENCE (Kernel Electric-Fence) support
LoongArch: Get partial stack information when providing regs parameter
LoongArch: mm: Add page table mapped mode support for virt_to_page()
kfence: Defer the assignment of the local variable addr
LoongArch: Allow building with kcov coverage
LoongArch: Provide kaslr_offset() to get kernel offset
LoongArch: Add basic KGDB & KDB support
LoongArch: Add Loongson Binary Translation (LBT) extension support
raid6: Add LoongArch SIMD recovery implementation
raid6: Add LoongArch SIMD syndrome calculation
LoongArch: Add SIMD-optimized XOR routines
LoongArch: Allow usage of LSX/LASX in the kernel
LoongArch: Define symbol 'fault' as a local label in fpu.S
LoongArch: Adjust {copy, clear}_user exception handler behavior
LoongArch: Use static defined zero page rather than allocated
...
1/8 of kernel addresses reserved for shadow memory. But for LoongArch,
There are a lot of holes between different segments and valid address
space (256T available) is insufficient to map all these segments to kasan
shadow memory with the common formula provided by kasan core, saying
(addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET
So LoongArch has a arch-specific mapping formula, different segments are
mapped individually, and only limited space lengths of these specific
segments are mapped to shadow.
At early boot stage the whole shadow region populated with just one
physical page (kasan_early_shadow_page). Later, this page is reused as
readonly zero shadow for some memory that kasan currently don't track.
After mapping the physical memory, pages for shadow memory are allocated
and mapped.
Functions like memset()/memcpy()/memmove() do a lot of memory accesses.
If bad pointer passed to one of these function it is important to be
caught. Compiler's instrumentation cannot do this since these functions
are written in assembly.
KASan replaces memory functions with manually instrumented variants.
Original functions declared as weak symbols so strong definitions in
mm/kasan/kasan.c could replace them. Original functions have aliases
with '__' prefix in names, so we could call non-instrumented variant
if needed.
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
The LoongArch architecture is quite different from other architectures.
When the allocating of KFENCE itself is done, it is mapped to the direct
mapping configuration window [1] by default on LoongArch. It means that
it is not possible to use the page table mapped mode which required by
the KFENCE system and therefore it should be remapped to the appropriate
region.
This patch adds architecture specific implementation details for KFENCE.
In particular, this implements the required interface in <asm/kfence.h>.
Tested this patch by running the testcases and all passed.
[1] https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#virtual-address-space-and-address-translation-mode
Signed-off-by: Enze Li <lienze@kylinos.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Add ARCH_HAS_KCOV and HAVE_GCC_PLUGINS to the LoongArch Kconfig. And
also disable instrumentation of vdso.
Signed-off-by: Feiyang Chen <chenfeiyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
KGDB is intended to be used as a source level debugger for the Linux
kernel. It is used along with gdb to debug a Linux kernel. GDB can be
used to "break in" to the kernel to inspect memory, variables and regs
similar to the way an application developer would use GDB to debug an
application. KDB is a frontend of KGDB which is similar to GDB.
By now, in addition to the generic KGDB features, the LoongArch KGDB
implements the following features:
- Hardware breakpoints/watchpoints;
- Software single-step support for KDB.
Signed-off-by: Qing Zhang <zhangqing@loongson.cn> # Framework & CoreFeature
Signed-off-by: Binbin Zhou <zhoubinbin@loongson.cn> # BreakPoint & SingleStep
Signed-off-by: Hui Li <lihui@loongson.cn> # Some Minor Improvements
Signed-off-by: Randy Dunlap <rdunlap@infradead.org> # Some Build Error Fixes
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Loongson Binary Translation (LBT) is used to accelerate binary translation,
which contains 4 scratch registers (scr0 to scr3), x86/ARM eflags (eflags)
and x87 fpu stack pointer (ftop).
This patch support kernel to save/restore these registers, handle the LBT
exception and maintain sigcontext.
Signed-off-by: Qi Hu <huqi@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
("refactor Kconfig to consolidate KEXEC and CRASH options").
- kernel.h slimming work from Andy Shevchenko ("kernel.h: Split out a
couple of macros to args.h").
- gdb feature work from Kuan-Ying Lee ("Add GDB memory helper
commands").
- vsprintf inclusion rationalization from Andy Shevchenko
("lib/vsprintf: Rework header inclusions").
- Switch the handling of kdump from a udev scheme to in-kernel handling,
by Eric DeVolder ("crash: Kernel handling of CPU and memory hot
un/plug").
- Many singleton patches to various parts of the tree
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZO2GpAAKCRDdBJ7gKXxA
juW3AQD1moHzlSN6x9I3tjm5TWWNYFoFL8af7wXDJspp/DWH/AD/TO0XlWWhhbYy
QHy7lL0Syha38kKLMXTM+bN6YQHi9AU=
=WJQa
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2023-08-28-22-48' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- An extensive rework of kexec and crash Kconfig from Eric DeVolder
("refactor Kconfig to consolidate KEXEC and CRASH options")
- kernel.h slimming work from Andy Shevchenko ("kernel.h: Split out a
couple of macros to args.h")
- gdb feature work from Kuan-Ying Lee ("Add GDB memory helper
commands")
- vsprintf inclusion rationalization from Andy Shevchenko
("lib/vsprintf: Rework header inclusions")
- Switch the handling of kdump from a udev scheme to in-kernel
handling, by Eric DeVolder ("crash: Kernel handling of CPU and memory
hot un/plug")
- Many singleton patches to various parts of the tree
* tag 'mm-nonmm-stable-2023-08-28-22-48' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (81 commits)
document while_each_thread(), change first_tid() to use for_each_thread()
drivers/char/mem.c: shrink character device's devlist[] array
x86/crash: optimize CPU changes
crash: change crash_prepare_elf64_headers() to for_each_possible_cpu()
crash: hotplug support for kexec_load()
x86/crash: add x86 crash hotplug support
crash: memory and CPU hotplug sysfs attributes
kexec: exclude elfcorehdr from the segment digest
crash: add generic infrastructure for crash hotplug support
crash: move a few code bits to setup support of crash hotplug
kstrtox: consistently use _tolower()
kill do_each_thread()
nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse
scripts/bloat-o-meter: count weak symbol sizes
treewide: drop CONFIG_EMBEDDED
lockdep: fix static memory detection even more
lib/vsprintf: declare no_hash_pointers in sprintf.h
lib/vsprintf: split out sprintf() and friends
kernel/fork: stop playing lockless games for exe_file replacement
adfs: delete unused "union adfs_dirtail" definition
...
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which
reduces the special-case code for handling hugetlb pages in GUP. It
also speeds up GUP handling of transparent hugepages.
- Peng Zhang provides some maple tree speedups ("Optimize the fast path
of mas_store()").
- Sergey Senozhatsky has improved te performance of zsmalloc during
compaction (zsmalloc: small compaction improvements").
- Domenico Cerasuolo has developed additional selftest code for zswap
("selftests: cgroup: add zswap test program").
- xu xin has doe some work on KSM's handling of zero pages. These
changes are mainly to enable the user to better understand the
effectiveness of KSM's treatment of zero pages ("ksm: support tracking
KSM-placed zero-pages").
- Jeff Xu has fixes the behaviour of memfd's
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED").
- David Howells has fixed an fscache optimization ("mm, netfs, fscache:
Stop read optimisation when folio removed from pagecache").
- Axel Rasmussen has given userfaultfd the ability to simulate memory
poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD").
- Miaohe Lin has contributed some routine maintenance work on the
memory-failure code ("mm: memory-failure: remove unneeded PageHuge()
check").
- Peng Zhang has contributed some maintenance work on the maple tree
code ("Improve the validation for maple tree and some cleanup").
- Hugh Dickins has optimized the collapsing of shmem or file pages into
THPs ("mm: free retracted page table by RCU").
- Jiaqi Yan has a patch series which permits us to use the healthy
subpages within a hardware poisoned huge page for general purposes
("Improve hugetlbfs read on HWPOISON hugepages").
- Kemeng Shi has done some maintenance work on the pagetable-check code
("Remove unused parameters in page_table_check").
- More folioification work from Matthew Wilcox ("More filesystem folio
conversions for 6.6"), ("Followup folio conversions for zswap"). And
from ZhangPeng ("Convert several functions in page_io.c to use a
folio").
- page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext").
- Baoquan He has converted some architectures to use the GENERIC_IOREMAP
ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take
GENERIC_IOREMAP way").
- Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support
batched/deferred tlb shootdown during page reclamation/migration").
- Better maple tree lockdep checking from Liam Howlett ("More strict
maple tree lockdep"). Liam also developed some efficiency improvements
("Reduce preallocations for maple tree").
- Cleanup and optimization to the secondary IOMMU TLB invalidation, from
Alistair Popple ("Invalidate secondary IOMMU TLB on permission
upgrade").
- Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes
for arm64").
- Kemeng Shi provides some maintenance work on the compaction code ("Two
minor cleanups for compaction").
- Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most
file-backed faults under the VMA lock").
- Aneesh Kumar contributes code to use the vmemmap optimization for DAX
on ppc64, under some circumstances ("Add support for DAX vmemmap
optimization for ppc64").
- page-ext cleanups from Kemeng Shi ("add page_ext_data to get client
data in page_ext"), ("minor cleanups to page_ext header").
- Some zswap cleanups from Johannes Weiner ("mm: zswap: three
cleanups").
- kmsan cleanups from ZhangPeng ("minor cleanups for kmsan").
- VMA handling cleanups from Kefeng Wang ("mm: convert to
vma_is_initial_heap/stack()").
- DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes:
implement DAMOS tried total bytes file"), ("Extend DAMOS filters for
address ranges and DAMON monitoring targets").
- Compaction work from Kemeng Shi ("Fixes and cleanups to compaction").
- Liam Howlett has improved the maple tree node replacement code
("maple_tree: Change replacement strategy").
- ZhangPeng has a general code cleanup - use the K() macro more widely
("cleanup with helper macro K()").
- Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap
on memory feature on ppc64").
- pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list
in page_alloc"), ("Two minor cleanups for get pageblock migratetype").
- Vishal Moola introduces a memory descriptor for page table tracking,
"struct ptdesc" ("Split ptdesc from struct page").
- memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups
for vm.memfd_noexec").
