Andrea Gelmini gave me a report that a kernel oops hit on a nilfs
filesystem with a 1KB block size when doing rsync.
This turned out to be caused by an inconsistency of dirty state
between a page and its buffers storing b-tree node blocks.
If the page had multiple buffers split over multiple logs, and if the
logs were written at a time, a dirty flag remained in the page even
every dirty flag in the buffers was cleared.
This will fix the failure by dropping the dirty flag properly for
pages with the discrete multiple b-tree nodes.
Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Cc: stable@kernel.org
fs/Kconfig file was split into individual fs/*/Kconfig files before
nilfs was merged. I've found the current config entry of nilfs is
tainting the work. Sorry, I didn't notice. This fixes the violation.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
* Remove smp_lock.h from files which don't need it (including some headers!)
* Add smp_lock.h to files which do need it
* Make smp_lock.h include conditional in hardirq.h
It's needed only for one kernel_locked() usage which is under CONFIG_PREEMPT
This will make hardirq.h inclusion cheaper for every PREEMPT=n config
(which includes allmodconfig/allyesconfig, BTW)
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes a bug that checkpoint count gets wrong on errors when
deleting a series of checkpoints.
The count error is persistent since the checkpoint count is stored on
disk. Some userland programs refer to the count via ioctl, and this
bugfix is needed to prevent malfunction of such programs.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: stable@kernel.org
This will fix the following false positive of recursive locking which
lockdep has detected:
=============================================
[ INFO: possible recursive locking detected ]
2.6.30-nilfs #42
---------------------------------------------
nilfs_cleanerd/10607 is trying to acquire lock:
(&bmap->b_sem){++++-.}, at: [<e0d025b7>] nilfs_bmap_lookup_at_level+0x1a/0x74 [nilfs2]
but task is already holding lock:
(&bmap->b_sem){++++-.}, at: [<e0d024e0>] nilfs_bmap_truncate+0x19/0x6a [nilfs2]
other info that might help us debug this:
2 locks held by nilfs_cleanerd/10607:
#0: (&nilfs->ns_segctor_sem){++++.+}, at: [<e0d0d75a>] nilfs_transaction_begin+0xb6/0x10c [nilfs2]
#1: (&bmap->b_sem){++++-.}, at: [<e0d024e0>] nilfs_bmap_truncate+0x19/0x6a [nilfs2]
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Leandro Lucarella gave me a report that nilfs gets stuck after its
write function fails.
The problem turned out to be caused by bugs which leave writeback flag
on pages. This fixes the problem by ensuring to clear the writeback
flag in error path.
Reported-by: Leandro Lucarella <llucax@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: stable@kernel.org
The following error code handling in nilfs_segctor_write() function
wrongly converted negative error codes to a truth value (i.e. 1):
err = unlikely(err) ? : res;
which originaly meant to be
err = err ? : res;
This mis-conversion caused that write or sync functions receive the
unexpected error code. This fixes the bug by removing the unlikely
directive.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: stable@kernel.org
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke/nilfs2: (22 commits)
nilfs2: support contiguous lookup of blocks
nilfs2: add sync_page method to page caches of meta data
nilfs2: use device's backing_dev_info for btree node caches
nilfs2: return EBUSY against delete request on snapshot
nilfs2: modify list of unsupported features in caveats
nilfs2: enable sync_page method
nilfs2: set bio unplug flag for the last bio in segment
nilfs2: allow future expansion of metadata read out via get info ioctl
NILFS2: Pagecache usage optimization on NILFS2
nilfs2: remove nilfs_btree_operations from btree mapping
nilfs2: remove nilfs_direct_operations from direct mapping
nilfs2: remove bmap pointer operations
nilfs2: remove useless b_low and b_high fields from nilfs_bmap struct
nilfs2: remove pointless NULL check of bpop_commit_alloc_ptr function
nilfs2: move get block functions in bmap.c into btree codes
nilfs2: remove nilfs_bmap_delete_block
nilfs2: remove nilfs_bmap_put_block
nilfs2: remove header file for segment list operations
nilfs2: eliminate removal list of segments
nilfs2: add sufile function that can modify multiple segment usages
...
This will remove every bd_mount_sem use in nilfs.
