1649 Commits

Author SHA1 Message Date
Filipe Manana
7a1636089a btrfs: fix invalid delayed ref after subvolume creation failure
When creating a subvolume, at ioctl.c:create_subvol(), if we fail to
insert the new root's root item into the root tree, we are freeing the
metadata extent we reserved for the new root to prevent a metadata
extent leak, as we don't abort the transaction at that point (since
there is nothing at that point that is irreversible).

However we allocated the metadata extent for the new root which we are
creating for the new subvolume, so its delayed reference refers to the
ID of this new root. But when we free the metadata extent we pass the
root of the subvolume where the new subvolume is located to
btrfs_free_tree_block() - this is incorrect because this will generate
a delayed reference that refers to the ID of the parent subvolume's root,
and not to ID of the new root.

This results in a failure when running delayed references that leads to
a transaction abort and a trace like the following:

[3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs]
[3868.739857] Code: 68 0f 85 e6 fb ff (...)
[3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246
[3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002
[3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88
[3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88
[3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000
[3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88
[3868.750725] FS:  00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000
[3868.752275] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0
[3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[3868.757803] Call Trace:
[3868.758281]  <TASK>
[3868.758655]  ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs]
[3868.759827]  __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
[3868.761047]  btrfs_run_delayed_refs+0x86/0x210 [btrfs]
[3868.762069]  ? lock_acquired+0x19f/0x420
[3868.762829]  btrfs_commit_transaction+0x69/0xb20 [btrfs]
[3868.763860]  ? _raw_spin_unlock+0x29/0x40
[3868.764614]  ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs]
[3868.765870]  create_subvol+0x1d8/0x9a0 [btrfs]
[3868.766766]  btrfs_mksubvol+0x447/0x4c0 [btrfs]
[3868.767669]  ? preempt_count_add+0x49/0xa0
[3868.768444]  __btrfs_ioctl_snap_create+0x123/0x190 [btrfs]
[3868.769639]  ? _copy_from_user+0x66/0xa0
[3868.770391]  btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[3868.771495]  btrfs_ioctl+0xd1e/0x35c0 [btrfs]
[3868.772364]  ? __slab_free+0x10a/0x360
[3868.773198]  ? rcu_read_lock_sched_held+0x12/0x60
[3868.774121]  ? lock_release+0x223/0x4a0
[3868.774863]  ? lock_acquired+0x19f/0x420
[3868.775634]  ? rcu_read_lock_sched_held+0x12/0x60
[3868.776530]  ? trace_hardirqs_on+0x1b/0xe0
[3868.777373]  ? _raw_spin_unlock_irqrestore+0x3e/0x60
[3868.778280]  ? kmem_cache_free+0x321/0x3c0
[3868.779011]  ? __x64_sys_ioctl+0x83/0xb0
[3868.779718]  __x64_sys_ioctl+0x83/0xb0
[3868.780387]  do_syscall_64+0x3b/0xc0
[3868.781059]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[3868.781953] RIP: 0033:0x7f281c59e957
[3868.782585] Code: 3c 1c 48 f7 d8 4c (...)
[3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957
[3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003
[3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36
[3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003
[3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc
[3868.793765]  </TASK>
[3868.794037] irq event stamp: 0
[3868.794548] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
[3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.797086] softirqs last  enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0
[3868.799284] ---[ end trace be24c7002fe27747 ]---
[3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2
[3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627
[3868.802056]  item 0 key (237436928 169 0) itemoff 16250 itemsize 33
[3868.802863]          extent refs 1 gen 1265 flags 2
[3868.803447]          ref#0: tree block backref root 1610
(...)
[3869.064354]  item 114 key (241008640 169 0) itemoff 12488 itemsize 33
[3869.065421]          extent refs 1 gen 1268 flags 2
[3869.066115]          ref#0: tree block backref root 1689
(...)
[3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622  owner 0 offset 0
[3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry
[3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry

Fix this by passing the new subvolume's root ID to btrfs_free_tree_block().
This requires changing the root argument of btrfs_free_tree_block() from
struct btrfs_root * to a u64, since at this point during the subvolume
creation we have not yet created the struct btrfs_root for the new
subvolume, and btrfs_free_tree_block() only needs a root ID and nothing
else from a struct btrfs_root.

This was triggered by test case generic/475 from fstests.

Fixes: 67addf29004c5b ("btrfs: fix metadata extent leak after failure to create subvolume")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-15 17:07:33 +01:00
Josef Bacik
f981fec12c btrfs: fail if fstrim_range->start == U64_MAX
We've always been failing generic/260 because it's testing things we
actually don't care about and thus won't fail for.  However we probably
should fail for fstrim_range->start == U64_MAX since we clearly can't
trim anything past that.  This in combination with an update to
generic/260 will allow us to pass this test properly.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-08 15:42:24 +01:00
Anand Jain
11b66fa6ee btrfs: reduce btrfs_update_block_group alloc argument to bool
btrfs_update_block_group() accounts for the number of bytes allocated or
freed. Argument @alloc specifies whether the call is for alloc or free.
Convert the argument @alloc type from int to bool.

Reviewed-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:06 +02:00
Nikolay Borisov
681145d4ac btrfs: pull up qgroup checks from delayed-ref core to init time
Instead of checking whether qgroup processing for a dealyed ref has to
happen in the core of delayed ref, simply pull the check at init time of
respective delayed ref structures. This eliminates the final use of
real_root in delayed-ref core paving the way to making this member
optional.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:06 +02:00
Nikolay Borisov
f42c5da6c1 btrfs: add additional parameters to btrfs_init_tree_ref/btrfs_init_data_ref
In order to make 'real_root' used only in ref-verify it's required to
have the necessary context to perform the same checks that this member
is used for. So add 'mod_root' which will contain the root on behalf of
which a delayed ref was created and a 'skip_group' parameter which
will contain callsite-specific override of skip_qgroup.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:06 +02:00
Nikolay Borisov
113479d5b8 btrfs: rename root fields in delayed refs structs
Both data and metadata delayed ref structures have fields named
root/ref_root respectively. Those are somewhat cryptic and don't really
convey the real meaning. In fact those roots are really the original
owners of the respective block (i.e in case of a snapshot a data delayed
ref will contain the original root that owns the given block). Rename
those fields accordingly and adjust comments.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:06 +02:00
Filipe Manana
49d0c6424c btrfs: assert that extent buffers are write locked instead of only locked
We currently use lockdep_assert_held() at btrfs_assert_tree_locked(), and
that checks that we hold a lock either in read mode or write mode.

However in all contexts we use btrfs_assert_tree_locked(), we actually
want to check if we are holding a write lock on the extent buffer's rw
semaphore - it would be a bug if in any of those contexts we were holding
a read lock instead.