- MM include file rationalization from Hugh Dickins ("arch: include
asm/cacheflush.h in asm/hugetlb.h").
- THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text
output").
- kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use
object_cache instead of kmemleak_initialized").
- More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor
and _folio_order").
- A VMA locking scalability improvement from Suren Baghdasaryan
("Per-VMA lock support for swap and userfaults").
- pagetable handling cleanups from Matthew Wilcox ("New page table range
API").
- A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop
using page->private on tail pages for THP_SWAP + cleanups").
- Cleanups and speedups to the hugetlb fault handling from Matthew
Wilcox ("Change calling convention for ->huge_fault").
- Matthew Wilcox has also done some maintenance work on the MM subsystem
documentation ("Improve mm documentation").
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZO1JUQAKCRDdBJ7gKXxA
jrMwAP47r/fS8vAVT3zp/7fXmxaJYTK27CTAM881Gw1SDhFM/wEAv8o84mDenCg6
Nfio7afS1ncD+hPYT8947UnLxTgn+ww=
=Afws
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Some swap cleanups from Ma Wupeng ("fix WARN_ON in
add_to_avail_list")
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which
reduces the special-case code for handling hugetlb pages in GUP. It
also speeds up GUP handling of transparent hugepages.
- Peng Zhang provides some maple tree speedups ("Optimize the fast path
of mas_store()").
- Sergey Senozhatsky has improved te performance of zsmalloc during
compaction (zsmalloc: small compaction improvements").
- Domenico Cerasuolo has developed additional selftest code for zswap
("selftests: cgroup: add zswap test program").
- xu xin has doe some work on KSM's handling of zero pages. These
changes are mainly to enable the user to better understand the
effectiveness of KSM's treatment of zero pages ("ksm: support
tracking KSM-placed zero-pages").
- Jeff Xu has fixes the behaviour of memfd's
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED").
- David Howells has fixed an fscache optimization ("mm, netfs, fscache:
Stop read optimisation when folio removed from pagecache").
- Axel Rasmussen has given userfaultfd the ability to simulate memory
poisoning ("add UFFDIO_POISON to simulate memory poisoning with
UFFD").
- Miaohe Lin has contributed some routine maintenance work on the
memory-failure code ("mm: memory-failure: remove unneeded PageHuge()
check").
- Peng Zhang has contributed some maintenance work on the maple tree
code ("Improve the validation for maple tree and some cleanup").
- Hugh Dickins has optimized the collapsing of shmem or file pages into
THPs ("mm: free retracted page table by RCU").
- Jiaqi Yan has a patch series which permits us to use the healthy
subpages within a hardware poisoned huge page for general purposes
("Improve hugetlbfs read on HWPOISON hugepages").
- Kemeng Shi has done some maintenance work on the pagetable-check code
("Remove unused parameters in page_table_check").
- More folioification work from Matthew Wilcox ("More filesystem folio
conversions for 6.6"), ("Followup folio conversions for zswap"). And
from ZhangPeng ("Convert several functions in page_io.c to use a
folio").
- page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext").
- Baoquan He has converted some architectures to use the
GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert
architectures to take GENERIC_IOREMAP way").
- Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support
batched/deferred tlb shootdown during page reclamation/migration").
- Better maple tree lockdep checking from Liam Howlett ("More strict
maple tree lockdep"). Liam also developed some efficiency
improvements ("Reduce preallocations for maple tree").
- Cleanup and optimization to the secondary IOMMU TLB invalidation,
from Alistair Popple ("Invalidate secondary IOMMU TLB on permission
upgrade").
- Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes
for arm64").
- Kemeng Shi provides some maintenance work on the compaction code
("Two minor cleanups for compaction").
- Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle
most file-backed faults under the VMA lock").
- Aneesh Kumar contributes code to use the vmemmap optimization for DAX
on ppc64, under some circumstances ("Add support for DAX vmemmap
optimization for ppc64").
- page-ext cleanups from Kemeng Shi ("add page_ext_data to get client
data in page_ext"), ("minor cleanups to page_ext header").
- Some zswap cleanups from Johannes Weiner ("mm: zswap: three
cleanups").
- kmsan cleanups from ZhangPeng ("minor cleanups for kmsan").
- VMA handling cleanups from Kefeng Wang ("mm: convert to
vma_is_initial_heap/stack()").
- DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes:
implement DAMOS tried total bytes file"), ("Extend DAMOS filters for
address ranges and DAMON monitoring targets").
- Compaction work from Kemeng Shi ("Fixes and cleanups to compaction").
- Liam Howlett has improved the maple tree node replacement code
("maple_tree: Change replacement strategy").
- ZhangPeng has a general code cleanup - use the K() macro more widely
("cleanup with helper macro K()").
- Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for
memmap on memory feature on ppc64").
- pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list
in page_alloc"), ("Two minor cleanups for get pageblock
migratetype").
- Vishal Moola introduces a memory descriptor for page table tracking,
"struct ptdesc" ("Split ptdesc from struct page").
- memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups
for vm.memfd_noexec").
- MM include file rationalization from Hugh Dickins ("arch: include
asm/cacheflush.h in asm/hugetlb.h").
- THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text
output").
- kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use
object_cache instead of kmemleak_initialized").
- More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor
and _folio_order").
- A VMA locking scalability improvement from Suren Baghdasaryan
("Per-VMA lock support for swap and userfaults").
- pagetable handling cleanups from Matthew Wilcox ("New page table
range API").
- A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop
using page->private on tail pages for THP_SWAP + cleanups").
- Cleanups and speedups to the hugetlb fault handling from Matthew
Wilcox ("Change calling convention for ->huge_fault").
- Matthew Wilcox has also done some maintenance work on the MM
subsystem documentation ("Improve mm documentation").
* tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits)
maple_tree: shrink struct maple_tree
maple_tree: clean up mas_wr_append()
secretmem: convert page_is_secretmem() to folio_is_secretmem()
nios2: fix flush_dcache_page() for usage from irq context
hugetlb: add documentation for vma_kernel_pagesize()
mm: add orphaned kernel-doc to the rst files.
mm: fix clean_record_shared_mapping_range kernel-doc
mm: fix get_mctgt_type() kernel-doc
mm: fix kernel-doc warning from tlb_flush_rmaps()
mm: remove enum page_entry_size
mm: allow ->huge_fault() to be called without the mmap_lock held
mm: move PMD_ORDER to pgtable.h
mm: remove checks for pte_index
memcg: remove duplication detection for mem_cgroup_uncharge_swap
mm/huge_memory: work on folio->swap instead of page->private when splitting folio
mm/swap: inline folio_set_swap_entry() and folio_swap_entry()
mm/swap: use dedicated entry for swap in folio
mm/swap: stop using page->private on tail pages for THP_SWAP
selftests/mm: fix WARNING comparing pointer to 0
selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check
...
In drivers/Kconfig, drivers/firmware/Kconfig is sourced for all ports so
there is no need to source it in the port-specific Kconfig file. And
sourcing it here also caused the "Firmware Drivers" menu appeared two
times: one in the "Device Drivers" menu, another in the toplevel menu.
This is really puzzling so remove it.
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Xi Ruoyao <xry111@xry111.site>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
The kexec and crash kernel options are provided in the common
kernel/Kconfig.kexec. Utilize the common options and provide
the ARCH_SUPPORTS_ and ARCH_SELECTS_ entries to recreate the
equivalent set of KEXEC and CRASH options.
Link: https://lkml.kernel.org/r/20230712161545.87870-7-eric.devolder@oracle.com
Signed-off-by: Eric DeVolder <eric.devolder@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Arm disabled hugetlb vmemmap optimization [1] because hugetlb vmemmap
optimization includes an update of both the permissions (writeable to
read-only) and the output address (pfn) of the vmemmap ptes. That is not
supported without unmapping of pte(marking it invalid) by some
architectures.
With DAX vmemmap optimization we don't require such pte updates and
architectures can enable DAX vmemmap optimization while having hugetlb
vmemmap optimization disabled. Hence split DAX optimization support into
a different config.
s390, loongarch and riscv don't have devdax support. So the DAX config is
not enabled for them. With this change, arm64 should be able to select
DAX optimization
[1] commit 060a2c92d1 ("arm64: mm: hugetlb: Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP")
Link: https://lkml.kernel.org/r/20230724190759.483013-8-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently nettrace does not work on LoongArch due to missing
bpf_probe_read{,str}() support, with the error message:
ERROR: failed to load kprobe-based eBPF
ERROR: failed to load kprobe-based bpf
According to commit 0ebeea8ca8 ("bpf: Restrict bpf_probe_read{,
str}() only to archs where they work"), we only need to select
CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE to add said support,
because LoongArch does have non-overlapping address ranges for kernel
and userspace.
Cc: stable@vger.kernel.org # 6.1
Signed-off-by: Chenguang Zhao <zhaochenguang@kylinos.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
- Add new feature to have function graph tracer record the return value.
Adds a new option: funcgraph-retval ; when set, will show the return
value of a function in the function graph tracer.
- Also add the option: funcgraph-retval-hex where if it is not set, and
the return value is an error code, then it will return the decimal of
the error code, otherwise it still reports the hex value.
- Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd
That when a application opens it, it becomes the task that the timer lat
tracer traces. The application can also read this file to find out how
it's being interrupted.
- Add the file /sys/kernel/tracing/available_filter_functions_addrs
that works just the same as available_filter_functions but also shows
the addresses of the functions like kallsyms, except that it gives the
address of where the fentry/mcount jump/nop is. This is used by BPF to
make it easier to attach BPF programs to ftrace hooks.
- Replace strlcpy with strscpy in the tracing boot code.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZJy6ixQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qnzRAPsEI2YgjaJSHnuPoGRHbrNil6pq66wY
LYaLizGI4Jv9BwEAqdSdcYcMiWo1SFBAO8QxEDM++BX3zrRyVgW8ahaTNgs=
=TF0C
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- Add new feature to have function graph tracer record the return
value. Adds a new option: funcgraph-retval ; when set, will show the
return value of a function in the function graph tracer.
- Also add the option: funcgraph-retval-hex where if it is not set, and
the return value is an error code, then it will return the decimal of
the error code, otherwise it still reports the hex value.
- Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd
That when a application opens it, it becomes the task that the timer
lat tracer traces. The application can also read this file to find
out how it's being interrupted.
