Commit Graph

261 Commits

Author SHA1 Message Date
Christoph Hellwig
f6dd975583 pipe: merge anon_pipe_buf*_ops
All the op vectors are exactly the same, they are just used to encode
packet or nomerge behavior.  There already is a flag for the packet
behavior, so just add a new one to allow for merging.  Inverting it vs
the previous nomerge special casing actually allows for much nicer code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-05-20 12:11:26 -04:00
David Howells
e7d553d69c pipe: Add notification lossage handling
Add handling for loss of notifications by having read() insert a
loss-notification message after it has read the pipe buffer that was last
in the ring when the loss occurred.

Lossage can come about either by running out of notification descriptors or
by running out of space in the pipe ring.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:40:28 +01:00
David Howells
8cfba76383 pipe: Allow buffers to be marked read-whole-or-error for notifications
Allow a buffer to be marked such that read() must return the entire buffer
in one go or return ENOBUFS.  Multiple buffers can be amalgamated into a
single read, but a short read will occur if the next "whole" buffer won't
fit.

This is useful for watch queue notifications to make sure we don't split a
notification across multiple reads, especially given that we need to
fabricate an overrun record under some circumstances - and that isn't in
the buffers.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:38:18 +01:00
David Howells
c73be61ced pipe: Add general notification queue support
Make it possible to have a general notification queue built on top of a
standard pipe.  Notifications are 'spliced' into the pipe and then read
out.  splice(), vmsplice() and sendfile() are forbidden on pipes used for
notifications as post_one_notification() cannot take pipe->mutex.  This
means that notifications could be posted in between individual pipe
buffers, making iov_iter_revert() difficult to effect.

The way the notification queue is used is:

 (1) An application opens a pipe with a special flag and indicates the
     number of messages it wishes to be able to queue at once (this can
     only be set once):

	pipe2(fds, O_NOTIFICATION_PIPE);
	ioctl(fds[0], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);

 (2) The application then uses poll() and read() as normal to extract data
     from the pipe.  read() will return multiple notifications if the
     buffer is big enough, but it will not split a notification across
     buffers - rather it will return a short read or EMSGSIZE.

     Notification messages include a length in the header so that the
     caller can split them up.

Each message has a header that describes it:

	struct watch_notification {
		__u32	type:24;
		__u32	subtype:8;
		__u32	info;
	};

The type indicates the source (eg. mount tree changes, superblock events,
keyring changes, block layer events) and the subtype indicates the event
type (eg. mount, unmount; EIO, EDQUOT; link, unlink).  The info field
indicates a number of things, including the entry length, an ID assigned to
a watchpoint contributing to this buffer and type-specific flags.

Supplementary data, such as the key ID that generated an event, can be
attached in additional slots.  The maximum message size is 127 bytes.
Messages may not be padded or aligned, so there is no guarantee, for
example, that the notification type will be on a 4-byte bounary.

Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-19 15:08:24 +01:00
Roman Gushchin
f4b00eab50 mm: kmem: rename memcg_kmem_(un)charge() into memcg_kmem_(un)charge_page()
Rename (__)memcg_kmem_(un)charge() into (__)memcg_kmem_(un)charge_page()
to better reflect what they are actually doing:

1) call __memcg_kmem_(un)charge_memcg() to actually charge or uncharge
   the current memcg

2) set or clear the PageKmemcg flag

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Linus Torvalds
6551d5c56e pipe: make sure to wake up everybody when the last reader/writer closes
Andrei Vagin reported that commit 0ddad21d3e ("pipe: use exclusive
waits when reading or writing") broke one of the CRIU tests.  He even
has a trivial reproducer:

    #include <unistd.h>
    #include <sys/types.h>
    #include <sys/wait.h>

    int main()
    {
            int p[2];
            pid_t p1, p2;
            int status;

            if (pipe(p) == -1)
                    return 1;

            p1 = fork();
            if (p1 == 0) {
                    close(p[1]);
                    read(p[0], &status, sizeof(status));
                    return 0;
            }
            p2 = fork();
            if (p2 == 0) {
                    close(p[1]);
                    read(p[0], &status, sizeof(status));
                    return 0;
            }
            sleep(1);
            close(p[1]);
            wait(&status);
            wait(&status);

            return 0;
    }

and the problem - once he points it out - is obvious.  We use these nice
exclusive waits, but when the last writer goes away, it then needs to
wake up _every_ reader (and conversely, the last reader disappearing
needs to wake every writer, of course).

In fact, when going through this, we had several small oddities around
how to wake things.  We did in fact wake every reader when we changed
the size of the pipe buffers.  But that's entirely pointless, since that
just acts as a possible source of new space - no new data to read.

And when we change the size of the buffer, we don't need to wake all
writers even when we add space - that case acts just as if somebody made
space by reading, and any writer that finds itself not filling it up
entirely will wake the next one.

On the other hand, on the exit path, we tried to limit the wakeups with
the proper poll keys etc, which is entirely pointless, because at that
point we obviously need to wake up everybody.  So don't do that: just
wake up everybody - but only do that if the counts changed to zero.

So fix those non-IO wakeups to be more proper: space change doesn't add
any new data, but it might make room for writers, so it wakes up a
writer.  And the actual changes to reader/writer counts should wake up
everybody, since everybody is affected (ie readers will all see EOF if
the writers have gone away, and writers will all get EPIPE if all
readers have gone away).

Fixes: 0ddad21d3e ("pipe: use exclusive waits when reading or writing")
Reported-and-tested-by: Andrei Vagin <avagin@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-18 14:34:36 -08:00
Linus Torvalds
0ddad21d3e pipe: use exclusive waits when reading or writing
This makes the pipe code use separate wait-queues and exclusive waiting
for readers and writers, avoiding a nasty thundering herd problem when
there are lots of readers waiting for data on a pipe (or, less commonly,
lots of writers waiting for a pipe to have space).

While this isn't a common occurrence in the traditional "use a pipe as a
data transport" case, where you typically only have a single reader and
a single writer process, there is one common special case: using a pipe
as a source of "locking tokens" rather than for data communication.

In particular, the GNU make jobserver code ends up using a pipe as a way
to limit parallelism, where each job consumes a token by reading a byte
from the jobserver pipe, and releases the token by writing a byte back
to the pipe.

This pattern is fairly traditional on Unix, and works very well, but
will waste a lot of time waking up a lot of processes when only a single
reader needs to be woken up when a writer releases a new token.

A simplified test-case of just this pipe interaction is to create 64
processes, and then pass a single token around between them (this
test-case also intentionally passes another token that gets ignored to
test the "wake up next" logic too, in case anybody wonders about it):

    #include <unistd.h>

    int main(int argc, char **argv)
    {
        int fd[2], counters[2];

        pipe(fd);
        counters[0] = 0;
        counters[1] = -1;
        write(fd[1], counters, sizeof(counters));

        /* 64 processes */
        fork(); fork(); fork(); fork(); fork(); fork();

        do {
                int i;
                read(fd[0], &i, sizeof(i));
                if (i < 0)
                        continue;
                counters[0] = i+1;
                write(fd[1], counters, (1+(i & 1)) *sizeof(int));
        } while (counters[0] < 1000000);
        return 0;
    }

and in a perfect world, passing that token around should only cause one
context switch per transfer, when the writer of a token causes a
directed wakeup of just a single reader.

But with the "writer wakes all readers" model we traditionally had, on
my test box the above case causes more than an order of magnitude more
scheduling: instead of the expected ~1M context switches, "perf stat"
shows

        231,852.37 msec task-clock                #   15.857 CPUs utilized
        11,250,961      context-switches          #    0.049 M/sec
           616,304      cpu-migrations            #    0.003 M/sec
             1,648      page-faults               #    0.007 K/sec
 1,097,903,998,514      cycles                    #    4.735 GHz
   120,781,778,352      instructions              #    0.11  insn per cycle
    27,997,056,043      branches                  #  120.754 M/sec
       283,581,233      branch-misses             #    1.01% of all branches

      14.621273891 seconds time elapsed

       0.018243000 seconds user
       3.611468000 seconds sys

before this commit.