So change btrfs_assert_tree_locked() to use lockdep_assert_held_write()
instead and, to make it more explicit, rename btrfs_assert_tree_locked()
to btrfs_assert_tree_write_locked(), so that it's clear we want to check
we are holding a write lock.

For now there are no contexts where we want to assert that we must have
a read lock, but in case that is needed in the future, we can add a new
helper function that just calls out lockdep_assert_held_read().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:02 +02:00
Qu Wenruo
4c66461179 btrfs: rename btrfs_bio to btrfs_io_context
The structure btrfs_bio is used by two different sites:

- bio->bi_private for mirror based profiles
  For those profiles (SINGLE/DUP/RAID1*/RAID10), this structures records
  how many mirrors are still pending, and save the original endio
  function of the bio.

- RAID56 code
  In that case, RAID56 only utilize the stripes info, and no long uses
  that to trace the pending mirrors.

So btrfs_bio is not always bind to a bio, and contains more info for IO
context, thus renaming it will make the naming less confusing.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:02 +02:00
Johannes Thumshirn
2d81eb1c3f btrfs: zoned: let the for_treelog test in the allocator stand out
The statement which decides if an extent allocation on a zoned device is
for the dedicated tree-log block group or not and if we can use the block
group we picked for this allocation is not easy to read but an important
part of the allocator.

Rewrite into an if condition instead of a plain boolean test to make it
stand out more, like the version which tests for the dedicated
data-relocation block group.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:02 +02:00
Johannes Thumshirn
c2707a2556 btrfs: zoned: add a dedicated data relocation block group
Relocation in a zoned filesystem can fail with a transaction abort with
error -22 (EINVAL). This happens because the relocation code assumes that
the extents we relocated the data to have the same size the source extents
had and ensures this by preallocating the extents.

But in a zoned filesystem we currently can't preallocate the extents as
this would break the sequential write required rule. Therefore it can
happen that the writeback process kicks in while we're still adding pages
to a delalloc range and starts writing out dirty pages.

This then creates destination extents that are smaller than the source
extents, triggering the following safety check in get_new_location():

 1034         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
 1035                 ret = -EINVAL;
 1036                 goto out;
 1037         }

Temporarily create a dedicated block group for the relocation process, so
no non-relocation data writes can interfere with the relocation writes.

This is needed that we can switch the relocation process on a zoned
filesystem from the REQ_OP_ZONE_APPEND writing we use for data to a scheme
like in a non-zoned filesystem using REQ_OP_WRITE and preallocation.

Fixes: 32430c614844 ("btrfs: zoned: enable relocation on a zoned filesystem")
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:01 +02:00
Johannes Thumshirn
37f00a6d2e btrfs: introduce btrfs_is_data_reloc_root
There are several places in our codebase where we check if a root is the
root of the data reloc tree and subsequent patches will introduce more.

Factor out the check into a small helper function instead of open coding
it multiple times.

Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:01 +02:00
Naohiro Aota
a85f05e59b btrfs: zoned: avoid chunk allocation if active block group has enough space
The current extent allocator tries to allocate a new block group when the
existing block groups do not have enough space. On a ZNS device, a new
block group means a new active zone. If the number of active zones has
already reached the max_active_zones, activating a new zone needs to finish
an existing zone, leading to wasting the free space there.

So, instead, it should reuse the existing active block groups as much as
possible when we can't activate any other zones without sacrificing an
already activated block group.

While at it, I converted find_free_extent_update_loop() to check the
found_extent() case early and made the other conditions simpler.

Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:07:59 +02:00
Naohiro Aota
a12b0dc0aa btrfs: move ffe_ctl one level up
We are passing too many variables as it is from btrfs_reserve_extent() to
find_free_extent(). The next commit will add min_alloc_size to ffe_ctl, and
that means another pass-through argument. Take this opportunity to move
ffe_ctl one level up and drop the redundant arguments.

Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:07:59 +02:00
Naohiro Aota
2e654e4bb9 btrfs: zoned: activate block group on allocation
Activate a block group when trying to allocate an extent from it. We check
read-only case and no space left case before trying to activate a block
group not to consume the number of active zones uselessly.

Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:07:59 +02:00
Naohiro Aota
98173255bd btrfs: zoned: calculate free space from zone capacity
Now that we introduced capacity in a block group, we need to calculate free
space using the capacity instead of the length. Thus, bytes we account
capacity - alloc_pointer as free, and account bytes [capacity, length] as
zone unusable.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:07:58 +02:00
Qu Wenruo
19ea40dddf btrfs: unlock newly allocated extent buffer after error
[BUG]
There is a bug report that injected ENOMEM error could leave a tree
block locked while we return to user-space:

  BTRFS info (device loop0): enabling ssd optimizations
  FAULT_INJECTION: forcing a failure.
  name failslab, interval 1, probability 0, space 0, times 0
  CPU: 0 PID: 7579 Comm: syz-executor Not tainted 5.15.0-rc1 #16
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
  rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
  Call Trace:
   __dump_stack lib/dump_stack.c:88 [inline]
   dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
   fail_dump lib/fault-inject.c:52 [inline]
   should_fail+0x13c/0x160 lib/fault-inject.c:146
   should_failslab+0x5/0x10 mm/slab_common.c:1328
   slab_pre_alloc_hook.constprop.99+0x4e/0xc0 mm/slab.h:494
   slab_alloc_node mm/slub.c:3120 [inline]
   slab_alloc mm/slub.c:3214 [inline]
   kmem_cache_alloc+0x44/0x280 mm/slub.c:3219
   btrfs_alloc_delayed_extent_op fs/btrfs/delayed-ref.h:299 [inline]
   btrfs_alloc_tree_block+0x38c/0x670 fs/btrfs/extent-tree.c:4833
   __btrfs_cow_block+0x16f/0x7d0 fs/btrfs/ctree.c:415
   btrfs_cow_block+0x12a/0x300 fs/btrfs/ctree.c:570
   btrfs_search_slot+0x6b0/0xee0 fs/btrfs/ctree.c:1768
   btrfs_insert_empty_items+0x80/0xf0 fs/btrfs/ctree.c:3905
   btrfs_new_inode+0x311/0xa60 fs/btrfs/inode.c:6530
   btrfs_create+0x12b/0x270 fs/btrfs/inode.c:6783
   lookup_open+0x660/0x780 fs/namei.c:3282
   open_last_lookups fs/namei.c:3352 [inline]
   path_openat+0x465/0xe20 fs/namei.c:3557
   do_filp_open+0xe3/0x170 fs/namei.c:3588
   do_sys_openat2+0x357/0x4a0 fs/open.c:1200
   do_sys_open+0x87/0xd0 fs/open.c:1216
   do_syscall_x64 arch/x86/entry/common.c:50 [inline]
   do_syscall_64+0x34/0xb0 arch/x86/entry/common.c:80
   entry_SYSCALL_64_after_hwframe+0x44/0xae
  RIP: 0033:0x46ae99
  Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48
  89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d
  01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48
  RSP: 002b:00007f46711b9c48 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
  RAX: ffffffffffffffda RBX: 000000000078c0a0 RCX: 000000000046ae99
  RDX: 0000000000000000 RSI: 00000000000000a1 RDI: 0000000020005800
  RBP: 00007f46711b9c80 R08: 0000000000000000 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000017
  R13: 0000000000000000 R14: 000000000078c0a0 R15: 00007ffc129da6e0