The intended exclusion control was replaced by the previous patch
("nilfs2: correct exclusion control in nilfs_remount function") for
nilfs_remount(), and this patch will replace remains with a new mutex
that this inserts in nilfs object.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
nilfs_remount() changes mount state of a superblock instance. Even
though nilfs accesses other superblock instances during mount or
remount, the mount state was not properly protected in
nilfs_remount().
Moreover, nilfs_remount() has a lock order reversal problem;
nilfs_get_sb() holds:
1. bdev->bd_mount_sem
2. sb->s_umount (sget acquires)
and nilfs_remount() holds:
1. sb->s_umount (locked by the caller in vfs)
2. bdev->bd_mount_sem
To avoid these problems, this patch divides a semaphore protecting
super block instances from nilfs->ns_sem, and applies it to the mount
state protection in nilfs_remount().
With this change, bd_mount_sem use is removed from nilfs_remount() and
the lock order reversal will be resolved. And the new rw-semaphore,
nilfs->ns_super_sem will properly protect the mount state except the
modification from nilfs_error function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This simplifies the test function passed on the remaining sget()
callsite in nilfs.
Instead of checking mount type (i.e. ro-mount/rw-mount/snapshot mount)
in the test function passed to sget(), this patch first looks up the
nilfs_sb_info struct which the given mount type matches, and then
acquires the super block instance holding the nilfs_sb_info.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This stops using sget() for checking if an r/w-mount or an r/o-mount
exists on the device. This elimination uses a back pointer to the
current mount added to nilfs object.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This will change the way to obtain nilfs object in nilfs_get_sb()
function.
Previously, a preliminary sget() call was performed, and the nilfs
object was acquired from a super block instance found by the sget()
call.
This patch, instead, instroduces a new dedicated function
find_or_create_nilfs(); as the name implies, the function finds an
existent nilfs object from a global list or creates a new one if no
object is found on the device.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The following EBUSY case in nilfs_get_sb() is meaningless. Indeed,
this error code is never returned to the caller.
if (!s->s_root) {
...
} else if (!(s->s_flags & MS_RDONLY)) {
err = -EBUSY;
}
This simply removes the else case.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The call to ->write_super from __sync_filesystem will go away, so make
sure nilfs2 performs the same actions from inside ->sync_fs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move BKL into ->put_super from the only caller. A couple of
filesystems had trivial enough ->put_super (only kfree and NULLing of
s_fs_info + stuff in there) to not get any locking: coda, cramfs, efs,
hugetlbfs, omfs, qnx4, shmem, all others got the full treatment. Most
of them probably don't need it, but I'd rather sort that out individually.
Preferably after all the other BKL pushdowns in that area.
[AV: original used to move lock_super() down as well; these changes are
removed since we don't do lock_super() at all in generic_shutdown_super()
now]
[AV: fuse, btrfs and xfs are known to need no damn BKL, exempt]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We just did a full fs writeout using sync_filesystem before, and if
that's not enough for the filesystem it can perform it's own writeout
in ->put_super, which many filesystems already do.
Move a call to foofs_write_super into every foofs_put_super for now to
guarantee identical behaviour until it's cleaned up by the individual
filesystem maintainers.
Exceptions:
- affs already has identical copy & pasted code at the beginning of
affs_put_super so no need to do it twice.
- xfs does the right thing without it and I have changes pending for
the xfs tree touching this are so I don't really need conflicts
here..
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-2.6.31' of git://git.kernel.dk/linux-2.6-block: (153 commits)
block: add request clone interface (v2)
floppy: fix hibernation
ramdisk: remove long-deprecated "ramdisk=" boot-time parameter
fs/bio.c: add missing __user annotation
block: prevent possible io_context->refcount overflow
Add serial number support for virtio_blk, V4a
block: Add missing bounce_pfn stacking and fix comments
Revert "block: Fix bounce limit setting in DM"
cciss: decode unit attention in SCSI error handling code
cciss: Remove no longer needed sendcmd reject processing code
cciss: change SCSI error handling routines to work with interrupts enabled.
cciss: separate error processing and command retrying code in sendcmd_withirq_core()
cciss: factor out fix target status processing code from sendcmd functions
cciss: simplify interface of sendcmd() and sendcmd_withirq()
cciss: factor out core of sendcmd_withirq() for use by SCSI error handling code
cciss: Use schedule_timeout_uninterruptible in SCSI error handling code
block: needs to set the residual length of a bidi request
Revert "block: implement blkdev_readpages"
block: Fix bounce limit setting in DM
Removed reference to non-existing file Documentation/PCI/PCI-DMA-mapping.txt
...