After this commit, I get

          5,229.55 msec task-clock                #    3.072 CPUs utilized
         1,212,233      context-switches          #    0.232 M/sec
           103,951      cpu-migrations            #    0.020 M/sec
             1,328      page-faults               #    0.254 K/sec
    21,307,456,166      cycles                    #    4.074 GHz
    12,947,819,999      instructions              #    0.61  insn per cycle
     2,881,985,678      branches                  #  551.096 M/sec
        64,267,015      branch-misses             #    2.23% of all branches

       1.702148350 seconds time elapsed

       0.004868000 seconds user
       0.110786000 seconds sys

instead. Much better.

[ Note! This kernel improvement seems to be very good at triggering a
  race condition in the make jobserver (in GNU make 4.2.1) for me. It's
  a long known bug that was fixed back in June 2017 by GNU make commit
  b552b0525198 ("[SV 51159] Use a non-blocking read with pselect to
  avoid hangs.").

  But there wasn't a new release of GNU make until 4.3 on Jan 19 2020,
  so a number of distributions may still have the buggy version. Some
  have backported the fix to their 4.2.1 release, though, and even
  without the fix it's quite timing-dependent whether the bug actually
  is hit. ]

Josh Triplett says:
 "I've been hammering on your pipe fix patch (switching to exclusive
  wait queues) for a month or so, on several different systems, and I've
  run into no issues with it. The patch *substantially* improves
  parallel build times on large (~100 CPU) systems, both with parallel
  make and with other things that use make's pipe-based jobserver.

  All current distributions (including stable and long-term stable
  distributions) have versions of GNU make that no longer have the
  jobserver bug"

Tested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-08 11:39:19 -08:00
Jan Stancek
0dd1e3773a pipe: fix empty pipe check in pipe_write()
LTP pipeio_1 test is hanging with v5.5-rc2-385-gb8e382a185eb,
with read side observing empty pipe and sleeping and write
side running out of space and then sleeping as well. In this
scenario there are 5 writers and 1 reader.

Problem is that after pipe_write() reacquires pipe lock, it
re-checks for empty pipe with potentially stale 'head' and
doesn't wake up read side anymore. pipe->tail can advance
beyond 'head', because there are multiple writers.

Use pipe->head for empty pipe check after reacquiring lock
to observe current state.

Testing: With patch, LTP pipeio_1 ran successfully in loop for 1 hour.
         Without patch it hanged within a minute.

Fixes: 1b6b26ae70 ("pipe: fix and clarify pipe write wakeup logic")
Reported-by: Rachel Sibley <rasibley@redhat.com>
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-22 09:47:47 -08:00
Linus Torvalds
d1c6a2aa02 pipe: simplify signal handling in pipe_read() and add comments
There's no need to separately check for signals while inside the locked
region, since we're going to do "wait_event_interruptible()" right
afterwards anyway, and the error handling is much simpler there.

The check for whether we had already read anything was also redundant,
since we no longer do the odd merging of reads when there are pending
writers.

But perhaps more importantly, this adds commentary about why we still
need to wake up possible writers even though we didn't read any data,
and why we can skip all the finishing touches now if we get a signal (or
had a signal pending) while waiting for more data.

[ This is a split-out cleanup from my "make pipe IO use exclusive wait
  queues" thing, which I can't apply because it triggers a nasty bug in
  the GNU make jobserver   - Linus ]

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-11 11:46:19 -08:00
Linus Torvalds
85190d15f4 pipe: don't use 'pipe_wait() for basic pipe IO
pipe_wait() may be simple, but since it relies on the pipe lock, it
means that we have to do the wakeup while holding the lock.  That's
unfortunate, because the very first thing the waked entity will want to
do is to get the pipe lock for itself.

So get rid of the pipe_wait() usage by simply releasing the pipe lock,
doing the wakeup (if required) and then using wait_event_interruptible()
to wait on the right condition instead.

wait_event_interruptible() handles races on its own by comparing the
wakeup condition before and after adding itself to the wait queue, so
you can use an optimistic unlocked condition for it.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 13:53:09 -08:00
Linus Torvalds
a28c8b9db8 pipe: remove 'waiting_writers' merging logic
This code is ancient, and goes back to when we only had a single page
for the pipe buffers.  The exact history is hidden in the mists of time
(ie "before git", and in fact predates the BK repository too).

At that long-ago point in time, it actually helped to try to merge big
back-and-forth pipe reads and writes, and not limit pipe reads to the
single pipe buffer in length just because that was all we had at a time.

However, since then we've expanded the pipe buffers to multiple pages,
and this logic really doesn't seem to make sense.  And a lot of it is
somewhat questionable (ie "hmm, the user asked for a non-blocking read,
but we see that there's a writer pending, so let's wait anyway to get
the extra data that the writer will have").

But more importantly, it makes the "go to sleep" logic much less
obvious, and considering the wakeup issues we've had, I want to make for
less of those kinds of things.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 13:21:01 -08:00
Linus Torvalds
f467a6a664 pipe: fix and clarify pipe read wakeup logic
This is the read side version of the previous commit: it simplifies the
logic to only wake up waiting writers when necessary, and makes sure to
use a synchronous wakeup.  This time not so much for GNU make jobserver
reasons (that pipe never fills up), but simply to get the writer going
quickly again.

A bit less verbose commentary this time, if only because I assume that
the write side commentary isn't going to be ignored if you touch this
code.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 12:54:26 -08:00
Linus Torvalds
1b6b26ae70 pipe: fix and clarify pipe write wakeup logic
The pipe rework ends up having been extra painful, partly becaused of
actual bugs with ordering and caching of the pipe state, but also
because of subtle performance issues.

In particular, the pipe rework caused the kernel build to inexplicably
slow down.

The reason turns out to be that the GNU make jobserver (which limits the
parallelism of the build) uses a pipe to implement a "token" system: a
parallel submake will read a character from the pipe to get the job
token before starting a new job, and will write a character back to the
pipe when it is done.  The overall job limit is thus easily controlled
by just writing the appropriate number of initial token characters into
the pipe.

But to work well, that really means that the old behavior of write
wakeups being synchronous (WF_SYNC) is very important - when the pipe
writer wakes up a reader, we want the reader to actually get scheduled
immediately.  Otherwise you lose the parallelism of the build.

The pipe rework lost that synchronous wakeup on write, and we had
clearly all forgotten the reasons and rules for it.

This rewrites the pipe write wakeup logic to do the required Wsync
wakeups, but also clarifies the logic and avoids extraneous wakeups.

It also ends up addign a number of comments about what oit does and why,
so that we hopefully don't end up forgetting about this next time we
change this code.

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 12:14:28 -08:00
Linus Torvalds
ad910e36da pipe: fix poll/select race introduced by the pipe rework
The kernel wait queues have a basic rule to them: you add yourself to
the wait-queue first, and then you check the things that you're going to
wait on.  That avoids the races with the event you're waiting for.

The same goes for poll/select logic: the "poll_wait()" goes first, and
then you check the things you're polling for.

Of course, if you use locking, the ordering doesn't matter since the
lock will serialize with anything that changes the state you're looking
at. That's not the case here, though.

So move the poll_wait() first in pipe_poll(), before you start looking
at the pipe state.

Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07 10:41:17 -08:00
Linus Torvalds
da73fcd8cf Merge branch 'pipe-rework' (patches from David Howells)
Merge two fixes for the pipe rework from David Howells:
 "Here are a couple of patches to fix bugs syzbot found in the pipe
  changes:

   - An assertion check will sometimes trip when polling a pipe because
     the ring size and indices used are approximate and may be being
     changed simultaneously.