  ================================================
  WARNING: lock held when returning to user space!
  5.15.0-rc1 #16 Not tainted
  ------------------------------------------------
  syz-executor/7579 is leaving the kernel with locks still held!
  1 lock held by syz-executor/7579:
   #0: ffff888104b73da8 (btrfs-tree-01/1){+.+.}-{3:3}, at:
  __btrfs_tree_lock+0x2e/0x1a0 fs/btrfs/locking.c:112

[CAUSE]
In btrfs_alloc_tree_block(), after btrfs_init_new_buffer(), the new
extent buffer @buf is locked, but if later operations like adding
delayed tree ref fail, we just free @buf without unlocking it,
resulting above warning.

[FIX]
Unlock @buf in out_free_buf: label.

Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsZ9O6Zr0KK1yGn=1rQi6Crh1yeCRdTSBxx9R99L4xdn-Q@mail.gmail.com/
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-07 22:04:20 +02:00
Marcos Paulo de Souza
6534c0c99d btrfs: pass NULL as trans to btrfs_search_slot if we only want to search
Using a transaction in btrfs_search_slot is only useful when we are
searching to add or modify the tree. When the function is used for
searching, insert length and mod arguments are 0, there is no need to
use a transaction.

No functional changes, changing for consistency.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23 13:19:00 +02:00
Anand Jain
23608d51a3 btrfs: cleanup fs_devices pointer usage in btrfs_trim_fs
Drop variable 'devices' (used only once) and add new variable for
the fs_devices, so it is used at two locations within btrfs_trim_fs()
function and also helps to access fs_devices->devices.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23 13:18:59 +02:00
Anand Jain
16a200f66e btrfs: check for missing device in btrfs_trim_fs
A fstrim on a degraded raid1 can trigger the following null pointer
dereference:

  BTRFS info (device loop0): allowing degraded mounts
  BTRFS info (device loop0): disk space caching is enabled
  BTRFS info (device loop0): has skinny extents
  BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing
  BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing
  BTRFS info (device loop0): enabling ssd optimizations
  BUG: kernel NULL pointer dereference, address: 0000000000000620
  PGD 0 P4D 0
  Oops: 0000 [#1] SMP NOPTI
  CPU: 0 PID: 4574 Comm: fstrim Not tainted 5.13.0-rc7+ #31
  Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
  RIP: 0010:btrfs_trim_fs+0x199/0x4a0 [btrfs]
  RSP: 0018:ffff959541797d28 EFLAGS: 00010293
  RAX: 0000000000000000 RBX: ffff946f84eca508 RCX: a7a67937adff8608
  RDX: ffff946e8122d000 RSI: 0000000000000000 RDI: ffffffffc02fdbf0
  RBP: ffff946ea4615000 R08: 0000000000000001 R09: 0000000000000000
  R10: 0000000000000000 R11: ffff946e8122d960 R12: 0000000000000000
  R13: ffff959541797db8 R14: ffff946e8122d000 R15: ffff959541797db8
  FS:  00007f55917a5080(0000) GS:ffff946f9bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000620 CR3: 000000002d2c8001 CR4: 00000000000706f0
  Call Trace:
  btrfs_ioctl_fitrim+0x167/0x260 [btrfs]
  btrfs_ioctl+0x1c00/0x2fe0 [btrfs]
  ? selinux_file_ioctl+0x140/0x240
  ? syscall_trace_enter.constprop.0+0x188/0x240
  ? __x64_sys_ioctl+0x83/0xb0
  __x64_sys_ioctl+0x83/0xb0

Reproducer:

  $ mkfs.btrfs -fq -d raid1 -m raid1 /dev/loop0 /dev/loop1
  $ mount /dev/loop0 /btrfs
  $ umount /btrfs
  $ btrfs dev scan --forget
  $ mount -o degraded /dev/loop0 /btrfs

  $ fstrim /btrfs

The reason is we call btrfs_trim_free_extents() for the missing device,
which uses device->bdev (NULL for missing device) to find if the device
supports discard.

Fix is to check if the device is missing before calling
btrfs_trim_free_extents().

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22 15:49:49 +02:00
Josef Bacik
138a12d865 btrfs: rip out btrfs_space_info::total_bytes_pinned
We used this in may_commit_transaction() in order to determine if we
needed to commit the transaction.  However we no longer have that logic
and thus have no use of this counter anymore, so delete it.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-22 14:55:25 +02:00
David Sterba
1a9fd4172d btrfs: fix typos in comments
Fix typos that have snuck in since the last round. Found by codespell.

Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-22 14:11:57 +02:00
Josef Bacik
5963ffcaf3 btrfs: always abort the transaction if we abort a trans handle
While stress testing our error handling I noticed that sometimes we
would still commit the transaction even though we had aborted the
transaction.

Currently we track if a trans handle has dirtied any metadata, and if it
hasn't we mark the filesystem as having an error (so no new transactions
can be started), but we will allow the current transaction to complete
as we do not mark the transaction itself as having been aborted.

This sounds good in theory, but we were not properly tracking IO errors
in btrfs_finish_ordered_io, and thus committing the transaction with
bogus free space data.  This isn't necessarily a problem per-se with the
free space cache, as the other guards in place would have kept us from
accepting the free space cache as valid, but highlights a real world
case where we had a bug and could have corrupted the filesystem because
of it.

This "skip abort on empty trans handle" is nice in theory, but assumes
we have perfect error handling everywhere, which we clearly do not.
Also we do not allow further transactions to be started, so all this
does is save the last transaction that was happening, which doesn't
necessarily gain us anything other than the potential for real
corruption.

Remove this particular bit of code, if we decide we need to abort the
transaction then abort the current one and keep us from doing real harm
to the file system, regardless of whether this specific trans handle
dirtied anything or not.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:06 +02:00
Josef Bacik
856bd270dc btrfs: return errors from btrfs_del_csums in cleanup_ref_head
We are unconditionally returning 0 in cleanup_ref_head, despite the fact
that btrfs_del_csums could fail.  We need to return the error so the
transaction gets aborted properly, fix this by returning ret from
btrfs_del_csums in cleanup_ref_head.

Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-05-27 23:30:55 +02:00
Anand Jain
5e753a817b btrfs: fix unmountable seed device after fstrim
The following test case reproduces an issue of wrongly freeing in-use
blocks on the readonly seed device when fstrim is called on the rw sprout
device. As shown below.