Manually fix conflicts with tracing updates in:
block/blk-sysfs.c
drivers/ide/ide-atapi.c
drivers/ide/ide-cd.c
drivers/ide/ide-floppy.c
drivers/ide/ide-tape.c
include/trace/events/block.h
kernel/trace/blktrace.c
Although get_block() callback function can return extent of contiguous
blocks with bh->b_size, nilfs_get_block() function did not support
this feature.
This adds contiguous lookup feature to the block mapping codes of
nilfs, and allows the nilfs_get_blocks() function to return the extent
information by applying the feature.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This applies block_sync_page() function to the sync_page method of
page caches for meta data files, gc page caches, and btree node
buffers. This is a companion patch of ("nilfs2: enable sync_page
mothod") which applied the function for data pages.
This allows lock_page() for those meta data to unplug pending bio
requests.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Previously, default_backing_dev_info was used for the mapping of btree
node caches. This uses device dependent backing_dev_info to allow
detailed control of the device for the btree node pages.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This helps userland programs like the rmcp command to distinguish
error codes returned against a checkpoint removal request.
Previously -EPERM was returned, and not discriminable from real
permission errors. This also allows removal of the latest checkpoint
because the deletion leads to create a new checkpoint, and thus it's
harmless for the filesystem.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This adds a missing sync_page method which unplugs bio requests when
waiting for page locks. This will improve read performance of nilfs.
Here is a measurement result using dd command.
Without this patch:
# mount -t nilfs2 /dev/sde1 /test
# dd if=/test/aaa of=/dev/null bs=512k
1024+0 records in
1024+0 records out
536870912 bytes (537 MB) copied, 6.00688 seconds, 89.4 MB/s
With this patch:
# mount -t nilfs2 /dev/sde1 /test
# dd if=/test/aaa of=/dev/null bs=512k
1024+0 records in
1024+0 records out
536870912 bytes (537 MB) copied, 3.54998 seconds, 151 MB/s
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This sets BIO_RW_UNPLUG flag on the last bio of each segment during
write. The last bio should be unplugged immediately because the
caller waits for the completion after the submission.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Nilfs has some ioctl commands to read out metadata from meta data
files:
- NILFS_IOCTL_GET_CPINFO for checkpoint file,
- NILFS_IOCTL_GET_SUINFO for segment usage file, and
- NILFS_IOCTL_GET_VINFO for Disk Address Transalation (DAT) file,
respectively.
Every routine on these metadata files is implemented so that it allows
future expansion of on-disk format. But, the above ioctl commands do
not support expansion even though nilfs_argv structure can handle
arbitrary size for data exchanged via ioctl.
This allows future expansion of the following structures which give
basic format of the "get information" ioctls:
- struct nilfs_cpinfo
- struct nilfs_suinfo
- struct nilfs_vinfo
So, this introduces forward compatility of such ioctl commands.
In this patch, a sanity check in nilfs_ioctl_get_info() function is
changed to accept larger data structure [1], and metadata read
routines are rewritten so that they become compatible for larger
structures; the routines will just ignore the remaining fields which
the current version of nilfs doesn't know.
[1] The ioctl function already has another upper limit (PAGE_SIZE
against a structure, which appears in nilfs_ioctl_wrap_copy
function), and this will not cause security problem.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Hi,
I introduced "is_partially_uptodate" aops for NILFS2.
A page can have multiple buffers and even if a page is not uptodate, some buffers
can be uptodate on pagesize != blocksize environment.
This aops checks that all buffers which correspond to a part of a file
that we want to read are uptodate. If so, we do not have to issue actual
read IO to HDD even if a page is not uptodate because the portion we
want to read are uptodate.
"block_is_partially_uptodate" function is already used by ext2/3/4.
With the following patch random read/write mixed workloads or random read after
random write workloads can be optimized and we can get performance improvement.
I did a performance test using the sysbench.