     An equivalent approximate calculation was done previously, but
     without the assertion check, so I've just dropped the check. To
     make it accurate, the pipe mutex would need to be taken or the spin
     lock could be used - but usage of the spinlock would need to be
     rolled out into splice, iov_iter and other places for that.

   - The index mask and the max_usage values cannot be cached across
     pipe_wait() as F_SETPIPE_SZ could have been called during the wait.
     This can cause pipe_write() to break"

* pipe-rework:
  pipe: Fix missing mask update after pipe_wait()
  pipe: Remove assertion from pipe_poll()
2019-12-05 16:35:53 -08:00
David Howells
8f868d68d3 pipe: Fix missing mask update after pipe_wait()
Fix pipe_write() to not cache the ring index mask and max_usage as their
values are invalidated by calling pipe_wait() because the latter
function drops the pipe lock, thereby allowing F_SETPIPE_SZ change them.
Without this, pipe_write() may subsequently miscalculate the array
indices and pipe fullness, leading to an oops like the following:

  BUG: KASAN: slab-out-of-bounds in pipe_write+0xc25/0xe10 fs/pipe.c:481
  Write of size 8 at addr ffff8880771167a8 by task syz-executor.3/7987
  ...
  CPU: 1 PID: 7987 Comm: syz-executor.3 Not tainted 5.4.0-rc2-syzkaller #0
  ...
  Call Trace:
    pipe_write+0xc25/0xe10 fs/pipe.c:481
    call_write_iter include/linux/fs.h:1895 [inline]
    new_sync_write+0x3fd/0x7e0 fs/read_write.c:483
    __vfs_write+0x94/0x110 fs/read_write.c:496
    vfs_write+0x18a/0x520 fs/read_write.c:558
    ksys_write+0x105/0x220 fs/read_write.c:611
    __do_sys_write fs/read_write.c:623 [inline]
    __se_sys_write fs/read_write.c:620 [inline]
    __x64_sys_write+0x6e/0xb0 fs/read_write.c:620
    do_syscall_64+0xca/0x5d0 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe

This is not a problem for pipe_read() as the mask is recalculated on
each pass of the loop, after pipe_wait() has been called.

Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Reported-by: syzbot+838eb0878ffd51f27c41@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Eric Biggers <ebiggers@kernel.org>
[ Changed it to use a temporary variable 'mask' to avoid long lines -Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05 15:56:20 -08:00
David Howells
8c7b8c34ae pipe: Remove assertion from pipe_poll()
An assertion check was added to pipe_poll() to make sure that the ring
occupancy isn't seen to overflow the ring size.  However, since no locks
are held when the three values are read, it is possible for F_SETPIPE_SZ
to intervene and muck up the calculation, thereby causing the oops.

Fix this by simply removing the assertion and accepting that the
calculation might be approximate.

Note that the previous code also had a similar issue, though there was
no assertion check, since the occupancy counter and the ring size were
not read with a lock held, so it's possible that the poll check might
have malfunctioned then too.

Also wake up all the waiters so that they can reissue their checks if
there was a competing read or write.

Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Reported-by: syzbot+d37abaade33a934f16f2@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-05 15:33:50 -08:00
Linus Torvalds
6a965666b7 Pipework for general notification queue
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl3O0OoACgkQ+7dXa6fL
 C2tAwA//VH9Y81azemXFdflDF90sSH3TCASlKHVYHbBNAkH/QP5F00G4BEM4nNqH
 F3x7qcU9vzfGdumF1pc90Yt6XSYlsQEGF+xMyMw/VS2wKs40yv+b/doVbzOWbN9C
 NfrklgHeuuBk+JzU2llDisVqKRTLt4SmDpYu1ZdcchUQFZCCl3BpgdSEC+xXrHay
 +KlRPVNMSd2kXMCDuSWrr71lVNdCTdf3nNC5p1i780+VrgpIBIG/jmiNdCcd7PLH
 1aesPlr8UZY3+bmRtqe587fVRAhT2qA2xibKtyf9R0hrDtUKR4NSnpPmaeIjb26e
 LhVntcChhYxQqzy/T4ScTDNVjpSlwi6QMo5DwAwzNGf2nf/v5/CZ+vGYDVdXRFHj
 tgH1+8eDpHsi7jJp6E4cmZjiolsUx/ePDDTrQ4qbdDMO7fmIV6YQKFAMTLJepLBY
 qnJVqoBq3qn40zv6tVZmKgWiXQ65jEkBItZhEUmcQRBiSbBDPweIdEzx/mwzkX7U
 1gShGdut6YP4GX7BnOhkiQmzucS85mgkUfG43+mBfYXb+4zNTEjhhkqhEduz2SQP
 xnjHxEM+MTGCj3PozIpJxNKzMTEceYY7cAUdNEMDQcHog7OCnIdGBIc7BPnsN8yA
 CPzntwP4mmLfK3weq3PIGC6d9xfc9PpmiR9docxQOvE6sk2Ifeo=
 =FKC7
 -----END PGP SIGNATURE-----

Merge tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull pipe rework from David Howells:
 "This is my set of preparatory patches for building a general
  notification queue on top of pipes. It makes a number of significant
  changes:

   - It removes the nr_exclusive argument from __wake_up_sync_key() as
     this is always 1. This prepares for the next step:

   - Adds wake_up_interruptible_sync_poll_locked() so that poll can be
     woken up from a function that's holding the poll waitqueue
     spinlock.

   - Change the pipe buffer ring to be managed in terms of unbounded
     head and tail indices rather than bounded index and length. This
     means that reading the pipe only needs to modify one index, not
     two.

   - A selection of helper functions are provided to query the state of
     the pipe buffer, plus a couple to apply updates to the pipe
     indices.

   - The pipe ring is allowed to have kernel-reserved slots. This allows
     many notification messages to be spliced in by the kernel without
     allowing userspace to pin too many pages if it writes to the same
     pipe.

   - Advance the head and tail indices inside the pipe waitqueue lock
     and use wake_up_interruptible_sync_poll_locked() to poke poll
     without having to take the lock twice.

   - Rearrange pipe_write() to preallocate the buffer it is going to
     write into and then drop the spinlock. This allows kernel
     notifications to then be added the ring whilst it is filling the
     buffer it allocated. The read side is stalled because the pipe
     mutex is still held.

   - Don't wake up readers on a pipe if there was already data in it
     when we added more.

   - Don't wake up writers on a pipe if the ring wasn't full before we
     removed a buffer"

* tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  pipe: Remove sync on wake_ups
  pipe: Increase the writer-wakeup threshold to reduce context-switch count
  pipe: Check for ring full inside of the spinlock in pipe_write()
  pipe: Remove redundant wakeup from pipe_write()
  pipe: Rearrange sequence in pipe_write() to preallocate slot
  pipe: Conditionalise wakeup in pipe_read()
  pipe: Advance tail pointer inside of wait spinlock in pipe_read()
  pipe: Allow pipes to have kernel-reserved slots
  pipe: Use head and tail pointers for the ring, not cursor and length
  Add wake_up_interruptible_sync_poll_locked()
  Remove the nr_exclusive argument from __wake_up_sync_key()
  pipe: Reduce #inclusion of pipe_fs_i.h
2019-11-30 14:12:13 -08:00
Linus Torvalds
d8e464ecc1 vfs: mark pipes and sockets as stream-like file descriptors
In commit 3975b097e5 ("convert stream-like files -> stream_open, even
if they use noop_llseek") Kirill used a coccinelle script to change
"nonseekable_open()" to "stream_open()", which changed the trivial cases
of stream-like file descriptors to the new model with FMODE_STREAM.

However, the two big cases - sockets and pipes - don't actually have
that trivial pattern at all, and were thus never converted to
FMODE_STREAM even though it makes lots of sense to do so.

That's particularly true when looking forward to the next change:
getting rid of FMODE_ATOMIC_POS entirely, and just using FMODE_STREAM to
decide whether f_pos updates are needed or not.  And if they are, we'll
always do them atomically.