- Add the file /sys/kernel/tracing/available_filter_functions_addrs
that works just the same as available_filter_functions but also shows
the addresses of the functions like kallsyms, except that it gives
the address of where the fentry/mcount jump/nop is. This is used by
BPF to make it easier to attach BPF programs to ftrace hooks.
- Replace strlcpy with strscpy in the tracing boot code.
* tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix warnings when building htmldocs for function graph retval
riscv: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing/boot: Replace strlcpy with strscpy
tracing/timerlat: Add user-space interface
tracing/osnoise: Skip running osnoise if all instances are off
tracing/osnoise: Switch from PF_NO_SETAFFINITY to migrate_disable
ftrace: Show all functions with addresses in available_filter_functions_addrs
selftests/ftrace: Add funcgraph-retval test case
LoongArch: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
x86/ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing: Add documentation for funcgraph-retval and funcgraph-retval-hex
function_graph: Support recording and printing the return value of function
fgraph: Add declaration of "struct fgraph_ret_regs"
1, Preliminary ClangBuiltLinux enablement;
2, Add support to clone a time namespace;
3, Add vector extensions support;
4, Add SMT (Simultaneous Multi-Threading) support;
5, Support dbar with different hints;
6, Introduce hardware page table walker;
7, Add jump-label implementation;
8, Add rethook and uprobes support;
9, Some bug fixes and other small changes.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmSdmI4WHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImeoeDEACd+KFZnQrX6fwpohuxWgQ46YSk
bmKRnVCVg6jg/yL99WTHloaubMbyncgNL7YNvCRmuXcTQdjFP1zFb3q3ZqxTkaOT
Kg9EO4R5H8U2Wolz3uqcvTBbPxv6bwDor1gBWzVo8RTO4S7gYt5tLS7pvLiYPWzp
Jhgko2AHE/Y02Qqg00ARLIzDDLMm9vR5Gdmpj2jhl8wMHMNaqMW5E0r7XaiFoav0
G1PjIAk+0LIj9QHYUm5e0kcXHh0KzgUMG0LUDawbAanZn2r1KhAk0ouwXX/eu9J7
NQQRDi1Z02pTI5X3V1VAf+0O7RGnGGnWb/r2K76nr7lZNp88RJfbLtgBM01pzw2U
NTnIAP7cAomNDaBglzAuS17yeFTS953nxaQlR8/t3UefP+fHmiIJyOOlxrXFMwVM
jOfW4JAIkcl5DD/8l9lU1t91+zyKMrjsv8IrlGPW1sLsr/UOQjBajdHwnH8veC41
mL+xjiMb51g33JDRDAl6mloxXms9LvcNzbnKSwqVO1i23GkN1iHJmbq66Teut07C
7AH2qM3tSAuiXmNF1ntvodK1ukLS8moOiP8ZuuHfS13rr7gxPyRAvYdBiDaNEhF2
gCYYpIcaly+5rSf6wvDXgl/s3tS4o07AzDfpttyH5jYnY80nVj7CgS8vUU/mg1lW
QpapBnBHU8wrz+eBqQ==
=3gt3
-----END PGP SIGNATURE-----
Merge tag 'loongarch-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- preliminary ClangBuiltLinux enablement
- add support to clone a time namespace
- add vector extensions support
- add SMT (Simultaneous Multi-Threading) support
- support dbar with different hints
- introduce hardware page table walker
- add jump-label implementation
- add rethook and uprobes support
- some bug fixes and other small changes
* tag 'loongarch-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (28 commits)
LoongArch: Remove five DIE_* definitions in kdebug.h
LoongArch: Add uprobes support
LoongArch: Use larch_insn_gen_break() for kprobes
LoongArch: Add larch_insn_gen_break() to generate break insns
LoongArch: Check for AMO instructions in insns_not_supported()
LoongArch: Move three functions from kprobes.c to inst.c
LoongArch: Replace kretprobe with rethook
LoongArch: Add jump-label implementation
LoongArch: Select HAVE_DEBUG_KMEMLEAK to support kmemleak
LoongArch: Export some arch-specific pm interfaces
LoongArch: Introduce hardware page table walker
LoongArch: Support dbar with different hints
LoongArch: Add SMT (Simultaneous Multi-Threading) support
LoongArch: Add vector extensions support
LoongArch: Add support to clone a time namespace
Makefile: Add loongarch target flag for Clang compilation
LoongArch: Mark Clang LTO as working
LoongArch: Include KBUILD_CPPFLAGS in CHECKFLAGS invocation
LoongArch: vDSO: Use CLANG_FLAGS instead of filtering out '--target='
LoongArch: Tweak CFLAGS for Clang compatibility
...
This is an adaptation of commit f3a112c0c4 ("x86,rethook,kprobes:
Replace kretprobe with rethook on x86") and commit b57c2f1240 ("riscv:
add riscv rethook implementation") to LoongArch. Mainly refer to commit
b57c2f1240 ("riscv: add riscv rethook implementation").
Replaces the kretprobe code with rethook on LoongArch. With this patch,
kretprobe on LoongArch uses the rethook instead of kretprobe specific
trampoline code.
Signed-off-by: Haoran Jiang <jianghaoran@kylinos.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Add support for jump labels based on the ARM64 version.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
We can see that DEBUG_KMEMLEAK depends on HAVE_DEBUG_KMEMLEAK after
commit b69ec42b1b ("Kconfig: clean up the long arch list for the
DEBUG_KMEMLEAK config option"), just select HAVE_DEBUG_KMEMLEAK to
support kmemleak on LoongArch.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Loongson-3A6000 has SMT (Simultaneous Multi-Threading) support, each
physical core has two logical cores (threads). This patch add SMT probe
and scheduler support via ACPI PPTT.
If SCHED_SMT enabled, Loongson-3A6000 is treated as 4 cores, 8 threads;
If SCHED_SMT disabled, Loongson-3A6000 is treated as 8 cores, 8 threads.
Remove smp_num_siblings to support HMP (Heterogeneous Multi-Processing).
Signed-off-by: Liupu Wang <wangliupu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
We can see that "Time namespaces are not supported" on LoongArch:
(1) clone3 test
# cd tools/testing/selftests/clone3 && make && ./clone3
...
# Time namespaces are not supported
ok 18 # SKIP Skipping clone3() with CLONE_NEWTIME
# Totals: pass:17 fail:0 xfail:0 xpass:0 skip:1 error:0
(2) timens test
# cd tools/testing/selftests/timens && make && ./timens
...
1..0 # SKIP Time namespaces are not supported
On LoongArch the current kernel does not support CONFIG_TIME_NS which
depends on GENERIC_VDSO_TIME_NS, select GENERIC_VDSO_TIME_NS to enable
CONFIG_TIME_NS to build kernel/time/namespace.c.
Additionally, it needs to define some arch-dependent functions for the
timens, such as __arch_get_timens_vdso_data(), arch_get_vdso_data() and
vdso_join_timens().
At the same time, modify the layout of vvar to use one page size for
generic vdso data, expand another page size for timens vdso data and
assign LOONGARCH_VDSO_DATA_SIZE (maybe exceeds a page size if expand in
the future) for loongarch vdso data, at last add the callback function
vvar_fault() and modify stack_top().
With this patch under CONFIG_TIME_NS:
(1) clone3 test
# cd tools/testing/selftests/clone3 && make && ./clone3
...
ok 18 [739] Result (0) matches expectation (0)
# Totals: pass:18 fail:0 xfail:0 xpass:0 skip:0 error:0
(2) timens test
# cd tools/testing/selftests/timens && make && ./timens
...
# Totals: pass:10 fail:0 xfail:0 xpass:0 skip:0 error:0
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Confirmed working with QEMU system emulation.
Acked-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: WANG Xuerui <git@xen0n.name>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
The GNU assembler (as of 2.40) mis-treats FCSR operands as GPRs, but
the LLVM IAS does not. Probe for this and refer to FCSRs as "$fcsrNN"
if support is present.
Signed-off-by: WANG Xuerui <git@xen0n.name>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This modifies our user mode stack expansion code to always take the
mmap_lock for writing before modifying the VM layout.
It's actually something we always technically should have done, but
because we didn't strictly need it, we were being lazy ("opportunistic"
sounds so much better, doesn't it?) about things, and had this hack in
place where we would extend the stack vma in-place without doing the
proper locking.
And it worked fine. We just needed to change vm_start (or, in the case
of grow-up stacks, vm_end) and together with some special ad-hoc locking
using the anon_vma lock and the mm->page_table_lock, it all was fairly
straightforward.
That is, it was all fine until Ruihan Li pointed out that now that the
vma layout uses the maple tree code, we *really* don't just change
vm_start and vm_end any more, and the locking really is broken. Oops.
It's not actually all _that_ horrible to fix this once and for all, and
do proper locking, but it's a bit painful. We have basically three
different cases of stack expansion, and they all work just a bit
differently:
- the common and obvious case is the page fault handling. It's actually
fairly simple and straightforward, except for the fact that we have
something like 24 different versions of it, and you end up in a maze
of twisty little passages, all alike.
- the simplest case is the execve() code that creates a new stack.
There are no real locking concerns because it's all in a private new
VM that hasn't been exposed to anybody, but lockdep still can end up
unhappy if you get it wrong.
- and finally, we have GUP and page pinning, which shouldn't really be
expanding the stack in the first place, but in addition to execve()
we also use it for ptrace(). And debuggers do want to possibly access
memory under the stack pointer and thus need to be able to expand the
stack as a special case.
None of these cases are exactly complicated, but the page fault case in
particular is just repeated slightly differently many many times. And
ia64 in particular has a fairly complicated situation where you can have
both a regular grow-down stack _and_ a special grow-up stack for the
register backing store.
So to make this slightly more manageable, the bulk of this series is to
first create a helper function for the most common page fault case, and
convert all the straightforward architectures to it.
Thus the new 'lock_mm_and_find_vma()' helper function, which ends up
being used by x86, arm, powerpc, mips, riscv, alpha, arc, csky, hexagon,
loongarch, nios2, sh, sparc32, and xtensa. So we not only convert more
than half the architectures, we now have more shared code and avoid some
of those twisty little passages.
And largely due to this common helper function, the full diffstat of
this series ends up deleting more lines than it adds.