1 --file-block-size=8K --file-total-size=2G --file-test-mode=rndrw --file-fsync-freq=0 --fil
e-rw-ratio=1 run
-2.6.30-rc5
Test execution summary:
total time: 151.2907s
total number of events: 200000
total time taken by event execution: 2409.8387
per-request statistics:
min: 0.0000s
avg: 0.0120s
max: 0.9306s
approx. 95 percentile: 0.0439s
Threads fairness:
events (avg/stddev): 12500.0000/238.52
execution time (avg/stddev): 150.6149/0.01
-2.6.30-rc5-patched
Test execution summary:
total time: 140.8828s
total number of events: 200000
total time taken by event execution: 2240.8577
per-request statistics:
min: 0.0000s
avg: 0.0112s
max: 0.8750s
approx. 95 percentile: 0.0418s
Threads fairness:
events (avg/stddev): 12500.0000/218.43
execution time (avg/stddev): 140.0536/0.01
arch: ia64
pagesize: 16k
Thanks.
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Previously, the bmap codes of nilfs used three types of function
tables. The abuse of indirect function calls decreased source
readability and suffered many indirect jumps which would confuse
branch prediction of processors.
This eliminates one type of the function tables,
nilfs_bmap_ptr_operations, which was used to dispatch low level
pointer operations of the nilfs bmap.
This adds a new integer variable "b_ptr_type" to nilfs_bmap struct,
and uses the value to select the pointer operations.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This will cut off 16 bytes from the nilfs_bmap struct which is
embedded in the on-memory inode of nilfs.
The b_high field was never used, and the b_low field stores a constant
value which can be determined by whether the inode uses btree for
block mapping or not.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This indirect function is set to NULL only for gc cache inodes, but
the gc cache inodes never call this function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Two get block function for btree nodes, nilfs_bmap_get_block() and
nilfs_bmap_get_new_block(), are called only from the btree codes.
This relocation will increase opportunities of compiler optimization.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
nilfs_bmap_delete_block() is a wrapper function calling
nilfs_btnode_delete(). This removes it for simplicity.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
nilfs_bmap_put_block() is a wrapper function calling brelse(). This
eliminates the wrapper for simplicity.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This will eliminate obsolete list operations of nilfs_segment_entry
structure which has been used to handle mutiple segment numbers.
The patch ("nilfs2: remove list of freeing segments") removed use of
the structure from the segment constructor code, and this patch
simplifies the remaining code by integrating it into recovery.c.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This will clean up the removal list of segments and the related
functions from segment.c and ioctl.c, which have hurt code
readability.
This elimination is applied by using nilfs_sufile_updatev() previously
introduced in the patch ("nilfs2: add sufile function that can modify
multiple segment usages").
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This is a preparation for the later cleanup patch ("nilfs2: remove
list of freeing segments").
This adds nilfs_sufile_updatev() to sufile, which can modify multiple
segment usages at a time.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This simplifies some low level functions of bmap.
Three bmap pointer operations, nilfs_bmap_start_v(),
nilfs_bmap_commit_v(), and nilfs_bmap_abort_v(), are unified into one
nilfs_bmap_start_v() function. And the related indirect function calls
are replaced with it.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
The nilfs_cpfile_delete_checkpoints() wrongly skips brelse() for the
header block of checkpoint file in case of errors. This fixes the
leak bug.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Until now we have had a 1:1 mapping between storage device physical
block size and the logical block sized used when addressing the device.
With SATA 4KB drives coming out that will no longer be the case. The
sector size will be 4KB but the logical block size will remain
512-bytes. Hence we need to distinguish between the physical block size
and the logical ditto.
This patch renames hardsect_size to logical_block_size.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This fixes a new memory leak problem in garbage collection. The
problem was brought by the bugfix patch ("nilfs2: fix lock order
reversal in nilfs_clean_segments ioctl").
Thanks to Kentaro Suzuki for finding this problem.
Reported-by: Kentaro Suzuki <k_suzuki@ms.sylc.co.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Although some ioctls of nilfs2 exchange data in the form of indirectly
referenced array, some of them lack size check on the array elements.
This inserts the missing checks and rejects requests if data of ioctl
does not have a valid format.
We usually don't have to check size of structures that we associated
with ioctl commands because the size is tested implicitly for
identifying ioctl command; the checks this patch adds are for the
cases where the implicit check is not applied.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This is a companion patch to ("nilfs2: fix possible circular locking
for get information ioctls").