This came up because KCSAN (correctly) noted that the non-locked f_pos
updates are data races: they are clearly benign for the case where we
don't care, but it would be good to just not have that issue exist at
all.

Note that the reason we used FMODE_ATOMIC_POS originally is that only
doing it for the minimal required case is "safer" in that it's possible
that the f_pos locking can cause unnecessary serialization across the
whole write() call.  And in the worst case, that kind of serialization
can cause deadlock issues: think writers that need readers to empty the
state using the same file descriptor.

[ Note that the locking is per-file descriptor - because it protects
  "f_pos", which is obviously per-file descriptor - so it only affects
  cases where you literally use the same file descriptor to both read
  and write.

  So a regular pipe that has separate reading and writing file
  descriptors doesn't really have this situation even though it's the
  obvious case of "reader empties what a bit writer concurrently fills"

  But we want to make pipes as being stream-line anyway, because we
  don't want the unnecessary overhead of locking, and because a named
  pipe can be (ab-)used by reading and writing to the same file
  descriptor. ]

There are likely a lot of other cases that might want FMODE_STREAM, and
looking for ".llseek = no_llseek" users and other cases that don't have
an lseek file operation at all and making them use "stream_open()" might
be a good idea.  But pipes and sockets are likely to be the two main
cases.

Cc: Kirill Smelkov <kirr@nexedi.com>
Cc: Eic Dumazet <edumazet@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Marco Elver <elver@google.com>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Paul McKenney <paulmck@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-25 09:12:11 -08:00
David Howells
3c0edea9b2 pipe: Remove sync on wake_ups 2019-11-15 16:22:54 +00:00
David Howells
cefa80ced5 pipe: Increase the writer-wakeup threshold to reduce context-switch count
Increase the threshold at which the reader sends a wake event to the
writers in the queue such that the queue must be half empty before the wake
is issued rather than the wake being issued when just a single slot
available.

This reduces the number of context switches in the tests significantly,
without altering the amount of work achieved.  With my pipe-bench program,
there's a 20% reduction versus an unpatched kernel.

Suggested-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
8df441294d pipe: Check for ring full inside of the spinlock in pipe_write()
Make pipe_write() check to see if the ring has become full between it
taking the pipe mutex, checking the ring status and then taking the
spinlock.

This can happen if a notification is written into the pipe as that happens
without the pipe mutex.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
7e25a73f1a pipe: Remove redundant wakeup from pipe_write()
Remove a redundant wakeup from pipe_write().

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
a194dfe6e6 pipe: Rearrange sequence in pipe_write() to preallocate slot
Rearrange the sequence in pipe_write() so that the allocation of the new
buffer, the allocation of a ring slot and the attachment to the ring is
done under the pipe wait spinlock and then the lock is dropped and the
buffer can be filled.

The data copy needs to be done with the spinlock unheld and irqs enabled,
so the lock needs to be dropped first.  However, the reader can't progress
as we're holding pipe->mutex.

We also need to drop the lock as that would impact others looking at the
pipe waitqueue, such as poll(), the consumer and a future kernel message
writer.

We just abandon the preallocated slot if we get a copy error.  Future
writes may continue it and a future read will eventually recycle it.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
8446487feb pipe: Conditionalise wakeup in pipe_read()
Only do a wakeup in pipe_read() if we made space in a completely full
buffer.  The producer shouldn't be waiting on pipe->wait otherwise.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
b667b86734 pipe: Advance tail pointer inside of wait spinlock in pipe_read()
Advance the pipe ring tail pointer inside of wait spinlock in pipe_read()
so that the pipe can be written into with kernel notifications from
contexts where pipe->mutex cannot be taken.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
6718b6f855 pipe: Allow pipes to have kernel-reserved slots
Split pipe->ring_size into two numbers:

 (1) pipe->ring_size - indicates the hard size of the pipe ring.

 (2) pipe->max_usage - indicates the maximum number of pipe ring slots that
     userspace orchestrated events can fill.

This allows for a pipe that is both writable by the general kernel
notification facility and by userspace, allowing plenty of ring space for
notifications to be added whilst preventing userspace from being able to
pin too much unswappable kernel space.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-11-15 16:22:54 +00:00
David Howells
8cefc107ca pipe: Use head and tail pointers for the ring, not cursor and length
Convert pipes to use head and tail pointers for the buffer ring rather than
pointer and length as the latter requires two atomic ops to update (or a
combined op) whereas the former only requires one.

 (1) The head pointer is the point at which production occurs and points to
     the slot in which the next buffer will be placed.  This is equivalent
     to pipe->curbuf + pipe->nrbufs.

     The head pointer belongs to the write-side.

 (2) The tail pointer is the point at which consumption occurs.  It points
     to the next slot to be consumed.  This is equivalent to pipe->curbuf.

     The tail pointer belongs to the read-side.

 (3) head and tail are allowed to run to UINT_MAX and wrap naturally.  They
     are only masked off when the array is being accessed, e.g.:

	pipe->bufs[head & mask]

     This means that it is not necessary to have a dead slot in the ring as
     head == tail isn't ambiguous.

 (4) The ring is empty if "head == tail".

     A helper, pipe_empty(), is provided for this.

 (5) The occupancy of the ring is "head - tail".

     A helper, pipe_occupancy(), is provided for this.

 (6) The number of free slots in the ring is "pipe->ring_size - occupancy".

     A helper, pipe_space_for_user() is provided to indicate how many slots
     userspace may use.

 (7) The ring is full if "head - tail >= pipe->ring_size".

     A helper, pipe_full(), is provided for this.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-10-31 15:12:34 +00:00
David Howells
4fa7ec5db7 vfs: Convert pipe to use the new mount API
Convert the pipe filesystem to the new internal mount API as the old
one will be obsoleted and removed.  This allows greater flexibility in
communication of mount parameters between userspace, the VFS and the
filesystem.

See Documentation/filesystems/mount_api.txt for more information.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-05-25 18:00:07 -04:00
Al Viro
1f58bb18f6 mount_pseudo(): drop 'name' argument, switch to d_make_root()
Once upon a time we used to set ->d_name of e.g. pipefs root
so that d_path() on pipes would work.  These days it's
completely pointless - dentries of pipes are not even connected
to pipefs root.  However, mount_pseudo() had set the root
dentry name (passed as the second argument) and callers
kept inventing names to pass to it.  Including those that
didn't *have* any non-root dentries to start with...

All of that had been pointless for about 8 years now; it's
time to get rid of that cargo-culting...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-05-25 17:59:24 -04:00
Linus Torvalds
6b3a707736 Merge branch 'page-refs' (page ref overflow)
Merge page ref overflow branch.

Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).

Admittedly it's not exactly easy.  To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers.  Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).

Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication.  So let's just do that.

* branch page-refs:
  fs: prevent page refcount overflow in pipe_buf_get
  mm: prevent get_user_pages() from overflowing page refcount
  mm: add 'try_get_page()' helper function
  mm: make page ref count overflow check tighter and more explicit
2019-04-14 15:09:40 -07:00
Matthew Wilcox
15fab63e1e fs: prevent page refcount overflow in pipe_buf_get
Change pipe_buf_get() to return a bool indicating whether it succeeded
in raising the refcount of the page (if the thing in the pipe is a page).
This removes another mechanism for overflowing the page refcount.  All
callers converted to handle a failure.

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-14 10:00:04 -07:00
Linus Torvalds
5f739e4a49 Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull misc vfs updates from Al Viro:
 "Assorted fixes (really no common topic here)"

* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  vfs: Make __vfs_write() static
  vfs: fix preadv64v2 and pwritev64v2 compat syscalls with offset == -1
  pipe: stop using ->can_merge
  splice: don't merge into linked buffers
  fs: move generic stat response attr handling to vfs_getattr_nosec
  orangefs: don't reinitialize result_mask in ->getattr
  fs/devpts: always delete dcache dentry-s in dput()
2019-03-12 13:27:20 -07:00
Shakeel Butt
60cd4bcd62 memcg: localize memcg_kmem_enabled() check
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.