That still leaves eight architectures (ia64, m68k, microblaze, openrisc,
parisc, s390, sparc64 and um) that end up doing 'expand_stack()'
manually because they are doing something slightly different from the
normal pattern. Along with the couple of special cases in execve() and
GUP.
So there's a couple of patches that first create 'locked' helper
versions of the stack expansion functions, so that there's a obvious
path forward in the conversion. The execve() case is then actually
pretty simple, and is a nice cleanup from our old "grow-up stackls are
special, because at execve time even they grow down".
The #ifdef CONFIG_STACK_GROWSUP in that code just goes away, because
it's just more straightforward to write out the stack expansion there
manually, instead od having get_user_pages_remote() do it for us in some
situations but not others and have to worry about locking rules for GUP.
And the final step is then to just convert the remaining odd cases to a
new world order where 'expand_stack()' is called with the mmap_lock held
for reading, but where it might drop it and upgrade it to a write, only
to return with it held for reading (in the success case) or with it
completely dropped (in the failure case).
In the process, we remove all the stack expansion from GUP (where
dropping the lock wouldn't be ok without special rules anyway), and add
it in manually to __access_remote_vm() for ptrace().
Thanks to Adrian Glaubitz and Frank Scheiner who tested the ia64 cases.
Everything else here felt pretty straightforward, but the ia64 rules for
stack expansion are really quite odd and very different from everything
else. Also thanks to Vegard Nossum who caught me getting one of those
odd conditions entirely the wrong way around.
Anyway, I think I want to actually move all the stack expansion code to
a whole new file of its own, rather than have it split up between
mm/mmap.c and mm/memory.c, but since this will have to be backported to
the initial maple tree vma introduction anyway, I tried to keep the
patches _fairly_ minimal.
Also, while I don't think it's valid to expand the stack from GUP, the
final patch in here is a "warn if some crazy GUP user wants to try to
expand the stack" patch. That one will be reverted before the final
release, but it's left to catch any odd cases during the merge window
and release candidates.
Reported-by: Ruihan Li <lrh2000@pku.edu.cn>
* branch 'expand-stack':
gup: add warning if some caller would seem to want stack expansion
mm: always expand the stack with the mmap write lock held
execve: expand new process stack manually ahead of time
mm: make find_extend_vma() fail if write lock not held
powerpc/mm: convert coprocessor fault to lock_mm_and_find_vma()
mm/fault: convert remaining simple cases to lock_mm_and_find_vma()
arm/mm: Convert to using lock_mm_and_find_vma()
riscv/mm: Convert to using lock_mm_and_find_vma()
mips/mm: Convert to using lock_mm_and_find_vma()
powerpc/mm: Convert to using lock_mm_and_find_vma()
arm64/mm: Convert to using lock_mm_and_find_vma()
mm: make the page fault mmap locking killable
mm: introduce new 'lock_mm_and_find_vma()' page fault helper
This does the simple pattern conversion of alpha, arc, csky, hexagon,
loongarch, nios2, sh, sparc32, and xtensa to the lock_mm_and_find_vma()
helper. They all have the regular fault handling pattern without odd
special cases.
The remaining architectures all have something that keeps us from a
straightforward conversion: ia64 and parisc have stacks that can grow
both up as well as down (and ia64 has special address region checks).
And m68k, microblaze, openrisc, sparc64, and um end up having extra
rules about only expanding the stack down a limited amount below the
user space stack pointer. That is something that x86 used to do too
(long long ago), and it probably could just be skipped, but it still
makes the conversion less than trivial.
Note that this conversion was done manually and with the exception of
alpha without any build testing, because I have a fairly limited cross-
building environment. The cases are all simple, and I went through the
changes several times, but...
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous patch ("function_graph: Support recording and printing
the return value of function") has laid the groundwork for the for
the funcgraph-retval, and this modification makes it available on
the LoongArch platform.
We introduce a new structure called fgraph_ret_regs for the LoongArch
platform to hold return registers and the frame pointer. We then fill
its content in the return_to_handler and pass its address to the
function ftrace_return_to_handler to record the return value.
Link: https://lkml.kernel.org/r/c5462255e435fab363895c2d7433bc0f5a140411.1680954589.git.pengdonglin@sangfor.com.cn
Reviewed-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Donglin Peng <pengdonglin@sangfor.com.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
1, Better backtraces for humanization;
2, Relay BCE exceptions to userland as SIGSEGV;
3, Provide kernel fpu functions;
4, Optimize memory ops (memset/memcpy/memmove);
5, Optimize checksum and crc32(c) calculation;
6, Add ARCH_HAS_FORTIFY_SOURCE selection;
7, Add function error injection support;
8, Add ftrace with direct call support;
9, Add basic perf tools support.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmRQlUsWHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImekCTD/9fc2U+FIXhJOWV5yK9TCjJTRnK
ASvk0JMYIDA60+fnof3C85tDu9Py9M5Mvt/Ec5pBaHErn16irq85AdD74/OmyCc2
V4pRFHbYLu0WBFQN77gfNXH0XErgYXdceZvaMXajVz2H6NlSKSWZOVN/9ut5SLi3
mt0rCwCsyahj92n8+hOjjZeFbDaPfPMCQ/8n9dnadhbBm9iz35fOKY+qIBHJMJ9a
wPfZ2k3wu5DHs/2+ZjFNhlwrlURTp3RlcVQ7QWDcR1LM3Z4/lEkD8tAI/r8sR9gw
rxzoBSaQzo/zscUmYo0jh1BoW2w0n+x/GfH70Pyz3iwZky3jwpdP0nRwnB4h+tnE
wKlpa5K7RfaqUxZExFfGALmlkALtjQgiXPYbORHMsD6l6XwrOMCeyQismm1oo66m
JBlsdXCms5aracYmWhXnVmTlBqGjAgYAxm62ap62uwlmULy4qUv6kFeW0fERn9NJ
5bKgbrkcal/WkMBawQqtG03niRkykqpqFooZ95ubj4Lib4VM0BmEvFrREjgXO7AE
jpLimYsT9ROE3YQJqyWyLYkmc2ShwWj70INTpz2viMtQ2blIRKvRVsxs976bHuwS
mGsZtiiANjhT2bAUhN7bct2Cf13MtPXiuf0etcJbrNSAtoBIFk+3uRRKHH2rM+CK
oKYjO+exPyuQ9nSOBg==
=3aTV
-----END PGP SIGNATURE-----
Merge tag 'loongarch-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- Better backtraces for humanization
- Relay BCE exceptions to userland as SIGSEGV
- Provide kernel fpu functions
- Optimize memory ops (memset/memcpy/memmove)
- Optimize checksum and crc32(c) calculation
- Add ARCH_HAS_FORTIFY_SOURCE selection
- Add function error injection support
- Add ftrace with direct call support
- Add basic perf tools support
* tag 'loongarch-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (24 commits)
tools/perf: Add basic support for LoongArch
LoongArch: ftrace: Add direct call trampoline samples support
LoongArch: ftrace: Add direct call support
LoongArch: ftrace: Implement ftrace_find_callable_addr() to simplify code
LoongArch: ftrace: Fix build error if DYNAMIC_FTRACE_WITH_REGS is not set
LoongArch: ftrace: Abstract DYNAMIC_FTRACE_WITH_ARGS accesses
LoongArch: Add support for function error injection
LoongArch: Add ARCH_HAS_FORTIFY_SOURCE selection
LoongArch: crypto: Add crc32 and crc32c hw acceleration
LoongArch: Add checksum optimization for 64-bit system
LoongArch: Optimize memory ops (memset/memcpy/memmove)
LoongArch: Provide kernel fpu functions
LoongArch: Relay BCE exceptions to userland as SIGSEGV with si_code=SEGV_BNDERR
LoongArch: Tweak the BADV and CPUCFG.PRID lines in show_regs()
LoongArch: Humanize the ESTAT line when showing registers
LoongArch: Humanize the ECFG line when showing registers
LoongArch: Humanize the EUEN line when showing registers
LoongArch: Humanize the PRMD line when showing registers
LoongArch: Humanize the CRMD line when showing registers
LoongArch: Fix format of CSR lines during show_regs()
...
The ftrace samples need per-architecture trampoline implementations to
save and restore argument registers around the calls to my_direct_func*
and to restore polluted registers (e.g: ra).
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Select the HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS to provide the
register_ftrace_direct[_multi] interfaces allowing users to register
the customed trampoline (direct_caller) as the mcount for one or more
target functions. And modify_ftrace_direct[_multi] are also provided
for modifying direct_caller.
There are a few cases to distinguish:
- If a direct call ops is the only one tracing a function AND the direct
called trampoline is within the reach of a 'bl' instruction
-> the ftrace patchsite jumps to the trampoline
- Else
-> the ftrace patchsite jumps to the ftrace_regs_caller trampoline points
to ftrace_list_ops so it iterates over all registered ftrace ops,
including the direct call ops and calls its call_direct_funcs handler
which stores the direct called trampoline's address in the ftrace_regs
and the ftrace_regs_caller trampoline will return to that address
instead of returning to the traced function
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Inspired by the commit 42d038c4fb ("arm64: Add support for function
error injection") and the commit ee55ff803b ("riscv: Add support for
function error injection"), this patch supports function error injection
for LoongArch.
Mainly implement two functions:
(1) regs_set_return_value() which is used to overwrite the return value,
(2) override_function_with_return() which is used to override the probed
function returning and jump to its caller.
Here is a simple test under CONFIG_FUNCTION_ERROR_INJECTION and
CONFIG_FAIL_FUNCTION:
# echo sys_clone > /sys/kernel/debug/fail_function/inject
# echo 100 > /sys/kernel/debug/fail_function/probability
# dmesg
bash: fork: Invalid argument
# dmesg
...
FAULT_INJECTION: forcing a failure.
name fail_function, interval 1, probability 100, space 0, times 1
...