This corrects lock order reversal between mm->mmap_sem and
nilfs->ns_segctor_sem in nilfs_clean_segments() which was detected by
lockdep check:
=======================================================
[ INFO: possible circular locking dependency detected ]
2.6.30-rc3-nilfs-00003-g360bdc1 #7
-------------------------------------------------------
mmap/5294 is trying to acquire lock:
(&nilfs->ns_segctor_sem){++++.+}, at: [<d0d0e846>] nilfs_transaction_begin+0xb6/0x10c [nilfs2]
but task is already holding lock:
(&mm->mmap_sem){++++++}, at: [<c043700a>] do_page_fault+0x1d8/0x30a
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&mm->mmap_sem){++++++}:
[<c01470a5>] __lock_acquire+0x1066/0x13b0
[<c01474a9>] lock_acquire+0xba/0xdd
[<c01836bc>] might_fault+0x68/0x88
[<c023c61d>] copy_from_user+0x2a/0x111
[<d0d120d0>] nilfs_ioctl_prepare_clean_segments+0x1d/0xf1 [nilfs2]
[<d0d0e2aa>] nilfs_clean_segments+0x6d/0x1b9 [nilfs2]
[<d0d11f68>] nilfs_ioctl+0x2ad/0x318 [nilfs2]
[<c01a3be7>] vfs_ioctl+0x22/0x69
[<c01a408e>] do_vfs_ioctl+0x460/0x499
[<c01a4107>] sys_ioctl+0x40/0x5a
[<c01031a4>] sysenter_do_call+0x12/0x38
[<ffffffff>] 0xffffffff
-> #0 (&nilfs->ns_segctor_sem){++++.+}:
[<c0146e0b>] __lock_acquire+0xdcc/0x13b0
[<c01474a9>] lock_acquire+0xba/0xdd
[<c0433f1d>] down_read+0x2a/0x3e
[<d0d0e846>] nilfs_transaction_begin+0xb6/0x10c [nilfs2]
[<d0cfe0e5>] nilfs_page_mkwrite+0xe7/0x154 [nilfs2]
[<c0183b0b>] __do_fault+0x165/0x376
[<c01855cd>] handle_mm_fault+0x287/0x5d1
[<c043712d>] do_page_fault+0x2fb/0x30a
[<c0435462>] error_code+0x72/0x78
[<ffffffff>] 0xffffffff
where nilfs_clean_segments() holds:
nilfs->ns_segctor_sem -> copy_from_user()
--> page fault -> mm->mmap_sem
And, page fault path may hold:
page fault -> mm->mmap_sem
--> nilfs_page_mkwrite() -> nilfs->ns_segctor_sem
Even though nilfs_clean_segments() does not perform write access on
given user pages, it may cause deadlock because nilfs->ns_segctor_sem
is shared per device and mm->mmap_sem can be shared with other tasks.
To avoid this problem, this patch moves all calls of copy_from_user()
outside the nilfs->ns_segctor_sem lock in the ioctl.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This is one of two patches which are to correct possible circular
locking between mm->mmap_sem and nilfs->ns_segctor_sem.