Create a seed device and add a sprout device to it:

  $ mkfs.btrfs -fq -dsingle -msingle /dev/loop0
  $ btrfstune -S 1 /dev/loop0
  $ mount /dev/loop0 /btrfs
  $ btrfs dev add -f /dev/loop1 /btrfs
  BTRFS info (device loop0): relocating block group 290455552 flags system
  BTRFS info (device loop0): relocating block group 1048576 flags system
  BTRFS info (device loop0): disk added /dev/loop1
  $ umount /btrfs

Mount the sprout device and run fstrim:

  $ mount /dev/loop1 /btrfs
  $ fstrim /btrfs
  $ umount /btrfs

Now try to mount the seed device, and it fails:

  $ mount /dev/loop0 /btrfs
  mount: /btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error.

Block 5292032 is missing on the readonly seed device:

 $ dmesg -kt | tail
 <snip>
 BTRFS error (device loop0): bad tree block start, want 5292032 have 0
 BTRFS warning (device loop0): couldn't read-tree root
 BTRFS error (device loop0): open_ctree failed

From the dump-tree of the seed device (taken before the fstrim). Block
5292032 belonged to the block group starting at 5242880:

  $ btrfs inspect dump-tree -e /dev/loop0 | grep -A1 BLOCK_GROUP
  <snip>
  item 3 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16169 itemsize 24
  	block group used 114688 chunk_objectid 256 flags METADATA
  <snip>

From the dump-tree of the sprout device (taken before the fstrim).
fstrim used block-group 5242880 to find the related free space to free:

  $ btrfs inspect dump-tree -e /dev/loop1 | grep -A1 BLOCK_GROUP
  <snip>
  item 1 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16226 itemsize 24
  	block group used 32768 chunk_objectid 256 flags METADATA
  <snip>

BPF kernel tracing the fstrim command finds the missing block 5292032
within the range of the discarded blocks as below:

  kprobe:btrfs_discard_extent {
  	printf("freeing start %llu end %llu num_bytes %llu:\n",
  		arg1, arg1+arg2, arg2);
  }

  freeing start 5259264 end 5406720 num_bytes 147456
  <snip>

Fix this by avoiding the discard command to the readonly seed device.

Reported-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-05-04 14:41:37 +02:00
Filipe Manana
888dd18339 btrfs: use the new bit BTRFS_FS_TREE_MOD_LOG_USERS at btrfs_free_tree_block()
Instead of exposing implementation details of the tree mod log to check
if there are active tree mod log users at btrfs_free_tree_block(), use
the new bit BTRFS_FS_TREE_MOD_LOG_USERS for fs_info->flags instead. This
way extent-tree.c does not need to known about any of the internals of
the tree mod log and avoids taking a lock unnecessarily as well.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:16 +02:00
Anand Jain
05947ae186 btrfs: unexport btrfs_extent_readonly() and make it static
btrfs_extent_readonly() is used by can_nocow_extent() in inode.c. So
move it from extent-tree.c to inode.c and declare it as static.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:14 +02:00
Filipe Manana
485df75554 btrfs: always pin deleted leaves when there are active tree mod log users
When freeing a tree block we may end up adding its extent back to the
free space cache/tree, as long as there are no more references for it,
it was created in the current transaction and writeback for it never
happened. This is generally fine, however when we have tree mod log
operations it can result in inconsistent versions of a btree after
unwinding extent buffers with the recorded tree mod log operations.

This is because:

* We only log operations for nodes (adding and removing key/pointers),
  for leaves we don't do anything;

* This means that we can log a MOD_LOG_KEY_REMOVE_WHILE_FREEING operation
  for a node that points to a leaf that was deleted;

* Before we apply the logged operation to unwind a node, we can have
  that leaf's extent allocated again, either as a node or as a leaf, and
  possibly for another btree. This is possible if the leaf was created in
  the current transaction and writeback for it never started, in which
  case btrfs_free_tree_block() returns its extent back to the free space
  cache/tree;

* Then, before applying the tree mod log operation, some task allocates
  the metadata extent just freed before, and uses it either as a leaf or
  as a node for some btree (can be the same or another one, it does not
  matter);

* After applying the MOD_LOG_KEY_REMOVE_WHILE_FREEING operation we now
  get the target node with an item pointing to the metadata extent that
  now has content different from what it had before the leaf was deleted.
  It might now belong to a different btree and be a node and not a leaf
  anymore.

  As a consequence, the results of searches after the unwinding can be
  unpredictable and produce unexpected results.

So make sure we pin extent buffers corresponding to leaves when there
are tree mod log users.

CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-03-16 20:32:22 +01:00
Naohiro Aota
40ab3be102 btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
This is the 1/3 patch to enable tree log on zoned filesystems.

The tree-log feature does not work on a zoned filesystem as is. Blocks for
a tree-log tree are allocated mixed with other metadata blocks and btrfs
writes and syncs the tree-log blocks to devices at the time of fsync(),
which has a different timing than a global transaction commit. As a
result, both writing tree-log blocks and writing other metadata blocks
become non-sequential writes that zoned filesystems must avoid.

Introduce a dedicated block group for tree-log blocks, so that tree-log
blocks and other metadata blocks can be separate write streams.  As a
result, each write stream can now be written to devices separately.
"fs_info->treelog_bg" tracks the dedicated block group and assigns
"treelog_bg" on-demand on tree-log block allocation time.

This commit extends the zoned block allocator to use the block group.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:08 +01:00
Naohiro Aota
6143c23ccc btrfs: zoned: implement cloning for zoned device-replace
This is 2/4 patch to implement device replace for zoned filesystems.

In zoned mode, a block group must be either copied (from the source
device to the target device) or cloned (to both devices).

Implement the cloning part. If a block group targeted by an IO is marked
to copy, we should not clone the IO to the destination device, because
the block group is eventually copied by the replace process.

This commit also handles cloning of device reset.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:07 +01:00
Naohiro Aota
dcba6e48b5 btrfs: zoned: reset zones of unused block groups
We must reset the zones of a deleted unused block group to rewind the
zones' write pointers to the zones' start.

To do this, we can use the DISCARD_SYNC code to do the reset when the
filesystem is running on zoned devices.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:04 +01:00
Naohiro Aota
d3575156f6 btrfs: zoned: redirty released extent buffers
Tree manipulating operations like merging nodes often release
once-allocated tree nodes. Such nodes are cleaned so that pages in the
node are not uselessly written out. On zoned volumes, however, such
optimization blocks the following IOs as the cancellation of the write
out of the freed blocks breaks the sequential write sequence expected by
the device.

Introduce a list of clean and unwritten extent buffers that have been
released in a transaction. Redirty the buffers so that
btree_write_cache_pages() can send proper bios to the devices.