Call Trace:
[<90000000002238f4>] show_stack+0x5c/0x180
[<90000000012e384c>] dump_stack_lvl+0x60/0x88
[<9000000000b1879c>] should_fail_ex+0x1b0/0x1f4
[<900000000032ead4>] fei_kprobe_handler+0x28/0x6c
[<9000000000230970>] kprobe_breakpoint_handler+0xf0/0x118
[<90000000012e3e60>] do_bp+0x2c4/0x358
[<9000000002241924>] exception_handlers+0x1924/0x10000
[<900000000023b7d0>] sys_clone+0x0/0x4
[<90000000012e4744>] do_syscall+0x7c/0x94
[<9000000000221e44>] handle_syscall+0xc4/0x160
Tested-by: Hengqi Chen <hengqi.chen@gmail.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
FORTIFY_SOURCE could detect various overflows at compile and run time.
ARCH_HAS_FORTIFY_SOURCE means that the architecture can be built and run
with CONFIG_FORTIFY_SOURCE. So select it in LoongArch.
See more about this feature from commit 6974f0c455 ("include/linux/
string.h: add the option of fortified string.h functions").
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page().
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
than exclusive, and has fixed a bunch of errors which were caused by its
unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
=J+Dj
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
These are various cleanups, fixing a number of uapi header files to no
longer reference CONFIG_* symbols, and one patch that introduces the
new CONFIG_HAS_IOPORT symbol for architectures that provide working
inb()/outb() macros, as a preparation for adding driver dependencies
on those in the following release.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmRG8IkACgkQYKtH/8kJ
Uid15Q/9E/neIIEqEk6IvtyhUicrJiIZUM0rGoYtWXiz75ggk6Kx9+3I+j8zIQ/E
kf2TzAG7q9Md7nfTDFLr4FSr0IcNDj+VG4nYxUyDHdKGcARO+g9Kpdvscxip3lgU
Rw5w74Gyd30u4iUKGS39OYuxcCgl9LaFjMA9Gh402Oiaoh+OYLmgQS9h/goUD5KN
Nd+AoFvkdbnHl0/SpxthLRyL5rFEATBmAY7apYViPyMvfjS3gfDJwXJR9jkKgi6X
Qs4t8Op8BA3h84dCuo6VcFqgAJs2Wiq3nyTSUnkF8NxJ2RFTpeiVgfsLOzXHeDgz
SKDB4Lp14o3mlyZyj00MWq1uMJRRetUgNiVb6iHOoKQ/E4demBdh+mhIFRybjM5B
XNTWFcg9PWFCMa4W9jnLfZBc881X4+7T+qUF8I0W/1AbRJUmyGj8HO6jLceC4yGD
UYLn5oFPM6OWXHp6DqJrCr9Yw8h6fuviQZFEbl/ARlgVGt+J4KbYweJYk8DzfX6t
PZIj8LskOqyIpRuC2oDA1PHxkaJ1/z+N5oRBHq1uicSh4fxY5HW7HnyzgF08+R3k
cf+fjAhC3TfGusHkBwQKQJvpxrxZjPuvYXDZ0GxTvNKJRB8eMeiTm1n41E5oTVwQ
swSblSCjZj/fMVVPXLcjxEW4SBNWRxa9Lz3tIPXb3RheU10Lfy8=
=H3k4
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"These are various cleanups, fixing a number of uapi header files to no
longer reference CONFIG_* symbols, and one patch that introduces the
new CONFIG_HAS_IOPORT symbol for architectures that provide working
inb()/outb() macros, as a preparation for adding driver dependencies
on those in the following release"
* tag 'asm-generic-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
Kconfig: introduce HAS_IOPORT option and select it as necessary
scripts: Update the CONFIG_* ignore list in headers_install.sh
pktcdvd: Remove CONFIG_CDROM_PKTCDVD_WCACHE from uapi header
Move bp_type_idx to include/linux/hw_breakpoint.h
Move ep_take_care_of_epollwakeup() to fs/eventpoll.c
Move COMPAT_ATM_ADDPARTY to net/atm/svc.c
Now we use ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP config option to
indicate devdax and hugetlb vmemmap optimization support. Hence rename
that to a generic ARCH_WANT_OPTIMIZE_VMEMMAP
Link: https://lkml.kernel.org/r/20230412050025.84346-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
LoongArch maintains cache coherency in hardware, but when paired with
LS7A chipsets the WUC attribute (Weak-ordered UnCached, which is similar
to WriteCombine) is out of the scope of cache coherency machanism for
PCIe devices (this is a PCIe protocol violation, which may be fixed in
newer chipsets).
This means WUC can only used for write-only memory regions now, so this
option is disabled by default, making WUC silently fallback to SUC for
ioremap(). You can enable this option if the kernel is ensured to run on
hardware without this bug.
Kernel parameter writecombine=on/off can be used to override the Kconfig
option.
Cc: stable@vger.kernel.org
Suggested-by: WANG Xuerui <kernel@xen0n.name>
Reviewed-by: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
LoongArch defines insane ranges for ARCH_FORCE_MAX_ORDER allowing
MAX_ORDER up to 63, which implies maximal contiguous allocation size of
2^63 pages.
Drop bogus definitions of ranges for ARCH_FORCE_MAX_ORDER and leave it a
simple integer with sensible defaults.
Users that *really* need to change the value of ARCH_FORCE_MAX_ORDER will
be able to do so but they won't be mislead by the bogus ranges.
Link: https://lkml.kernel.org/r/20230322081727.2516291-1-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We introduce a new HAS_IOPORT Kconfig option to indicate support for I/O
Port access. In a future patch HAS_IOPORT=n will disable compilation of
the I/O accessor functions inb()/outb() and friends on architectures
which can not meaningfully support legacy I/O spaces such as s390.
The following architectures do not select HAS_IOPORT:
* ARC
* C-SKY
* Hexagon
* Nios II
* OpenRISC
* s390
* User-Mode Linux
* Xtensa
All other architectures select HAS_IOPORT at least conditionally.
The "depends on" relations on HAS_IOPORT in drivers as well as ifdefs
for HAS_IOPORT specific sections will be added in subsequent patches on
a per subsystem basis.
Co-developed-by: Arnd Bergmann <arnd@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@kernel.org>
Acked-by: Johannes Berg <johannes@sipsolutions.net> # for ARCH=um
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Use the generic kretprobe trampoline handler to add kretprobes support
for LoongArch.
Tested-by: Jeff Xie <xiehuan09@gmail.com>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Kprobes allows you to trap at almost any kernel address and execute a
callback function, this commit adds kprobes support for LoongArch.
Tested-by: Jeff Xie <xiehuan09@gmail.com>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Add regs_get_argument() which returns N th argument of the function
call, This enables ftrace kprobe events to access kernel function
arguments via $argN syntax for later use.
E.g.:
echo 'p bio_add_page arg1=$arg1' > kprobe_events
bash: echo: write error: Invalid argument
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Use perf framework to manage hardware instruction and data breakpoints.
LoongArch defines hardware watchpoint functions for instruction fetch
and memory load/store operations. After the software configures hardware
watchpoints, the processor hardware will monitor the access address of
the instruction fetch and load/store operation, and trigger an exception
of the watchpoint when it meets the conditions set by the watchpoint.
The hardware monitoring points for instruction fetching and load/store
operations each have a register for the overall configuration of all
monitoring points, a register for recording the status of all monitoring
points, and four registers required for configuration of each watchpoint
individually.
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This feature depends on the kernel being relocatable.
Enable using single kernel image for kdump, and then no longer need to
build two kernels (production kernel and capture kernel share a single
kernel image).
Also enable CONFIG_CRASH_DUMP in loongson3_defconfig.
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This patch adds support for relocating the kernel to a random address.
Entropy is derived from the banner, which will change every build and
random_get_entropy() which should provide additional runtime entropy.
The kernel is relocated by up to RANDOMIZE_BASE_MAX_OFFSET bytes from
its link address. Because relocation happens so early during the kernel
booting, the amount of physical memory has not yet been determined. This
means the only way to limit relocation within the available memory is
via Kconfig. So we limit the maximum value of RANDOMIZE_BASE_MAX_OFFSET
to 256M (0x10000000) because our memory layout has many holes.
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Xi Ruoyao <xry111@xry111.site> # Fix compiler warnings
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This config allows to compile kernel as PIE and to relocate it at any
virtual address at runtime: this paves the way to KASLR.
Runtime relocation is possible since relocation metadata are embedded
into the kernel.
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Xi Ruoyao <xry111@xry111.site> # Use arch_initcall
Signed-off-by: Jinyang He <hejinyang@loongson.cn> # Provide la_abs relocation code
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Introduce Kconfig option ARCH_STRICT_ALIGN to make -mstrict-align be
configurable.
Not all LoongArch cores support h/w unaligned access, we can use the
-mstrict-align build parameter to prevent unaligned accesses.
CPUs with h/w unaligned access support:
Loongson-2K2000/2K3000/3A5000/3C5000/3D5000.
CPUs without h/w unaligned access support:
Loongson-2K500/2K1000.
This option is enabled by default to make the kernel be able to run on
all LoongArch systems. But you can disable it manually if you want to
run kernel only on systems with h/w unaligned access support in order to
optimise for performance.
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
- More userfaultfs work from Peter Xu.
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying.
- Some filemap cleanups from Vishal Moola.
- David Hildenbrand added the ability to selftest anon memory COW handling.
- Some cpuset simplifications from Liu Shixin.
- Addition of vmalloc tracing support by Uladzislau Rezki.
- Some pagecache folioifications and simplifications from Matthew Wilcox.
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it.
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword. This series shold have been in the
non-MM tree, my bad.
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages.
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages.
- Peter Xu utilized the PTE marker code for handling swapin errors.
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient.
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand.
- zram support for multiple compression streams from Sergey Senozhatsky.
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway.
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations.
- Vishal Moola removed the try_to_release_page() wrapper.
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache.
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking.
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend.
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range().
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen.
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect.
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages().
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting.
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines.
- Many singleton patches, as usual.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5j6ZwAKCRDdBJ7gKXxA
jkDYAP9qNeVqp9iuHjZNTqzMXkfmJPsw2kmy2P+VdzYVuQRcJgEAgoV9d7oMq4ml
CodAgiA51qwzId3GRytIo/tfWZSezgA=
=d19R
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
Allow for arguments to be passed in to ftrace_regs by default. If this
is set, then arguments and stack can be found from the pt_regs.
1. HAVE_DYNAMIC_FTRACE_WITH_ARGS don't need special hook for graph
tracer entry point, but instead we can use graph_ops::func function to
install the return_hooker.