This is purely code cleanup patch without any functional change.  Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same.  This should not matter as
memcg_charge_slab() is not in the hot path.

Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
Jann Horn
01e7187b41 pipe: stop using ->can_merge
Al Viro pointed out that since there is only one pipe buffer type to which
new data can be appended, it isn't necessary to have a ->can_merge field in
struct pipe_buf_operations, we can just check for a magic type.

Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-01 02:01:45 -05:00
Jann Horn
a0ce2f0aa6 splice: don't merge into linked buffers
Before this patch, it was possible for two pipes to affect each other after
data had been transferred between them with tee():

============
$ cat tee_test.c

int main(void) {
  int pipe_a[2];
  if (pipe(pipe_a)) err(1, "pipe");
  int pipe_b[2];
  if (pipe(pipe_b)) err(1, "pipe");
  if (write(pipe_a[1], "abcd", 4) != 4) err(1, "write");
  if (tee(pipe_a[0], pipe_b[1], 2, 0) != 2) err(1, "tee");
  if (write(pipe_b[1], "xx", 2) != 2) err(1, "write");

  char buf[5];
  if (read(pipe_a[0], buf, 4) != 4) err(1, "read");
  buf[4] = 0;
  printf("got back: '%s'\n", buf);
}
$ gcc -o tee_test tee_test.c
$ ./tee_test
got back: 'abxx'
$
============

As suggested by Al Viro, fix it by creating a separate type for
non-mergeable pipe buffers, then changing the types of buffers in
splice_pipe_to_pipe() and link_pipe().

Cc: <stable@vger.kernel.org>
Fixes: 7c77f0b3f9 ("splice: implement pipe to pipe splicing")
Fixes: 70524490ee ("[PATCH] splice: add support for sys_tee()")
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-01 02:01:45 -05:00
Linus Torvalds
a66b4cd1e7 Merge branch 'work.open3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs open-related updates from Al Viro:

 - "do we need fput() or put_filp()" rules are gone - it's always fput()
   now. We keep track of that state where it belongs - in ->f_mode.

 - int *opened mess killed - in finish_open(), in ->atomic_open()
   instances and in fs/namei.c code around do_last()/lookup_open()/atomic_open().

 - alloc_file() wrappers with saner calling conventions are introduced
   (alloc_file_clone() and alloc_file_pseudo()); callers converted, with
   much simplification.

 - while we are at it, saner calling conventions for path_init() and
   link_path_walk(), simplifying things inside fs/namei.c (both on
   open-related paths and elsewhere).

* 'work.open3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
  few more cleanups of link_path_walk() callers
  allow link_path_walk() to take ERR_PTR()
  make path_init() unconditionally paired with terminate_walk()
  document alloc_file() changes
  make alloc_file() static
  do_shmat(): grab shp->shm_file earlier, switch to alloc_file_clone()
  new helper: alloc_file_clone()
  create_pipe_files(): switch the first allocation to alloc_file_pseudo()
  anon_inode_getfile(): switch to alloc_file_pseudo()
  hugetlb_file_setup(): switch to alloc_file_pseudo()
  ocxlflash_getfile(): switch to alloc_file_pseudo()
  cxl_getfile(): switch to alloc_file_pseudo()
  ... and switch shmem_file_setup() to alloc_file_pseudo()
  __shmem_file_setup(): reorder allocations
  new wrapper: alloc_file_pseudo()
  kill FILE_{CREATED,OPENED}
  switch atomic_open() and lookup_open() to returning 0 in all success cases
  document ->atomic_open() changes
  ->atomic_open(): return 0 in all success cases
  get rid of 'opened' in path_openat() and the helpers downstream
  ...
2018-08-13 19:58:36 -07:00
Al Viro
183266f26f new helper: alloc_file_clone()
alloc_file_clone(old_file, mode, ops): create a new struct file with
->f_path equal to that of old_file.  pipe converted.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-07-12 10:04:28 -04:00
Al Viro
152b6372c9 create_pipe_files(): switch the first allocation to alloc_file_pseudo()
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-07-12 10:04:27 -04:00
Al Viro
c9c554f214 alloc_file(): switch to passing O_... flags instead of FMODE_... mode
... so that it could set both ->f_flags and ->f_mode, without callers
having to set ->f_flags manually.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-07-12 10:02:57 -04:00
Al Viro
b10a4a9f76 create_pipe_files(): use fput() if allocation of the second file fails
... just use put_pipe_info() to get the pipe->files down to 1 and let
fput()-called pipe_release() do freeing.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-07-10 23:29:03 -04:00
Linus Torvalds
a11e1d432b Revert changes to convert to ->poll_mask() and aio IOCB_CMD_POLL
The poll() changes were not well thought out, and completely
unexplained.  They also caused a huge performance regression, because
"->poll()" was no longer a trivial file operation that just called down
to the underlying file operations, but instead did at least two indirect
calls.

Indirect calls are sadly slow now with the Spectre mitigation, but the
performance problem could at least be largely mitigated by changing the
"->get_poll_head()" operation to just have a per-file-descriptor pointer
to the poll head instead.  That gets rid of one of the new indirections.

But that doesn't fix the new complexity that is completely unwarranted
for the regular case.  The (undocumented) reason for the poll() changes
was some alleged AIO poll race fixing, but we don't make the common case
slower and more complex for some uncommon special case, so this all
really needs way more explanations and most likely a fundamental
redesign.

[ This revert is a revert of about 30 different commits, not reverted
  individually because that would just be unnecessarily messy  - Linus ]

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-28 10:40:47 -07:00
Christoph Hellwig
dd67081b36 pipe: convert to ->poll_mask
Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-05-26 09:16:44 +02:00
Dominik Brodowski
0a216dd1cf fs: add do_pipe2() helper; remove internal call to sys_pipe2()
Using this helper removes an in-kernel call to the sys_pipe2() syscall.

This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net

Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02 20:15:35 +02:00
Linus Torvalds
a9a08845e9 vfs: do bulk POLL* -> EPOLL* replacement
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:

    for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
        L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
        for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
    done

with de-mangling cleanups yet to come.

NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do.  But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.

The next patch from Al will sort out the final differences, and we
should be all done.

Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-11 14:34:03 -08:00
Eric Biggers
f734076181 pipe: read buffer limits atomically
The pipe buffer limits are accessed without any locking, and may be
changed at any time by the sysctl handlers.  In theory this could cause
problems for expressions like the following:

    pipe_user_pages_hard && user_bufs > pipe_user_pages_hard

...  since the assembly code might reference the 'pipe_user_pages_hard'
memory location multiple times, and if the admin removes the limit by
setting it to 0, there is a very brief window where processes could
incorrectly observe the limit to be exceeded.

Fix this by loading the limits with READ_ONCE() prior to use.

Link: http://lkml.kernel.org/r/20180111052902.14409-8-ebiggers3@gmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Eric Biggers
c4fed5a91f pipe: simplify round_pipe_size()
round_pipe_size() calculates the number of pages the requested size
corresponds to, then rounds the page count up to the next power of 2.

However, it also rounds everything < PAGE_SIZE up to PAGE_SIZE.
Therefore, there's no need to actually translate the size into a page
count; we just need to round the size up to the next power of 2.

We do need to verify the size isn't greater than (1 << 31), since on
32-bit systems roundup_pow_of_two() would be undefined in that case.  But
that can just be combined with the UINT_MAX check which we need anyway
now.

Finally, update pipe_set_size() to not redundantly check the return value
of round_pipe_size() for the "invalid size" case twice.