Besides it clears the entire content of the extent buffer not to confuse
raw block scanners e.g. 'btrfs check'. By clearing the content,
csum_dirty_buffer() complains about bytenr mismatch, so avoid the
checking and checksum using newly introduced buffer flag
EXTENT_BUFFER_NO_CHECK.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:04 +01:00
Naohiro Aota
2eda57089e btrfs: zoned: implement sequential extent allocation
Implement a sequential extent allocator for zoned filesystems. This
allocator only needs to check if there is enough space in the block group
after the allocation pointer to satisfy the extent allocation request.
Therefore the allocator never manages bitmaps or clusters. Also, add
assertions to the corresponding functions.

As zone append writing is used, it would be unnecessary to track the
allocation offset, as the allocator only needs to check available space.
But by tracking and returning the offset as an allocated region, we can
skip modification of ordered extents and checksum information when there
is no IO reordering.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:03 +01:00
Naohiro Aota
169e0da91a btrfs: zoned: track unusable bytes for zones
In a zoned filesystem a once written then freed region is not usable
until the underlying zone has been reset. So we need to distinguish such
unusable space from usable free space.

Therefore we need to introduce the "zone_unusable" field to the block
group structure, and "bytes_zone_unusable" to the space_info structure
to track the unusable space.

Pinned bytes are always reclaimed to the unusable space. But, when an
allocated region is returned before using e.g., the block group becomes
read-only between allocation time and reservation time, we can safely
return the region to the block group. For the situation, this commit
introduces "btrfs_add_free_space_unused". This behaves the same as
btrfs_add_free_space() on regular filesystem. On zoned filesystems, it
rewinds the allocation offset.

Because the read-only bytes tracks free but unusable bytes when the block
group is read-only, we need to migrate the zone_unusable bytes to
read-only bytes when a block group is marked read-only.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:03 +01:00
Josef Bacik
b7774425e0 btrfs: remove bogus BUG_ON in alloc_reserved_tree_block
The fix 361048f586f5 ("Btrfs: fix full backref problem when inserting
shared block reference") added a delayed ref flushing at subvolume
creation time in order to avoid hitting this particular BUG_ON().

Before this fix, we were tripping the BUG_ON() by

1. Modify snapshot A, which creates blocks with a normal reference for
   snapshot A, as A is the owner of these blocks.  We now have delayed
   refs for these blocks.
2. Create a snapshot of A named B, which pushes references for the
   children blocks of the root node for the new root B, thus creating
   more delayed refs for newly allocated blocks.
3. A is modified, and because the metadata blocks can now be shared, it
   must push FULL_BACKREF references to the children of any block that A
   COWs down it's path to its target key.
4. Delayed refs are run.  Because these are newly allocated blocks, we
   have ->must_insert_reserved reserved set on the delayed ref head, we
   call into alloc_reserved_tree_block() to add the extent item, and
   then add our ref.  At the time of this fix, we were ordering
   FULL_BACKREF delayed ref operations first, so we'd go to add this
   reference and then BUG_ON() because we didn't have the FULL_BACKREF
   flag set.

The patch fixed this problem by making sure we ran the delayed refs
before we had the chance to modify A.  This meant that any *new* blocks
would have had their extent items created _before_ we would ever
actually COW down and generate FULL_BACKREF entries.  Thus the problem
went away.

However this BUG_ON() is actually completely bogus.  The existence of a
full backref doesn't necessarily mean that FULL_BACKREF must be set on
that block, it must only be set on the actual parent itself.  Consider
the example provided above.  If we COW down one path from A, any nodes
are going to have a FULL_BACKREF ref pushed down to _all_ of their
children, but not all of the children are going to have FULL_BACKREF
set.  It is completely valid to have an extent item with normal and full
backrefs without FULL_BACKREF actually set on the block itself.

As a final note, I have been testing with the patch (applied after this
one)

  btrfs: stop running all delayed refs during snapshot

which removed this flushing.  My test was a torture test which did a lot
of operations while snapshotting and deleting snapshots as well as
relocation, and I never tripped this BUG_ON().  This is actually because
at the time of 361048f586f5, we ordered SHARED keys _before_ normal
references, and thus they would get run first.  However currently they
are ordered _after_ normal references, so we'd do the initial creation
without having a shared reference, and thus not hit this BUG_ON(), which
explains why I didn't start hitting this problem during my testing with
my other patch applied.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:57 +01:00
Josef Bacik
61a56a992f btrfs: delayed refs pre-flushing should only run the heads we have
Previously our delayed ref running used the total number of items as the
items to run.  However we changed that to number of heads to run with
the delayed_refs_rsv, as generally we want to run all of the operations
for one bytenr.

But with btrfs_run_delayed_refs(trans, 0) we set our count to 2x the
number of items that we have.  This is generally fine, but if we have
some operation generation loads of delayed refs while we're doing this
pre-flushing in the transaction commit, we'll just spin forever doing
delayed refs.

Fix this to simply pick the number of delayed refs we currently have,
that way we do not end up doing a lot of extra work that's being
generated in other threads.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:56 +01:00
Josef Bacik
81e75ac74e btrfs: account for new extents being deleted in total_bytes_pinned
My recent patch set "A variety of lock contention fixes", found here

https://lore.kernel.org/linux-btrfs/cover.1608319304.git.josef@toxicpanda.com/
(Tracked in https://github.com/btrfs/linux/issues/86)

that reduce lock contention on the extent root by running delayed refs
less often resulted in a regression in generic/371.  This test
fallocate()'s the fs until it's full, deletes all the files, and then
tries to fallocate() until full again.

Before these patches we would run all of the delayed refs during
flushing, and then would commit the transaction because we had plenty of
pinned space to recover in order to allocate.  However my patches made
it so we weren't running the delayed refs as aggressively, which meant
that we appeared to have less pinned space when we were deciding to
commit the transaction.

We use the space_info->total_bytes_pinned to approximate how much space
we have pinned.  It's approximate because if we remove a reference to an
extent we may free it, but there may be more references to it than we
know of at that point, but we account it as pinned at the creation time,
and then it's properly accounted when the delayed ref runs.

The way we account for pinned space is if the
delayed_ref_head->total_ref_mod is < 0, because that is clearly a
freeing option.  However there is another case, and that is where
->total_ref_mod == 0 && ->must_insert_reserved == 1.

When we allocate a new extent, we have ->total_ref_mod == 1 and we have
->must_insert_reserved == 1.  This is used to indicate that it is a
brand new extent and will need to have its extent entry added before we
modify any references on the delayed ref head.  But if we subsequently
remove that extent reference, our ->total_ref_mod will be 0, and that
space will be pinned and freed.  Accounting for this case properly
allows for generic/371 to pass with my delayed refs patches applied.

It's important to note that this problem exists without the referenced
patches, it just was uncovered by them.