2. Livepatch requires this option in the future.
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This patch implements CONFIG_DYNAMIC_FTRACE_WITH_REGS on LoongArch,
which allows a traced function's arguments (and some other registers)
to be captured into a struct pt_regs, allowing these to be inspected
and modified.
Co-developed-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
The compiler has inserted 2 NOPs before the regular function prologue.
T series registers are available and safe because of LoongArch's psABI.
At runtime, we can replace nop with bl to enable ftrace call and replace
bl with nop to disable ftrace call. The bl instruction requires us to
save the original RA value, so it saves RA at t0 here.
Details are:
| Compiled | Disabled | Enabled |
+------------+------------------------+------------------------+
| nop | move t0, ra | move t0, ra |
| nop | nop | bl ftrace_caller |
| func_body | func_body | func_body |
The RA value will be recovered by ftrace_regs_entry, and restored into
RA before returning to the regular function prologue. When a function is
not being traced, the "move t0, ra" is not harmful.
1) ftrace_make_call, ftrace_make_nop (in kernel/ftrace.c)
The two functions turn each recorded call site of filtered functions
into a call to ftrace_caller or nops.
2) ftracce_update_ftrace_func (in kernel/ftrace.c)
turns the nops at ftrace_call into a call to a generic entry for
function tracers.
3) ftrace_caller (in kernel/mcount_dyn.S)
The entry where each _mcount call sites calls to once they are
filtered to be traced.
Co-developed-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Recordmcount utility under scripts is run, after compiling each object,
to find out all the locations of calling _mcount() and put them into
specific seciton named __mcount_loc.
Then the linker collects all such information into a table in the kernel
image (between __start_mcount_loc and __stop_mcount_loc) for later use
by ftrace.
This patch adds LoongArch specific definitions to identify such locations.
And on LoongArch, only the C version is used to build the kernel now that
CONFIG_HAVE_C_RECORDMCOUNT is on.
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This patch contains basic ftrace support for LoongArch. Specifically,
function tracer (HAVE_FUNCTION_TRACER), function graph tracer (HAVE_
FUNCTION_GRAPH_TRACER) are implemented following the instructions in
Documentation/trace/ftrace-design.txt.
Use `-pg` makes stub like a child function `void _mcount(void *ra)`.
Thus, it can be seen store RA and alloc stack before `call _mcount`.
Find `alloc stack` at first, and then find `store RA`.
Note that the functions in both inst.c and time.c should not be hooked
with the compiler's -pg option: to prevent infinite self-referencing for
the former, and to ignore early setup stuff for the latter.
Co-developed-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Add basic stack protector support similar to other architectures. A
constant canary value is set at boot time, and with help of compiler's
-fstack-protector we can detect stack corruption.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Since commit 40cd01a9c324("efi/loongarch: libstub: remove dependency on
flattened DT"), we can parse the FDT from efi system table.
And now, LoongArch is coming to support booting with FDT, so we add the
relevant booting support as well as parameter parsing.
Signed-off-by: Binbin Zhou <zhoubinbin@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Loongson-2 series (Loongson-2K500, Loongson-2K1000) don't support
unaligned access in hardware, while Loongson-3 series (Loongson-3A5000,
Loongson-3C5000) are configurable whether support unaligned access in
hardware. This patch add unaligned access emulation for those LoongArch
processors without hardware support.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
The feature of minimizing overhead of struct page associated with each
HugeTLB page is implemented on x86_64. However, the infrastructure of
this feature is already there, so just select ARCH_WANT_HUGETLB_PAGE_
OPTIMIZE_VMEMMAP is enough to enable this feature for LoongArch.
Link: https://lkml.kernel.org/r/20221027125253.3458989-5-chenhuacai@loongson.cn
Signed-off-by: Feiyang Chen <chenfeiyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Min Zhou <zhoumin@loongson.cn>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Will Deacon <will@kernel.org>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Cc: Xuerui Wang <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add sparse memory vmemmap support for LoongArch. SPARSEMEM_VMEMMAP uses a
virtually mapped memmap to optimise pfn_to_page and page_to_pfn
operations. This is the most efficient option when sufficient kernel
resources are available.
Link: https://lkml.kernel.org/r/20221027125253.3458989-3-chenhuacai@loongson.cn
Signed-off-by: Min Zhou <zhoumin@loongson.cn>
Signed-off-by: Feiyang Chen <chenfeiyang@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Mathieu-Daudé <philmd@linaro.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Will Deacon <will@kernel.org>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Cc: Xuerui Wang <kernel@xen0n.name>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The loongarch architecture uses the atomic read-modify-write
amadd instruction to implement this_cpu_add(), which is NMI safe.
This means that the old and more-efficient srcu_read_lock() may be
used in NMI context, without the need for srcu_read_lock_nmisafe().
Therefore, add the new Kconfig option ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
to arch/loongarch/Kconfig, which will cause NEED_SRCU_NMI_SAFE to be
deselected, thus preserving the current srcu_read_lock() behavior.
Link: https://lore.kernel.org/all/20220910221947.171557773@linutronix.de/
Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Petr Mladek <pmladek@suse.com>
Cc: <loongarch@lists.linux.dev>
BPF programs are normally handled by a BPF interpreter, add BPF JIT
support for LoongArch to allow the kernel to generate native code when
a program is loaded into the kernel. This will significantly speed-up
processing of BPF programs.
Co-developed-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This patch adds support for kdump. In kdump case the normal kernel will
reserve a region for the crash kernel and jump there on panic.
Arch-specific functions are added to allow for implementing a crash dump
file interface, /proc/vmcore, which can be viewed as a ELF file.
A user-space tool, such as kexec-tools, is responsible for allocating a
separate region for the core's ELF header within the crash kdump kernel
memory and filling it in when executing kexec_load().
Then, its location will be advertised to the crash dump kernel via a
command line argument "elfcorehdr=", and the crash dump kernel will
preserve this region for later use with arch_reserve_vmcore() at boot
time.
At the same time, the crash kdump kernel is also limited within the
"crashkernel" area via a command line argument "mem=", so as not to
destroy the original kernel dump data.
In the crash dump kernel environment, /proc/vmcore is used to access the
primary kernel's memory with copy_oldmem_page().
I tested kdump on LoongArch machines (Loongson-3A5000) and it works as
expected (suggested crashkernel parameter is "crashkernel=512M@2560M"),
you may test it by triggering a crash through /proc/sysrq-trigger:
$ sudo kexec -p /boot/vmlinux-kdump --reuse-cmdline --append="nr_cpus=1"
# echo c > /proc/sysrq-trigger
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Add three new files, kexec.h, machine_kexec.c and relocate_kernel.S to
the LoongArch architecture, so as to add support for the kexec re-boot
mechanism (CONFIG_KEXEC) on LoongArch platforms.
Kexec supports loading vmlinux.elf in ELF format and vmlinux.efi in PE
format.
I tested kexec on LoongArch machines (Loongson-3A5000) and it works as
expected:
$ sudo kexec -l /boot/vmlinux.efi --reuse-cmdline
$ sudo kexec -e
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Inspired by commit 9fb7410f955("arm64/BUG: Use BRK instruction for
generic BUG traps"), do similar for LoongArch to use generic BUG()
handler.
This patch uses the BREAK software breakpoint instruction to generate
a trap instead, similarly to most other arches, with the generic BUG
code generating the dmesg boilerplate.
This allows bug metadata to be moved to a separate table and reduces
the amount of inline code at BUG() and WARN() sites. This also avoids
clobbering any registers before they can be dumped.
To mitigate the size of the bug table further, this patch makes use of
the existing infrastructure for encoding addresses within the bug table
as 32-bit relative pointers instead of absolute pointers.
(Note: this limits the max kernel size to 2GB.)
Before patch:
[ 3018.338013] lkdtm: Performing direct entry BUG
[ 3018.342445] Kernel bug detected[#5]:
[ 3018.345992] CPU: 2 PID: 865 Comm: cat Tainted: G D 6.0.0-rc6+ #35
After patch:
[ 125.585985] lkdtm: Performing direct entry BUG
[ 125.590433] ------------[ cut here ]------------
[ 125.595020] kernel BUG at drivers/misc/lkdtm/bugs.c:78!
[ 125.600211] Oops - BUG[#1]:
[ 125.602980] CPU: 3 PID: 410 Comm: cat Not tainted 6.0.0-rc6+ #36
Out-of-line file/line data information obtained compared to before.
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
The perf events infrastructure of LoongArch is very similar to old MIPS-
based Loongson, so most of the codes are derived from MIPS.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
We can support more cache attributes (e.g., CC, SUC and WUC) and page
protection when we use TLB for ioremap(). The implementation is based
on GENERIC_IOREMAP.
The existing simple ioremap() implementation has better performance so
we keep it and introduce ARCH_IOREMAP to control the selection.
We move pagetable_init() earlier to make early ioremap() works, and we
modify the PCI ecam mapping because the TLB-based version of ioremap()
will actually take the size into account.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Accidental access to /dev/mem is obviously disastrous, but specific
access can be used by people debugging the kernel. So select GENERIC_
LIB_DEVMEM_IS_ALLOWED, as well as define ARCH_HAS_VALID_PHYS_ADDR_RANGE
and related helpers, to support access filter to /dev/mem interface.
Signed-off-by: Weihao Li <liweihao@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
GNU as >= 2.40 and GCC >= 13 will support using explicit relocation
hints in the assembly code, instead of la.* macros. The usage of
explicit relocation hints can improve code generation so it's enabled
by default by GCC >= 13.
Introduce a Kconfig option AS_HAS_EXPLICIT_RELOCS as the switch for
"use explicit relocation hints or not".