Link: http://lkml.kernel.org/r/20180111052902.14409-7-ebiggers3@gmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Eric Biggers
96e99be40e pipe: reject F_SETPIPE_SZ with size over UINT_MAX
A pipe's size is represented as an 'unsigned int'.  As expected, writing a
value greater than UINT_MAX to /proc/sys/fs/pipe-max-size fails with
EINVAL.  However, the F_SETPIPE_SZ fcntl silently truncates such values to
32 bits, rather than failing with EINVAL as expected.  (It *does* fail
with EINVAL for values above (1 << 31) but <= UINT_MAX.)

Fix this by moving the check against UINT_MAX into round_pipe_size() which
is called in both cases.

Link: http://lkml.kernel.org/r/20180111052902.14409-6-ebiggers3@gmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Eric Biggers
9903a91c76 pipe: fix off-by-one error when checking buffer limits
With pipe-user-pages-hard set to 'N', users were actually only allowed up
to 'N - 1' buffers; and likewise for pipe-user-pages-soft.

Fix this to allow up to 'N' buffers, as would be expected.

Link: http://lkml.kernel.org/r/20180111052902.14409-5-ebiggers3@gmail.com
Fixes: b0b91d18e2 ("pipe: fix limit checking in pipe_set_size()")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Willy Tarreau <w@1wt.eu>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Eric Biggers
85c2dd5473 pipe: actually allow root to exceed the pipe buffer limits
pipe-user-pages-hard and pipe-user-pages-soft are only supposed to apply
to unprivileged users, as documented in both Documentation/sysctl/fs.txt
and the pipe(7) man page.

However, the capabilities are actually only checked when increasing a
pipe's size using F_SETPIPE_SZ, not when creating a new pipe.  Therefore,
if pipe-user-pages-hard has been set, the root user can run into it and be
unable to create pipes.  Similarly, if pipe-user-pages-soft has been set,
the root user can run into it and have their pipes limited to 1 page each.

Fix this by allowing the privileged override in both cases.

Link: http://lkml.kernel.org/r/20180111052902.14409-4-ebiggers3@gmail.com
Fixes: 759c01142a ("pipe: limit the per-user amount of pages allocated in pipes")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Eric Biggers
319e0a21bb pipe, sysctl: remove pipe_proc_fn()
pipe_proc_fn() is no longer needed, as it only calls through to
proc_dopipe_max_size().  Just put proc_dopipe_max_size() in the ctl_table
entry directly, and remove the unneeded EXPORT_SYMBOL() and the ENOSYS
stub for it.

(The reason the ENOSYS stub isn't needed is that the pipe-max-size
ctl_table entry is located directly in 'kern_table' rather than being
registered separately.  Therefore, the entry is already only defined when
the kernel is built with sysctl support.)

Link: http://lkml.kernel.org/r/20180111052902.14409-3-ebiggers3@gmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Eric Biggers
4c2e4befb3 pipe, sysctl: drop 'min' parameter from pipe-max-size converter
Patch series "pipe: buffer limits fixes and cleanups", v2.

This series simplifies the sysctl handler for pipe-max-size and fixes
another set of bugs related to the pipe buffer limits:

- The root user wasn't allowed to exceed the limits when creating new
  pipes.

- There was an off-by-one error when checking the limits, so a limit of
  N was actually treated as N - 1.

- F_SETPIPE_SZ accepted values over UINT_MAX.

- Reading the pipe buffer limits could be racy.

This patch (of 7):

Before validating the given value against pipe_min_size,
do_proc_dopipe_max_size_conv() calls round_pipe_size(), which rounds the
value up to pipe_min_size.  Therefore, the second check against
pipe_min_size is redundant.  Remove it.

Link: http://lkml.kernel.org/r/20180111052902.14409-2-ebiggers3@gmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Al Viro
076ccb76e1 fs: annotate ->poll() instances
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-11-27 16:20:05 -05:00
Joe Lawrence
7a8d181949 pipe: add proc_dopipe_max_size() to safely assign pipe_max_size
pipe_max_size is assigned directly via procfs sysctl:

  static struct ctl_table fs_table[] = {
          ...
          {
                  .procname       = "pipe-max-size",
                  .data           = &pipe_max_size,
                  .maxlen         = sizeof(int),
                  .mode           = 0644,
                  .proc_handler   = &pipe_proc_fn,
                  .extra1         = &pipe_min_size,
          },
          ...

  int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
                   size_t *lenp, loff_t *ppos)
  {
          ...
          ret = proc_dointvec_minmax(table, write, buf, lenp, ppos)
          ...

and then later rounded in-place a few statements later:

          ...
          pipe_max_size = round_pipe_size(pipe_max_size);
          ...

This leaves a window of time between initial assignment and rounding
that may be visible to other threads.  (For example, one thread sets a
non-rounded value to pipe_max_size while another reads its value.)

Similar reads of pipe_max_size are potentially racy:

  pipe.c :: alloc_pipe_info()
  pipe.c :: pipe_set_size()

Add a new proc_dopipe_max_size() that consolidates reading the new value
from the user buffer, verifying bounds, and calling round_pipe_size()
with a single assignment to pipe_max_size.

Link: http://lkml.kernel.org/r/1507658689-11669-4-git-send-email-joe.lawrence@redhat.com
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:03 -08:00
Joe Lawrence
d3f14c4858 pipe: avoid round_pipe_size() nr_pages overflow on 32-bit
round_pipe_size() contains a right-bit-shift expression which may
overflow, which would cause undefined results in a subsequent
roundup_pow_of_two() call.

  static inline unsigned int round_pipe_size(unsigned int size)
  {
          unsigned long nr_pages;

          nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
          return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
  }

PAGE_SIZE is defined as (1UL << PAGE_SHIFT), so:
  - 4 bytes wide on 32-bit (0 to 0xffffffff)
  - 8 bytes wide on 64-bit (0 to 0xffffffffffffffff)

That means that 32-bit round_pipe_size(), nr_pages may overflow to 0:

  size=0x00000000    nr_pages=0x0
  size=0x00000001    nr_pages=0x1
  size=0xfffff000    nr_pages=0xfffff
  size=0xfffff001    nr_pages=0x0         << !
  size=0xffffffff    nr_pages=0x0         << !

This is bad because roundup_pow_of_two(n) is undefined when n == 0!

64-bit is not a problem as the unsigned int size is 4 bytes wide
(similar to 32-bit) and the larger, 8 byte wide unsigned long, is
sufficient to handle the largest value of the bit shift expression:

  size=0xffffffff    nr_pages=100000

Modify round_pipe_size() to return 0 if n == 0 and updates its callers to
handle accordingly.

Link: http://lkml.kernel.org/r/1507658689-11669-3-git-send-email-joe.lawrence@redhat.com
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:02 -08:00
Joe Lawrence
98159d977f pipe: match pipe_max_size data type with procfs
Patch series "A few round_pipe_size() and pipe-max-size fixups", v3.

While backporting Michael's "pipe: fix limit handling" patchset to a
distro-kernel, Mikulas noticed that current upstream pipe limit handling
contains a few problems:

  1 - procfs signed wrap: echo'ing a large number into
      /proc/sys/fs/pipe-max-size and then cat'ing it back out shows a
      negative value.

  2 - round_pipe_size() nr_pages overflow on 32bit:  this would
      subsequently try roundup_pow_of_two(0), which is undefined.

  3 - visible non-rounded pipe-max-size value: there is no mutual
      exclusion or protection between the time pipe_max_size is assigned
      a raw value from proc_dointvec_minmax() and when it is rounded.

  4 - unsigned long -> unsigned int conversion makes for potential odd
      return errors from do_proc_douintvec_minmax_conv() and
      do_proc_dopipe_max_size_conv().