CC: stable@vger.kernel.org # 5.10
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:55 +01:00
Josef Bacik
2187374f35 btrfs: handle space_info::total_bytes_pinned inside the delayed ref itself
Currently we pass things around to figure out if we maybe freeing data
based on the state of the delayed refs head.  This makes the accounting
sort of confusing and hard to follow, as it's distinctly separate from
the delayed ref heads stuff, but also depends on it entirely.

Fix this by explicitly adjusting the space_info->total_bytes_pinned in
the delayed refs code.  We now have two places where we modify this
counter, once where we create the delayed and destroy the delayed refs,
and once when we pin and unpin the extents.  This means there is a
slight overlap between delayed refs and the pin/unpin mechanisms, but
this is simply used by the ENOSPC infrastructure to determine if we need
to commit the transaction, so there's no adverse affect from this, we
might simply commit thinking it will give us enough space when it might
not.

CC: stable@vger.kernel.org # 5.10
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:55 +01:00
Filipe Manana
9ad6d91f05 btrfs: fix log replay failure due to race with space cache rebuild
After a sudden power failure we may end up with a space cache on disk that
is not valid and needs to be rebuilt from scratch.

If that happens, during log replay when we attempt to pin an extent buffer
from a log tree, at btrfs_pin_extent_for_log_replay(), we do not wait for
the space cache to be rebuilt through the call to:

    btrfs_cache_block_group(cache, 1);

That is because that only waits for the task (work queue job) that loads
the space cache to change the cache state from BTRFS_CACHE_FAST to any
other value. That is ok when the space cache on disk exists and is valid,
but when the cache is not valid and needs to be rebuilt, it ends up
returning as soon as the cache state changes to BTRFS_CACHE_STARTED (done
at caching_thread()).

So this means that we can end up trying to unpin a range which is not yet
marked as free in the block group. This results in the call to
btrfs_remove_free_space() to return -EINVAL to
btrfs_pin_extent_for_log_replay(), which in turn makes the log replay fail
as well as mounting the filesystem. More specifically the -EINVAL comes
from free_space_cache.c:remove_from_bitmap(), because the requested range
is not marked as free space (ones in the bitmap), we have the following
condition triggered:

static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
(...)
       if (ret < 0 || search_start != *offset)
            return -EINVAL;
(...)

It's the "search_start != *offset" that results in the condition being
evaluated to true.

When this happens we got the following in dmesg/syslog:

[72383.415114] BTRFS: device fsid 32b95b69-0ea9-496a-9f02-3f5a56dc9322 devid 1 transid 1432 /dev/sdb scanned by mount (3816007)
[72383.417837] BTRFS info (device sdb): disk space caching is enabled
[72383.418536] BTRFS info (device sdb): has skinny extents
[72383.423846] BTRFS info (device sdb): start tree-log replay
[72383.426416] BTRFS warning (device sdb): block group 30408704 has wrong amount of free space
[72383.427686] BTRFS warning (device sdb): failed to load free space cache for block group 30408704, rebuilding it now
[72383.454291] BTRFS: error (device sdb) in btrfs_recover_log_trees:6203: errno=-22 unknown (Failed to pin buffers while recovering log root tree.)
[72383.456725] BTRFS: error (device sdb) in btrfs_replay_log:2253: errno=-22 unknown (Failed to recover log tree)
[72383.460241] BTRFS error (device sdb): open_ctree failed

We also mark the range for the extent buffer in the excluded extents io
tree. That is fine when the space cache is valid on disk and we can load
it, in which case it causes no problems.

However, for the case where we need to rebuild the space cache, because it
is either invalid or it is missing, having the extent buffer range marked
in the excluded extents io tree leads to a -EINVAL failure from the call
to btrfs_remove_free_space(), resulting in the log replay and mount to
fail. This is because by having the range marked in the excluded extents
io tree, the caching thread ends up never adding the range of the extent
buffer as free space in the block group since the calls to
add_new_free_space(), called from load_extent_tree_free(), filter out any
ranges that are marked as excluded extents.

So fix this by making sure that during log replay we wait for the caching
task to finish completely when we need to rebuild a space cache, and also
drop the need to mark the extent buffer range in the excluded extents io
tree, as well as clearing ranges from that tree at
btrfs_finish_extent_commit().

This started to happen with some frequency on large filesystems having
block groups with a lot of fragmentation since the recent commit
e747853cae3ae3 ("btrfs: load free space cache asynchronously"), but in
fact the issue has been there for years, it was just much less likely
to happen.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-25 18:44:53 +01:00
Josef Bacik
18d3bff411 btrfs: don't get an EINTR during drop_snapshot for reloc
This was partially fixed by f3e3d9cc3525 ("btrfs: avoid possible signal
interruption of btrfs_drop_snapshot() on relocation tree"), however it
missed a spot when we restart a trans handle because we need to end the
transaction.  The fix is the same, simply use btrfs_join_transaction()
instead of btrfs_start_transaction() when deleting reloc roots.

Fixes: f3e3d9cc3525 ("btrfs: avoid possible signal interruption of btrfs_drop_snapshot() on relocation tree")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-18 15:44:47 +01:00
ethanwu
9a66497156 btrfs: correctly calculate item size used when item key collision happens
Item key collision is allowed for some item types, like dir item and
inode refs, but the overall item size is limited by the nodesize.

item size(ins_len) passed from btrfs_insert_empty_items to
btrfs_search_slot already contains size of btrfs_item.

When btrfs_search_slot reaches leaf, we'll see if we need to split leaf.
The check incorrectly reports that split leaf is required, because
it treats the space required by the newly inserted item as
btrfs_item + item data. But in item key collision case, only item data
is actually needed, the newly inserted item could merge into the existing
one. No new btrfs_item will be inserted.

And split_leaf return EOVERFLOW from following code:

  if (extend && data_size + btrfs_item_size_nr(l, slot) +
      sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
      return -EOVERFLOW;

In most cases, when callers receive EOVERFLOW, they either return
this error or handle in different ways. For example, in normal dir item
creation the userspace will get errno EOVERFLOW; in inode ref case
INODE_EXTREF is used instead.

However, this is not the case for rename. To avoid the unrecoverable
situation in rename, btrfs_check_dir_item_collision is called in
early phase of rename. In this function, when item key collision is
detected leaf space is checked:

  data_size = sizeof(*di) + name_len;
  if (data_size + btrfs_item_size_nr(leaf, slot) +
      sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root->fs_info))

the sizeof(struct btrfs_item) + btrfs_item_size_nr(leaf, slot) here
refers to existing item size, the condition here correctly calculates
the needed size for collision case rather than the wrong case above.