Tested-by: WANG Xuerui <git@xen0n.name>
Signed-off-by: Xi Ruoyao <xry111@xry111.site>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
There is a spelling mistake in a commented section. Fix it.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured size
of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmM5mfEACgkQw08iOZLZ
jySnJwv9G2nBheSlK9bbWKvCpnDvVIExtlL+mg1wB64oxPrGiWRgjxeyA9+92bT0
Y6jYfKbGOGKnxkEJQl19ik6C3JfEwtGm4SnOVp4+osFeDRB7lFemfcIYN5dqz111
wkZA/Y15rnz3tZeGaXnq2jMoFuccQDXPJtOlqbdVqFQ5Py6YT92uMyuI079pN0T+
GSu7VVOX+SBsv4nGaUKIpSVwAP0gXkS/7s7CTf47QiR2+j8WMTlQEYZVjOKZjMJZ
/7hXY2/mduxnuVuT7cfx0mpZKEryUREJoBL5nDzjTnlhLb5X8cHKiaE1lx0aJ//G
JYTR8lDklJZl/7RUw/IW/YodcKcofr3F36NMzWB5vzM+KHOOpv4qEZhoGnaXv94u
auqhzYA83heaRjz7OISlk6kgFxdlIRE1VdrkEBXSlQeCQUv1woS+ZNVGYcKqgR0B
48b31Ogm2A0pAuba89+U9lz/n33lhIDtYvJqLO6AAPLGiVacD9ZdapN5kMftVg/1
SfhFqNzy
=d8Ps
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"A bit more going on than usual in the EFI subsystem. The main driver
for this has been the introduction of the LoonArch architecture last
cycle, which inspired some cleanup and refactoring of the EFI code.
Another driver for EFI changes this cycle and in the future is
confidential compute.
The LoongArch architecture does not use either struct bootparams or DT
natively [yet], and so passing information between the EFI stub and
the core kernel using either of those is undesirable. And in general,
overloading DT has been a source of issues on arm64, so using DT for
this on new architectures is a to avoid for the time being (even if we
might converge on something DT based for non-x86 architectures in the
future). For this reason, in addition to the patch that enables EFI
boot for LoongArch, there are a number of refactoring patches applied
on top of which separate the DT bits from the generic EFI stub bits.
These changes are on a separate topich branch that has been shared
with the LoongArch maintainers, who will include it in their pull
request as well. This is not ideal, but the best way to manage the
conflicts without stalling LoongArch for another cycle.
Another development inspired by LoongArch is the newly added support
for EFI based decompressors. Instead of adding yet another
arch-specific incarnation of this pattern for LoongArch, we are
introducing an EFI app based on the existing EFI libstub
infrastructure that encapulates the decompression code we use on other
architectures, but in a way that is fully generic. This has been
developed and tested in collaboration with distro and systemd folks,
who are eager to start using this for systemd-boot and also for arm64
secure boot on Fedora. Note that the EFI zimage files this introduces
can also be decompressed by non-EFI bootloaders if needed, as the
image header describes the location of the payload inside the image,
and the type of compression that was used. (Note that Fedora's arm64
GRUB is buggy [0] so you'll need a recent version or switch to
systemd-boot in order to use this.)
Finally, we are adding TPM measurement of the kernel command line
provided by EFI. There is an oversight in the TCG spec which results
in a blind spot for command line arguments passed to loaded images,
which means that either the loader or the stub needs to take the
measurement. Given the combinatorial explosion I am anticipating when
it comes to firmware/bootloader stacks and firmware based attestation
protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now
when it comes to EFI measured boot, which is that the kernel measures
the initrd and command line. Intermediate loaders can measure
additional assets if needed, but with the baseline in place, we can
deploy measured boot in a meaningful way even if you boot into Linux
straight from the EFI firmware.
Summary:
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured
size of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables"
* tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
efi/arm64: libstub: avoid SetVirtualAddressMap() when possible
efi: zboot: create MemoryMapped() device path for the parent if needed
efi: libstub: fix up the last remaining open coded boot service call
efi/arm: libstub: move ARM specific code out of generic routines
efi/libstub: measure EFI LoadOptions
efi/libstub: refactor the initrd measuring functions
efi/loongarch: libstub: remove dependency on flattened DT
efi: libstub: install boot-time memory map as config table
efi: libstub: remove DT dependency from generic stub
efi: libstub: unify initrd loading between architectures
efi: libstub: remove pointless goto kludge
efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap
efi: libstub: avoid efi_get_memory_map() for allocating the virt map
efi: libstub: drop pointless get_memory_map() call
efi: libstub: fix type confusion for load_options_size
arm64: efi: enable generic EFI compressed boot
loongarch: efi: enable generic EFI compressed boot
riscv: efi: enable generic EFI compressed boot
efi/libstub: implement generic EFI zboot
efi/libstub: move efi_system_table global var into separate object
...
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured size
of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmM5mfEACgkQw08iOZLZ
jySnJwv9G2nBheSlK9bbWKvCpnDvVIExtlL+mg1wB64oxPrGiWRgjxeyA9+92bT0
Y6jYfKbGOGKnxkEJQl19ik6C3JfEwtGm4SnOVp4+osFeDRB7lFemfcIYN5dqz111
wkZA/Y15rnz3tZeGaXnq2jMoFuccQDXPJtOlqbdVqFQ5Py6YT92uMyuI079pN0T+
GSu7VVOX+SBsv4nGaUKIpSVwAP0gXkS/7s7CTf47QiR2+j8WMTlQEYZVjOKZjMJZ
/7hXY2/mduxnuVuT7cfx0mpZKEryUREJoBL5nDzjTnlhLb5X8cHKiaE1lx0aJ//G
JYTR8lDklJZl/7RUw/IW/YodcKcofr3F36NMzWB5vzM+KHOOpv4qEZhoGnaXv94u
auqhzYA83heaRjz7OISlk6kgFxdlIRE1VdrkEBXSlQeCQUv1woS+ZNVGYcKqgR0B
48b31Ogm2A0pAuba89+U9lz/n33lhIDtYvJqLO6AAPLGiVacD9ZdapN5kMftVg/1
SfhFqNzy
=d8Ps
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v6.1' into loongarch-next
LoongArch architecture changes for 6.1 depend on the efi changes to
work, so merge them to create a base.
LoongArch does not use FDT or DT natively [yet], and the only reason it
currently uses it is so that it can reuse the existing EFI stub code.
Overloading the DT with data passed between the EFI stub and the core
kernel has been a source of problems: there is the overlap between
information provided by EFI which DT can also provide (initrd base/size,
command line, memory descriptions), requiring us to reason about which
is which and what to prioritize. It has also resulted in ABI leaks,
i.e., internal ABI being promoted to external ABI inadvertently because
the bootloader can set the EFI stub's DT properties as well (e.g.,
"kaslr-seed"). This has become especially problematic with boot
environments that want to pretend that EFI boot is being done (to access
ACPI and SMBIOS tables, for instance) but have no ability to execute the
EFI stub, and so the environment that the EFI stub creates is emulated
[poorly, in some cases].
Another downside of treating DT like this is that the DT binary that the
kernel receives is different from the one created by the firmware, which
is undesirable in the context of secure and measured boot.
Given that LoongArch support in Linux is brand new, we can avoid these
pitfalls, and treat the DT strictly as a hardware description, and use a
separate handover method between the EFI stub and the kernel. Now that
initrd loading and passing the EFI memory map have been refactored into
pure EFI routines that use EFI configuration tables, the only thing we
need to pass directly is the kernel command line (even if we could pass
this via a config table as well, it is used extremely early, so passing
it directly is preferred in this case.)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Huacai Chen <chenhuacai@loongson.cn>
Use _DMA defined in ACPI spec for translation between
DMA address and CPU address, and implement acpi_arch_dma_setup
for initializing dev->dma_range_map, where acpi_dma_get_range
is called for parsing _DMA.
e.g.
If we have two dma ranges:
cpu address dma address size offset
0x200080000000 0x2080000000 0x400000000 0x1fe000000000
0x400080000000 0x4080000000 0x400000000 0x3fc000000000
_DMA for pci devices should be declared in host bridge as
flowing:
Name (_DMA, ResourceTemplate() {
QWordMemory (ResourceProducer,
PosDecode,
MinFixed,
MaxFixed,
NonCacheable,
ReadWrite,
0x0,
0x4080000000,
0x447fffffff,
0x3fc000000000,
0x400000000,
,
,
)
QWordMemory (ResourceProducer,
PosDecode,
MinFixed,
MaxFixed,
NonCacheable,
ReadWrite,
0x0,
0x2080000000,
0x247fffffff,
0x1fe000000000,
0x400000000,
,
,
)
})
Acked-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Jianmin Lv <lvjianmin@loongson.cn>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds efistub booting support, which is the standard UEFI boot
protocol for LoongArch to use.
We use generic efistub, which means we can pass boot information (i.e.,
system table, memory map, kernel command line, initrd) via a light FDT
and drop a lot of non-standard code.
We use a flat mapping to map the efi runtime in the kernel's address
space. In efi, VA = PA; in kernel, VA = PA + PAGE_OFFSET. As a result,
flat mapping is not identity mapping, SetVirtualAddressMap() is still
needed for the efi runtime.
Tested-by: Xi Ruoyao <xry111@xry111.site>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
[ardb: change fpic to fpie as suggested by Xi Ruoyao]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Now acpi_os_ioremap() is marked with __init because it calls memblock_
is_memory() which is also marked with __init in the !ARCH_KEEP_MEMBLOCK
case. However, acpi_os_ioremap() is called by ordinary functions such
as acpi_os_{read, write}_memory() and causes section mismatch warnings:
WARNING: modpost: vmlinux.o: section mismatch in reference: acpi_os_read_memory (section: .text) -> acpi_os_ioremap (section: .init.text)
WARNING: modpost: vmlinux.o: section mismatch in reference: acpi_os_write_memory (section: .text) -> acpi_os_ioremap (section: .init.text)
Fix these warnings by selecting ARCH_KEEP_MEMBLOCK unconditionally and
removing the __init modifier of acpi_os_ioremap(). This can also give a
chance to track "memory" and "reserved" memblocks after early boot.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Ensure that all input sections are listed explicitly in the linker
script, and issue a warning otherwise. This ensures that the binary
image matches the PE/COFF and other image metadata exactly, which is
important for things like code signing.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
PCI_LOONGSON is a mandatory for LoongArch and it is selected in Kconfig
unconditionally, but its dependency PCI_QUIRKS is missing and may cause
a build error when "make randconfig":
arch/loongarch/pci/acpi.c: In function 'pci_acpi_setup_ecam_mapping':
>> arch/loongarch/pci/acpi.c:103:29: error: 'loongson_pci_ecam_ops' undeclared (first use in this function)
103 | ecam_ops = &loongson_pci_ecam_ops;
| ^~~~~~~~~~~~~~~~~~~~~
arch/loongarch/pci/acpi.c:103:29: note: each undeclared identifier is reported only once for each function it appears in
Kconfig warnings: (for reference only)
WARNING: unmet direct dependencies detected for PCI_LOONGSON
Depends on [n]: PCI [=y] && (MACH_LOONGSON64 [=y] || COMPILE_TEST [=y]) && (OF [=y] || ACPI [=y]) && PCI_QUIRKS [=n]
Selected by [y]:
- LOONGARCH [=y]
Fix it by selecting PCI_QUIRKS unconditionally, too.