This version underwent the same testing as v1:
https://marc.info/?l=linux-kernel&m=150643571406022&w=2

This patch (of 4):

pipe_max_size is defined as an unsigned int:

  unsigned int pipe_max_size = 1048576;

but its procfs/sysctl representation is an integer:

  static struct ctl_table fs_table[] = {
          ...
          {
                  .procname       = "pipe-max-size",
                  .data           = &pipe_max_size,
                  .maxlen         = sizeof(int),
                  .mode           = 0644,
                  .proc_handler   = &pipe_proc_fn,
                  .extra1         = &pipe_min_size,
          },
          ...

that is signed:

  int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
                   size_t *lenp, loff_t *ppos)
  {
          ...
          ret = proc_dointvec_minmax(table, write, buf, lenp, ppos)

This leads to signed results via procfs for large values of pipe_max_size:

  % echo 2147483647 >/proc/sys/fs/pipe-max-size
  % cat /proc/sys/fs/pipe-max-size
  -2147483648

Use unsigned operations on this variable to avoid such negative values.

Link: http://lkml.kernel.org/r/1507658689-11669-2-git-send-email-joe.lawrence@redhat.com
Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:02 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
David Howells
cdf01226b2 VFS: Provide empty name qstr
Provide an empty name (ie. "") qstr for general use.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-07-06 03:27:09 -04:00
Linus Torvalds
7c0f6ba682 Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al:

  PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
  sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
        $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)

to do the replacement at the end of the merge window.

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-24 11:46:01 -08:00
Michael Kerrisk (man-pages)
086e774a57 pipe: cap initial pipe capacity according to pipe-max-size limit
This is a patch that provides behavior that is more consistent, and
probably less surprising to users. I consider the change optional, and
welcome opinions about whether it should be applied.

By default, pipes are created with a capacity of 64 kiB.  However,
/proc/sys/fs/pipe-max-size may be set smaller than this value.  In this
scenario, an unprivileged user could thus create a pipe whose initial
capacity exceeds the limit. Therefore, it seems logical to cap the
initial pipe capacity according to the value of pipe-max-size.

The test program shown earlier in this patch series can be used to
demonstrate the effect of the change brought about with this patch:

    # cat /proc/sys/fs/pipe-max-size
    1048576
    # sudo -u mtk ./test_F_SETPIPE_SZ 1
    Initial pipe capacity: 65536
    # echo 10000 > /proc/sys/fs/pipe-max-size
    # cat /proc/sys/fs/pipe-max-size
    16384
    # sudo -u mtk ./test_F_SETPIPE_SZ 1
    Initial pipe capacity: 16384
    # ./test_F_SETPIPE_SZ 1
    Initial pipe capacity: 65536

The last two executions of 'test_F_SETPIPE_SZ' show that pipe-max-size
caps the initial allocation for a new pipe for unprivileged users, but
not for privileged users.

Link: http://lkml.kernel.org/r/31dc7064-2a17-9c5b-1df1-4e3012ee992c@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:32 -07:00
Michael Kerrisk (man-pages)
9c87bcf0a3 pipe: make account_pipe_buffers() return a value, and use it
This is an optional patch, to provide a small performance
improvement.  Alter account_pipe_buffers() so that it returns the
new value in user->pipe_bufs. This means that we can refactor
too_many_pipe_buffers_soft() and too_many_pipe_buffers_hard() to
avoid the costs of repeated use of atomic_long_read() to get the
value user->pipe_bufs.

Link: http://lkml.kernel.org/r/93e5f193-1e5e-3e1f-3a20-eae79b7e1310@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:32 -07:00
Michael Kerrisk (man-pages)
a005ca0e68 pipe: fix limit checking in alloc_pipe_info()
The limit checking in alloc_pipe_info() (used by pipe(2) and when
opening a FIFO) has the following problems:

(1) When checking capacity required for the new pipe, the checks against
    the limit in /proc/sys/fs/pipe-user-pages-{soft,hard} are made
    against existing consumption, and exclude the memory required for
    the new pipe capacity. As a consequence: (1) the memory allocation
    throttling provided by the soft limit does not kick in quite as
    early as it should, and (2) the user can overrun the hard limit.

(2) As currently implemented, accounting and checking against the limits
    is done as follows:

    (a) Test whether the user has exceeded the limit.
    (b) Make new pipe buffer allocation.
    (c) Account new allocation against the limits.

    This is racey. Multiple processes may pass point (a) simultaneously,
    and then allocate pipe buffers that are accounted for only in step
    (c).  The race means that the user's pipe buffer allocation could be
    pushed over the limit (by an arbitrary amount, depending on how
    unlucky we were in the race). [Thanks to Vegard Nossum for spotting
    this point, which I had missed.]

This patch addresses the above problems as follows:

* Alter the checks against limits to include the memory required for the
  new pipe.
* Re-order the accounting step so that it precedes the buffer allocation.
  If the accounting step determines that a limit has been reached, revert
  the accounting and cause the operation to fail.

Link: http://lkml.kernel.org/r/8ff3e9f9-23f6-510c-644f-8e70cd1c0bd9@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:32 -07:00
Michael Kerrisk (man-pages)
09b4d19900 pipe: simplify logic in alloc_pipe_info()
Replace an 'if' block that covers most of the code in this function
with a 'goto'. This makes the code a little simpler to read, and also
simplifies the next patch (fix limit checking in alloc_pipe_info())

Link: http://lkml.kernel.org/r/aef030c1-0257-98a9-4988-186efa48530c@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:32 -07:00
Michael Kerrisk (man-pages)
b0b91d18e2 pipe: fix limit checking in pipe_set_size()
The limit checking in pipe_set_size() (used by fcntl(F_SETPIPE_SZ))
has the following problems:

(1) When increasing the pipe capacity, the checks against the limits in
    /proc/sys/fs/pipe-user-pages-{soft,hard} are made against existing
    consumption, and exclude the memory required for the increased pipe
    capacity. The new increase in pipe capacity can then push the total
    memory used by the user for pipes (possibly far) over a limit. This
    can also trigger the problem described next.

(2) The limit checks are performed even when the new pipe capacity is
    less than the existing pipe capacity. This can lead to problems if a
    user sets a large pipe capacity, and then the limits are lowered,
    with the result that the user will no longer be able to decrease the
    pipe capacity.

(3) As currently implemented, accounting and checking against the
    limits is done as follows:

    (a) Test whether the user has exceeded the limit.
    (b) Make new pipe buffer allocation.
    (c) Account new allocation against the limits.

    This is racey. Multiple processes may pass point (a)
    simultaneously, and then allocate pipe buffers that are accounted
    for only in step (c).  The race means that the user's pipe buffer
    allocation could be pushed over the limit (by an arbitrary amount,
    depending on how unlucky we were in the race). [Thanks to Vegard
    Nossum for spotting this point, which I had missed.]

This patch addresses the above problems as follows:

* Perform checks against the limits only when increasing a pipe's
  capacity; an unprivileged user can always decrease a pipe's capacity.
* Alter the checks against limits to include the memory required for
  the new pipe capacity.
* Re-order the accounting step so that it precedes the buffer
  allocation. If the accounting step determines that a limit has
  been reached, revert the accounting and cause the operation to fail.

The program below can be used to demonstrate problems 1 and 2, and the
effect of the fix. The program takes one or more command-line arguments.
The first argument specifies the number of pipes that the program should
create. The remaining arguments are, alternately, pipe capacities that
should be set using fcntl(F_SETPIPE_SZ), and sleep intervals (in
seconds) between the fcntl() operations. (The sleep intervals allow the
possibility to change the limits between fcntl() operations.)