The consequence of inconsistent condition check between
btrfs_check_dir_item_collision and btrfs_search_slot when item key
collision happens is that we might pass check here but fail
later at btrfs_search_slot. Rename fails and volume is forced readonly

  [436149.586170] ------------[ cut here ]------------
  [436149.586173] BTRFS: Transaction aborted (error -75)
  [436149.586196] WARNING: CPU: 0 PID: 16733 at fs/btrfs/inode.c:9870 btrfs_rename2+0x1938/0x1b70 [btrfs]
  [436149.586227] CPU: 0 PID: 16733 Comm: python Tainted: G      D           4.18.0-rc5+ #1
  [436149.586228] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/05/2016
  [436149.586238] RIP: 0010:btrfs_rename2+0x1938/0x1b70 [btrfs]
  [436149.586254] RSP: 0018:ffffa327043a7ce0 EFLAGS: 00010286
  [436149.586255] RAX: 0000000000000000 RBX: ffff8d8a17d13340 RCX: 0000000000000006
  [436149.586256] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8d8a7fc164b0
  [436149.586257] RBP: ffffa327043a7da0 R08: 0000000000000560 R09: 7265282064657472
  [436149.586258] R10: 0000000000000000 R11: 6361736e61725420 R12: ffff8d8a0d4c8b08
  [436149.586258] R13: ffff8d8a17d13340 R14: ffff8d8a33e0a540 R15: 00000000000001fe
  [436149.586260] FS:  00007fa313933740(0000) GS:ffff8d8a7fc00000(0000) knlGS:0000000000000000
  [436149.586261] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [436149.586262] CR2: 000055d8d9c9a720 CR3: 000000007aae0003 CR4: 00000000003606f0
  [436149.586295] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [436149.586296] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [436149.586296] Call Trace:
  [436149.586311]  vfs_rename+0x383/0x920
  [436149.586313]  ? vfs_rename+0x383/0x920
  [436149.586315]  do_renameat2+0x4ca/0x590
  [436149.586317]  __x64_sys_rename+0x20/0x30
  [436149.586324]  do_syscall_64+0x5a/0x120
  [436149.586330]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [436149.586332] RIP: 0033:0x7fa3133b1d37
  [436149.586348] RSP: 002b:00007fffd3e43908 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
  [436149.586349] RAX: ffffffffffffffda RBX: 00007fa3133b1d30 RCX: 00007fa3133b1d37
  [436149.586350] RDX: 000055d8da06b5e0 RSI: 000055d8da225d60 RDI: 000055d8da2c4da0
  [436149.586351] RBP: 000055d8da2252f0 R08: 00007fa313782000 R09: 00000000000177e0
  [436149.586351] R10: 000055d8da010680 R11: 0000000000000246 R12: 00007fa313840b00

Thanks to Hans van Kranenburg for information about crc32 hash collision
tools, I was able to reproduce the dir item collision with following
python script.
https://github.com/wutzuchieh/misc_tools/blob/master/crc32_forge.py Run
it under a btrfs volume will trigger the abort transaction.  It simply
creates files and rename them to forged names that leads to
hash collision.

There are two ways to fix this. One is to simply revert the patch
878f2d2cb355 ("Btrfs: fix max dir item size calculation") to make the
condition consistent although that patch is correct about the size.

The other way is to handle the leaf space check correctly when
collision happens. I prefer the second one since it correct leaf
space check in collision case. This fix will not account
sizeof(struct btrfs_item) when the item already exists.
There are two places where ins_len doesn't contain
sizeof(struct btrfs_item), however.

  1. extent-tree.c: lookup_inline_extent_backref
  2. file-item.c: btrfs_csum_file_blocks

to make the logic of btrfs_search_slot more clear, we add a flag
search_for_extension in btrfs_path.

This flag indicates that ins_len passed to btrfs_search_slot doesn't
contain sizeof(struct btrfs_item). When key exists, btrfs_search_slot
will use the actual size needed to calculate the required leaf space.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-18 14:50:00 +01:00
Josef Bacik
e114c545bb btrfs: set the lockdep class for extent buffers on creation
Both Filipe and Fedora QA recently hit the following lockdep splat:

  WARNING: possible recursive locking detected
  5.10.0-0.rc1.20201028gited8780e3f2ec.57.fc34.x86_64 #1 Not tainted
  --------------------------------------------
  rsync/2610 is trying to acquire lock:
  ffff89617ed48f20 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  but task is already holding lock:
  ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  other info that might help us debug this:
   Possible unsafe locking scenario:
	 CPU0
	 ----
    lock(&eb->lock);
    lock(&eb->lock);

   *** DEADLOCK ***
   May be due to missing lock nesting notation
  2 locks held by rsync/2610:
   #0: ffff896107212b90 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: walk_component+0x10c/0x190
   #1: ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  stack backtrace:
  CPU: 1 PID: 2610 Comm: rsync Not tainted 5.10.0-0.rc1.20201028gited8780e3f2ec.57.fc34.x86_64 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  Call Trace:
   dump_stack+0x8b/0xb0
   __lock_acquire.cold+0x12d/0x2a4
   ? kvm_sched_clock_read+0x14/0x30
   ? sched_clock+0x5/0x10
   lock_acquire+0xc8/0x400
   ? btrfs_tree_read_lock_atomic+0x34/0x140
   ? read_block_for_search.isra.0+0xdd/0x320
   _raw_read_lock+0x3d/0xa0
   ? btrfs_tree_read_lock_atomic+0x34/0x140
   btrfs_tree_read_lock_atomic+0x34/0x140
   btrfs_search_slot+0x616/0x9a0
   btrfs_lookup_dir_item+0x6c/0xb0
   btrfs_lookup_dentry+0xa8/0x520
   ? lockdep_init_map_waits+0x4c/0x210
   btrfs_lookup+0xe/0x30
   __lookup_slow+0x10f/0x1e0
   walk_component+0x11b/0x190
   path_lookupat+0x72/0x1c0
   filename_lookup+0x97/0x180
   ? strncpy_from_user+0x96/0x1e0
   ? getname_flags.part.0+0x45/0x1a0
   vfs_statx+0x64/0x100
   ? lockdep_hardirqs_on_prepare+0xff/0x180
   ? _raw_spin_unlock_irqrestore+0x41/0x50
   __do_sys_newlstat+0x26/0x40
   ? lockdep_hardirqs_on_prepare+0xff/0x180
   ? syscall_enter_from_user_mode+0x27/0x80
   ? syscall_enter_from_user_mode+0x27/0x80
   do_syscall_64+0x33/0x40
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

I have also seen a report of lockdep complaining about the lock class
that was looked up being the same as the lock class on the lock we were
using, but I can't find the report.

These are problems that occur because we do not have the lockdep class
set on the extent buffer until _after_ we read the eb in properly.  This
is problematic for concurrent readers, because we will create the extent
buffer, lock it, and then attempt to read the extent buffer.