The problem was detected by lockdep check as follows:
=======================================================
[ INFO: possible circular locking dependency detected ]
2.6.30-rc3-nilfs-00002-g3552613 #6
-------------------------------------------------------
mmap/5418 is trying to acquire lock:
(&nilfs->ns_segctor_sem){++++.+}, at: [<d0d0e852>] nilfs_transaction_begin+0xb6/0x10c [nilfs2]
but task is already holding lock:
(&mm->mmap_sem){++++++}, at: [<c043700a>] do_page_fault+0x1d8/0x30a
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&mm->mmap_sem){++++++}:
[<c01470a5>] __lock_acquire+0x1066/0x13b0
[<c01474a9>] lock_acquire+0xba/0xdd
[<c01836bc>] might_fault+0x68/0x88
[<c023c730>] copy_to_user+0x2c/0xfc
[<d0d11b4f>] nilfs_ioctl_wrap_copy+0x103/0x160 [nilfs2]
[<d0d11fa9>] nilfs_ioctl+0x30a/0x3b0 [nilfs2]
[<c01a3be7>] vfs_ioctl+0x22/0x69
[<c01a408e>] do_vfs_ioctl+0x460/0x499
[<c01a4107>] sys_ioctl+0x40/0x5a
[<c01031a4>] sysenter_do_call+0x12/0x38
[<ffffffff>] 0xffffffff
-> #0 (&nilfs->ns_segctor_sem){++++.+}:
[<c0146e0b>] __lock_acquire+0xdcc/0x13b0
[<c01474a9>] lock_acquire+0xba/0xdd
[<c0433f1d>] down_read+0x2a/0x3e
[<d0d0e852>] nilfs_transaction_begin+0xb6/0x10c [nilfs2]
[<d0cfe0e5>] nilfs_page_mkwrite+0xe7/0x154 [nilfs2]
[<c0183b0b>] __do_fault+0x165/0x376
[<c01855cd>] handle_mm_fault+0x287/0x5d1
[<c043712d>] do_page_fault+0x2fb/0x30a
[<c0435462>] error_code+0x72/0x78
[<ffffffff>] 0xffffffff
other info that might help us debug this:
1 lock held by mmap/5418:
#0: (&mm->mmap_sem){++++++}, at: [<c043700a>] do_page_fault+0x1d8/0x30a
stack backtrace:
Pid: 5418, comm: mmap Not tainted 2.6.30-rc3-nilfs-00002-g3552613 #6
Call Trace:
[<c0432145>] ? printk+0xf/0x12
[<c0145c48>] print_circular_bug_tail+0xaa/0xb5
[<c0146e0b>] __lock_acquire+0xdcc/0x13b0
[<d0d10149>] ? nilfs_sufile_get_stat+0x1e/0x105 [nilfs2]
[<c013b59a>] ? up_read+0x16/0x2c
[<d0d10225>] ? nilfs_sufile_get_stat+0xfa/0x105 [nilfs2]
[<c01474a9>] lock_acquire+0xba/0xdd
[<d0d0e852>] ? nilfs_transaction_begin+0xb6/0x10c [nilfs2]
[<c0433f1d>] down_read+0x2a/0x3e
[<d0d0e852>] ? nilfs_transaction_begin+0xb6/0x10c [nilfs2]
[<d0d0e852>] nilfs_transaction_begin+0xb6/0x10c [nilfs2]
[<d0cfe0e5>] nilfs_page_mkwrite+0xe7/0x154 [nilfs2]
[<c0183b0b>] __do_fault+0x165/0x376
[<c01855cd>] handle_mm_fault+0x287/0x5d1
[<c043700a>] ? do_page_fault+0x1d8/0x30a
[<c013b54f>] ? down_read_trylock+0x39/0x43
[<c043712d>] do_page_fault+0x2fb/0x30a
[<c0436e32>] ? do_page_fault+0x0/0x30a
[<c0435462>] error_code+0x72/0x78
[<c0436e32>] ? do_page_fault+0x0/0x30a
This makes the lock granularity of nilfs->ns_segctor_sem finer than
that of the mmap semaphore for ioctl commands except
nilfs_clean_segments().
The successive patch ("nilfs2: fix lock order reversal in
nilfs_clean_segments ioctl") is required to fully resolve the problem.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This would fix the following failure during GC:
nilfs_cpfile_delete_checkpoints: cannot delete block
NILFS: GC failed during preparation: cannot delete checkpoints: err=-2
The problem was caused by a break in state consistency between page
cache and btree; the above block was removed from the btree but the
page buffering the block was remaining in the page cache in dirty
state.
This resolves the inconsistency by ensuring to clear dirty state of
the page buffering the deleted block.
Reported-by: David Arendt <admin@prnet.org>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This fixes the following circular locking dependency problem:
=======================================================
[ INFO: possible circular locking dependency detected ]
2.6.30-rc3 #5
-------------------------------------------------------
segctord/3895 is trying to acquire lock:
(&nilfs->ns_writer_mutex){+.+...}, at: [<d0d02172>]
nilfs_mdt_get_block+0x89/0x20f [nilfs2]
but task is already holding lock:
(&bmap->b_sem){++++..}, at: [<d0d02d99>]
nilfs_bmap_propagate+0x14/0x2e [nilfs2]
which lock already depends on the new lock.
The bugfix is done by replacing call sites of nilfs_get_writer() which
are never called from read-only context with direct dereferencing of
pointer to a writable FS-instance.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>