Reported-by: kernel test robot <lkp@intel.com>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
1, Optimise getcpu() with vDSO;
2, PCI enablement on top of pci & irqchip changes;
3, Stack unwinder and stack trace support;
4, Some bug fixes and build error fixes;
5, Update the default config file.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmL1+nEWHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImemcpD/4+aDIf52u1a6NmJ3SOznEqV2J8
QbCQ/ymgBoPMtkF1x0hTGf5cYYixBs/q2VMNzxNij2Je0W2brwfkuZ6h5EoUd9+j
ywkhzW5Y6HAvsk24SLv+sS26FlJHu0TomxQjGwMqYkxsLMW8G/d2XWT12a5k/4cE
Afw0fDaoeJMbPs9GmHHmqerKOfwhlNVaELCD+JLJXHVSv+euKmaMHZ/gsjug3IFh
WBytz1c++cuowbIAI6Yh1yKLsrX0Oq05/eBfZuOeoKvOqQ06CW40it8xGUYXeuZb
0EY8c3oXimIohHoHbjMDWPZjPH2ZAyHvssKhq5jdlxt9g1kf1rcMbfJI4eBZYyPz
4yjbQI6SQRHpbL8PdTePRZGXWdiM2/huveS4RmvmyXz+x7GvNJCo0zi1JI5zCvx+
L5kKM2xQidWDQFV0Chwl/u8MMD583TScVgyBdr8S6Y5mmXSiY82tYD7sAd8UaHWW
uzCCIU8ui9GZygmWdEjtcTF2TYOcqKoiL/2F3DDsSYxEo93CuG8KUyzBIOs3HdJK
+bOmxaDp460EXVi/tHStfKYoEVTvdzhXfvMj/x3UuriYABGbD23N6bfAh34u8Frm
zPzF3HYmYhODRde6dmHxm7Qme9SpRR+RufNV2D1ONYIuk1V87C2F5FLDMbH9Px4F
44e4xoFDeR3jHegMzQ==
=S5BJ
-----END PGP SIGNATURE-----
Merge tag 'loongarch-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- Optimise getcpu() with vDSO
- PCI enablement on top of pci & irqchip changes
- Stack unwinder and stack trace support
- Some bug fixes and build error fixes
- Update the default config file
* tag 'loongarch-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson:
docs/zh_CN/LoongArch: Add I14 description
docs/LoongArch: Add I14 description
LoongArch: Update Loongson-3 default config file
LoongArch: Add USER_STACKTRACE support
LoongArch: Add STACKTRACE support
LoongArch: Add prologue unwinder support
LoongArch: Add guess unwinder support
LoongArch: Add vDSO syscall __vdso_getcpu()
LoongArch: Add PCI controller support
LoongArch: Parse MADT to get multi-processor information
LoongArch: Jump to the link address before enable PG
LoongArch: Requires __force attributes for any casts
LoongArch: Fix unsigned comparison with less than zero
LoongArch: Adjust arch/loongarch/Kconfig
LoongArch: cpuinfo: Fix a warning for CONFIG_CPUMASK_OFFSTACK
To get the best stacktrace output, you can compile your userspace
programs with frame pointers (at least glibc + the app you are tracing).
1, export "CC = gcc -fno-omit-frame-pointer";
2, compile your programs with "CC";
3, use uprobe to get stacktrace output.
...
echo 'p:malloc /usr/lib64/libc.so.6:0x0a4704 size=%r4:u64' > uprobe_events
echo 'p:free /usr/lib64/libc.so.6:0x0a4d50 ptr=%r4:x64' >> uprobe_events
echo 'comm == "demo"' > ./events/uprobes/malloc/filter
echo 'comm == "demo"' > ./events/uprobes/free/filter
echo 1 > ./options/userstacktrace
echo 1 > ./options/sym-userobj
...
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
1. Use common arch_stack_walk() infrastructure to avoid duplicated code
and avoid taking care of the stack storage and filtering.
2. Add sched_ra (means sched return address) and sched_cfa (means sched
call frame address) to thread_info, and store them in switch_to().
3. Add __get_wchan() implementation.
Now we can print the process stack and wait channel by cat /proc/*/stack
and /proc/*/wchan.
Signed-off-by: Qing Zhang <zhangqing@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Loongson64 based systems are PC-like systems which use PCI/PCIe as its
I/O bus, This patch adds the PCI host controller support for LoongArch.
Reviewed-by: WANG Xuerui <git@xen0n.name>
Signed-off-by: Jianmin Lv <lvjianmin@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
1, ACPI, EFI and SMP are mandatories for LoongArch, select them
unconditionally to avoid various build errors for 'make randconfig'.
2, Move the MMU_GATHER_MERGE_VMAS selection to the correct place.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve latency
and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
=w/UH
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
This pull request contains the following branches:
doc.2022.06.21a: Documentation updates.
fixes.2022.07.19a: Miscellaneous fixes.
nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to
be offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS
and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel
boot parameter prevents offloaded callbacks from interfering
with real-time workloads and with energy-efficiency mechanisms.
poll.2022.07.21a: Polled grace-period updates, perhaps most notably
making these APIs account for both normal and expedited grace
periods.
rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing
the CPU overhead of RCU tasks trace grace periods by more than
a factor of two on a system with 15,000 tasks. The reduction
is expected to increase with the number of tasks, so it seems
reasonable to hypothesize that a system with 150,000 tasks might
see a 20-fold reduction in CPU overhead.
torture.2022.06.21a: Torture-test updates.
ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into
context tracking, thus reducing the overhead of transitioning to
kernel mode from either idle or nohz_full userspace execution
for kernels that track context independently of RCU. This is
expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m
g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq
k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt
0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL
kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5
7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0
Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc
JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL
PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc
egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y
ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r
vX60+QNxvUBLwA==
=vUNm
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
core:
- Fix a few inconsistencies between UP and SMP vs. interrupt affinities
- Small updates and cleanups all over the place
drivers:
- New driver for the LoongArch interrupt controller
- New driver for the Renesas RZ/G2L interrupt controller
- Hotpath optimization for SiFive PLIC
- Workaround for broken PLIC edge triggered interrupts
- Simall cleanups and improvements as usual
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmLn5agTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoV2HD/4u0+09Fd8Awt1Knnb4CInmwFihZ/bu
EiS1Air+MEJ/fyFb5sT/Dn8YdUWYA6a3ifpLMGBwrKCcb5pMwPEtI8uqjSmtgsN/
2Z4o3N5v6EgM25CtrHNBrXK0E9Rz5Py49gm5p3K7+h4g63z9JwrM4G0Bvr8+krLS
EV9IZU6kVmGC6gnG/MspkArsLk1rCM0PU0SJ2lEPsWd1fjhVSDfunvy/qnnzXRzz
wjrcAf+a2Kgb1TMnpL6tx9d2Xx8KrKfODZTdOmPHrdv58F0EbJzapJnAVkYZDPtR
LE2kQc2Qhdawx0kgNNNhvu9P6oZtpnK9N7KAhDQdw17sgrRygINjAMSEe2RykYL1
lK+lJOIzfyd2JkEuC/8w1ZezL88S0EaTNawrkxjJ8L3fa7WDbwilCC+1w95QydCv
sQB137OaLKgWetcRsht9PLWFb4ujkWzxoPf2cPPsm81EzCicNtBuNPLReBTcNrWJ
X2VPpbaqRK8t8bnkXRqhahbq7f8c86feoICHfA4c7T4eZUp/Oq6T8aNvf6WPgjae
I2/FO6kxZj3CQqFkhJGhiZRtGZdx6HLCsL84A+2Ktsra+D8+/qecZCnkHYtz0Vo6
aFuGg+Wj+zuc2QfdaWwG8Dh5dijbxgHGHhzbh9znsWzytN9gfoBxuvBejf65i6sC
In63mEkv35ttfA==
=OnhF
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"Updates for interrupt core and drivers:
Core:
- Fix a few inconsistencies between UP and SMP vs interrupt
affinities
- Small updates and cleanups all over the place
New drivers:
- LoongArch interrupt controller
- Renesas RZ/G2L interrupt controller
Updates:
- Hotpath optimization for SiFive PLIC
- Workaround for broken PLIC edge triggered interrupts
- Simall cleanups and improvements as usual"
* tag 'irq-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
irqchip/mmp: Declare init functions in common header file
irqchip/mips-gic: Check the return value of ioremap() in gic_of_init()
genirq: Use for_each_action_of_desc in actions_show()
irqchip / ACPI: Introduce ACPI_IRQ_MODEL_LPIC for LoongArch
irqchip: Add LoongArch CPU interrupt controller support
irqchip: Add Loongson Extended I/O interrupt controller support
irqchip/loongson-liointc: Add ACPI init support
irqchip/loongson-pch-msi: Add ACPI init support
irqchip/loongson-pch-pic: Add ACPI init support
irqchip: Add Loongson PCH LPC controller support
LoongArch: Prepare to support multiple pch-pic and pch-msi irqdomain
LoongArch: Use ACPI_GENERIC_GSI for gsi handling
genirq/generic_chip: Export irq_unmap_generic_chip
ACPI: irq: Allow acpi_gsi_to_irq() to have an arch-specific fallback
APCI: irq: Add support for multiple GSI domains
LoongArch: Provisionally add ACPICA data structures
irqdomain: Use hwirq_max instead of revmap_size for NOMAP domains
irqdomain: Report irq number for NOMAP domains
irqchip/gic-v3: Fix comment typo
dt-bindings: interrupt-controller: renesas,rzg2l-irqc: Document RZ/V2L SoC
...
The content of LoongArch's compiler.h is trivial, with some unused
anywhere, so inline the definitions and remove the header.
Signed-off-by: Jun Yi <yijun@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>