If a second thread comes in and tries to do a search down the same path
they'll get the above lockdep splat because the class isn't set properly
on the extent buffer.

There was a good reason for this, we generally didn't know the real
owner of the eb until we read it, specifically in refcounted roots.

However now all refcounted roots have the same class name, so we no
longer need to worry about this.  For non-refcounted trees we know
which root we're on based on the parent.

Fix this by setting the lockdep class on the eb at creation time instead
of read time.  This will fix the splat and the weirdness where the class
changes in the middle of locking the block.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik
3fbaf25817 btrfs: pass the owner_root and level to alloc_extent_buffer
Now that we've plumbed all of the callers to have the owner root and the
level, plumb it down into alloc_extent_buffer().

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik
1b7ec85ef4 btrfs: pass root owner to read_tree_block
In order to properly set the lockdep class of a newly allocated block we
need to know the owner of the block.  For non-refcounted trees this is
straightforward, we always know in advance what tree we're reading from.
For refcounted trees we don't necessarily know, however all refcounted
trees share the same lockdep class name, tree-<level>.

Fix all the callers of read_tree_block() to pass in the root objectid
we're using.  In places like relocation and backref we could probably
unconditionally use 0, but just in case use the root when we have it,
otherwise use 0 in the cases we don't have the root as it's going to be
a refcounted tree anyway.

This is a preparation patch for further changes.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik
bfb484d922 btrfs: cleanup extent buffer readahead
We're going to pass around more information when we allocate extent
buffers, in order to make that cleaner how we do readahead.  Most of the
callers have the parent node that we're getting our blockptr from, with
the sole exception of relocation which simply has the bytenr it wants to
read.

Add a helper that takes the current arguments that we need (bytenr and
gen), and add another helper for simply reading the slot out of a node.
In followup patches the helper that takes all the extra arguments will
be expanded, and the simpler helper won't need to have it's arguments
adjusted.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:05 +01:00
Josef Bacik
e747853cae btrfs: load free space cache asynchronously
While documenting the usage of the commit_root_sem, I noticed that we do
not actually take the commit_root_sem in the case of the free space
cache.  This is problematic because we're supposed to hold that sem
while we're reading the commit roots, which is what we do for the free
space cache.

The reason I did it inline when I originally wrote the code was because
there's the case of unpinning where we need to make sure that the free
space cache is loaded if we're going to use the free space cache.  But
we can accomplish the same thing by simply waiting for the cache to be
loaded.

Rework this code to load the free space cache asynchronously.  This
allows us to greatly cleanup the caching code because now it's all
shared by the various caching methods.  We also are now in a position to
have the commit_root semaphore held while we're loading the free space
cache.  And finally our modification of ->last_byte_to_unpin is removed
because it can be handled in the proper way on commit.

Some care must be taken when replaying the log, when we expect that the
free space cache will be read entirely before we start excluding space
to replay. This could lead to overwriting space during replay.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:03 +01:00
Josef Bacik
2ca08c56e8 btrfs: explicitly protect ->last_byte_to_unpin in unpin_extent_range
Currently unpin_extent_range happens in the transaction commit context,
so we are protected from ->last_byte_to_unpin changing while we're
unpinning, because any new transactions would have to wait for us to
complete before modifying ->last_byte_to_unpin.

However in the future we may want to change how this works, for instance
with async unpinning or other such TODO items.  To prepare for that
future explicitly protect ->last_byte_to_unpin with the commit_root_sem
so we are sure it won't change while we're doing our work.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
27d56e62e4 btrfs: update last_byte_to_unpin in switch_commit_roots
While writing an explanation for the need of the commit_root_sem for
btrfs_prepare_extent_commit, I realized we have a slight hole that could
result in leaked space if we have to do the old style caching.  Consider
the following scenario

 commit root
 +----+----+----+----+----+----+----+
 |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
 +----+----+----+----+----+----+----+
 0    1    2    3    4    5    6    7

 new commit root
 +----+----+----+----+----+----+----+
 |    |    |    |\\\\|    |    |\\\\|
 +----+----+----+----+----+----+----+
 0    1    2    3    4    5    6    7

Prior to this patch, we run btrfs_prepare_extent_commit, which updates
the last_byte_to_unpin, and then we subsequently run
switch_commit_roots.  In this example lets assume that
caching_ctl->progress == 1 at btrfs_prepare_extent_commit() time, which
means that cache->last_byte_to_unpin == 1.  Then we go and do the
switch_commit_roots(), but in the meantime the caching thread has made
some more progress, because we drop the commit_root_sem and re-acquired
it.  Now caching_ctl->progress == 3.  We swap out the commit root and
carry on to unpin.

The race can happen like:

  1) The caching thread was running using the old commit root when it
     found the extent for [2, 3);

  2) Then it released the commit_root_sem because it was in the last
     item of a leaf and the semaphore was contended, and set ->progress
     to 3 (value of 'last'), as the last extent item in the current leaf
     was for the extent for range [2, 3);

  3) Next time it gets the commit_root_sem, will start using the new
     commit root and search for a key with offset 3, so it never finds
     the hole for [2, 3).

  So the caching thread never saw [2, 3) as free space in any of the
  commit roots, and by the time finish_extent_commit() was called for
  the range [0, 3), ->last_byte_to_unpin was 1, so it only returned the
  subrange [0, 1) to the free space cache, skipping [2, 3).

In the unpin code we have last_byte_to_unpin == 1, so we unpin [0,1),
but do not unpin [2,3).  However because caching_ctl->progress == 3 we
do not see the newly freed section of [2,3), and thus do not add it to
our free space cache.  This results in us missing a chunk of free space
in memory (on disk too, unless we have a power failure before writing
the free space cache to disk).

Fix this by making sure the ->last_byte_to_unpin is set at the same time
that we swap the commit roots, this ensures that we will always be
consistent.

CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ update changelog with Filipe's review comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
9076dbd5ee btrfs: do not shorten unpin len for caching block groups
While fixing up our ->last_byte_to_unpin locking I noticed that we will
shorten len based on ->last_byte_to_unpin if we're caching when we're
adding back the free space.  This is correct for the free space, as we
cannot unpin more than ->last_byte_to_unpin, however we use len to
adjust the ->bytes_pinned counters and such, which need to track the
actual pinned usage.  This could result in
WARN_ON(space_info->bytes_pinned) triggering at unmount time.

Fix this by using a local variable for the amount to add to free space
cache, and leave len untouched in this case.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
b9729ce014 btrfs: locking: rip out path->leave_spinning
We no longer distinguish between blocking and spinning, so rip out all
this code.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
ac5887c8e0 btrfs: locking: remove all the blocking helpers
Now that we're using a rw_semaphore we no longer need to indicate if a
lock is blocking or not, nor do we need to flip the entire path from
blocking to spinning.  Remove these helpers and all the places they are
called.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:01 +01:00