Problem 1
=========

Using the test program on an unpatched kernel, we first set some
limits:

    # echo 0 > /proc/sys/fs/pipe-user-pages-soft
    # echo 1000000000 > /proc/sys/fs/pipe-max-size
    # echo 10000 > /proc/sys/fs/pipe-user-pages-hard    # 40.96 MB

Then show that we can set a pipe with capacity (100MB) that is
over the hard limit

    # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000
    Initial pipe capacity: 65536
        Loop 1: set pipe capacity to 100000000 bytes
            F_SETPIPE_SZ returned 134217728

Now set the capacity to 100MB twice. The second call fails (which is
probably surprising to most users, since it seems like a no-op):

    # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000 0 100000000
    Initial pipe capacity: 65536
        Loop 1: set pipe capacity to 100000000 bytes
            F_SETPIPE_SZ returned 134217728
        Loop 2: set pipe capacity to 100000000 bytes
            Loop 2, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted

With a patched kernel, setting a capacity over the limit fails at the
first attempt:

    # echo 0 > /proc/sys/fs/pipe-user-pages-soft
    # echo 1000000000 > /proc/sys/fs/pipe-max-size
    # echo 10000 > /proc/sys/fs/pipe-user-pages-hard
    # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000
    Initial pipe capacity: 65536
        Loop 1: set pipe capacity to 100000000 bytes
            Loop 1, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted

There is a small chance that the change to fix this problem could
break user-space, since there are cases where fcntl(F_SETPIPE_SZ)
calls that previously succeeded might fail. However, the chances are
small, since (a) the pipe-user-pages-{soft,hard} limits are new (in
4.5), and the default soft/hard limits are high/unlimited.  Therefore,
it seems warranted to make these limits operate more precisely (and
behave more like what users probably expect).

Problem 2
=========

Running the test program on an unpatched kernel, we first set some limits:

    # getconf PAGESIZE
    4096
    # echo 0 > /proc/sys/fs/pipe-user-pages-soft
    # echo 1000000000 > /proc/sys/fs/pipe-max-size
    # echo 10000 > /proc/sys/fs/pipe-user-pages-hard    # 40.96 MB

Now perform two fcntl(F_SETPIPE_SZ) operations on a single pipe,
first setting a pipe capacity (10MB), sleeping for a few seconds,
during which time the hard limit is lowered, and then set pipe
capacity to a smaller amount (5MB):

    # sudo -u mtk ./test_F_SETPIPE_SZ 1 10000000 15 5000000 &
    [1] 748
    # Initial pipe capacity: 65536
        Loop 1: set pipe capacity to 10000000 bytes
            F_SETPIPE_SZ returned 16777216
            Sleeping 15 seconds

    # echo 1000 > /proc/sys/fs/pipe-user-pages-hard      # 4.096 MB
    #     Loop 2: set pipe capacity to 5000000 bytes
            Loop 2, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted

In this case, the user should be able to lower the limit.

With a kernel that has the patch below, the second fcntl()
succeeds:

    # echo 0 > /proc/sys/fs/pipe-user-pages-soft
    # echo 1000000000 > /proc/sys/fs/pipe-max-size
    # echo 10000 > /proc/sys/fs/pipe-user-pages-hard
    # sudo -u mtk ./test_F_SETPIPE_SZ 1 10000000 15 5000000 &
    [1] 3215
    # Initial pipe capacity: 65536
    #     Loop 1: set pipe capacity to 10000000 bytes
            F_SETPIPE_SZ returned 16777216
            Sleeping 15 seconds

    # echo 1000 > /proc/sys/fs/pipe-user-pages-hard

    #     Loop 2: set pipe capacity to 5000000 bytes
            F_SETPIPE_SZ returned 8388608

8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---

/* test_F_SETPIPE_SZ.c

   (C) 2016, Michael Kerrisk; licensed under GNU GPL version 2 or later

   Test operation of fcntl(F_SETPIPE_SZ) for setting pipe capacity
   and interactions with limits defined by /proc/sys/fs/pipe-* files.
*/

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
    int (*pfd)[2];
    int npipes;
    int pcap, rcap;
    int j, p, s, stime, loop;

    if (argc < 2) {
        fprintf(stderr, "Usage: %s num-pipes "
                "[pipe-capacity sleep-time]...\n", argv[0]);
        exit(EXIT_FAILURE);
    }

    npipes = atoi(argv[1]);

    pfd = calloc(npipes, sizeof (int [2]));
    if (pfd == NULL) {
        perror("calloc");
        exit(EXIT_FAILURE);
    }

    for (j = 0; j < npipes; j++) {
        if (pipe(pfd[j]) == -1) {
            fprintf(stderr, "Loop %d: pipe() failed: ", j);
            perror("pipe");
            exit(EXIT_FAILURE);
        }
    }

    printf("Initial pipe capacity: %d\n", fcntl(pfd[0][0], F_GETPIPE_SZ));

    for (j = 2; j < argc; j += 2 ) {
        loop = j / 2;
        pcap = atoi(argv[j]);
        printf("    Loop %d: set pipe capacity to %d bytes\n", loop, pcap);

        for (p = 0; p < npipes; p++) {
            s = fcntl(pfd[p][0], F_SETPIPE_SZ, pcap);
            if (s == -1) {
                fprintf(stderr, "        Loop %d, pipe %d: F_SETPIPE_SZ "
                        "failed: ", loop, p);
                perror("fcntl");
                exit(EXIT_FAILURE);
            }

            if (p == 0) {
                printf("        F_SETPIPE_SZ returned %d\n", s);
                rcap = s;
            } else {
                if (s != rcap) {
                    fprintf(stderr, "        Loop %d, pipe %d: F_SETPIPE_SZ "
                            "unexpected return: %d\n", loop, p, s);
                    exit(EXIT_FAILURE);
                }
            }

            stime = (j + 1 < argc) ? atoi(argv[j + 1]) : 0;
            if (stime > 0) {
                printf("        Sleeping %d seconds\n", stime);
                sleep(stime);
            }
        }
    }

    exit(EXIT_SUCCESS);
}

8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---

Patch history:

v2
   * Switch order of test in 'if' statement to avoid function call
      (to capability()) in normal path. [This is a fix to a preexisting
      wart in the code. Thanks to Willy Tarreau]
    * Perform (size > pipe_max_size) check before calling
      account_pipe_buffers().  [Thanks to Vegard Nossum]
      Quoting Vegard:

        The potential problem happens if the user passes a very large number
        which will overflow pipe->user->pipe_bufs.

        On 32-bit, sizeof(int) == sizeof(long), so if they pass arg = INT_MAX
        then round_pipe_size() returns INT_MAX. Although it's true that the
        accounting is done in terms of pages and not bytes, so you'd need on
        the order of (1 << 13) = 8192 processes hitting the limit at the same
        time in order to make it overflow, which seems a bit unlikely.

        (See https://lkml.org/lkml/2016/8/12/215 for another discussion on the
        limit checking)

Link: http://lkml.kernel.org/r/1e464945-536b-2420-798b-e77b9c7e8593@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:32 -07:00
Michael Kerrisk (man-pages)
3734a13b96 pipe: refactor argument for account_pipe_buffers()
This is a preparatory patch for following work. account_pipe_buffers()
performs accounting in the 'user_struct'. There is no need to pass a
pointer to a 'pipe_inode_info' struct (which is then dereferenced to
obtain a pointer to the 'user' field). Instead, pass a pointer directly
to the 'user_struct'. This change is needed in preparation for a
subsequent patch that the fixes the limit checking in alloc_pipe_info()
(and the resulting code is a little more logical).

Link: http://lkml.kernel.org/r/7277bf8c-a6fc-4a7d-659c-f5b145c981ab@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:31 -07:00
Michael Kerrisk (man-pages)
d37d416664 pipe: move limit checking logic into pipe_set_size()
This is a preparatory patch for following work. Move the F_SETPIPE_SZ
limit-checking logic from pipe_fcntl() into pipe_set_size().  This
simplifies the code a little, and allows for reworking required in
a later patch that fixes the limit checking in pipe_set_size()

Link: http://lkml.kernel.org/r/3701b2c5-2c52-2c3e-226d-29b9deb29b50@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:31 -07:00
Michael Kerrisk (man-pages)
f491bd7111 pipe: relocate round_pipe_size() above pipe_set_size()
Patch series "pipe: fix limit handling", v2.

When changing a pipe's capacity with fcntl(F_SETPIPE_SZ), various limits
defined by /proc/sys/fs/pipe-* files are checked to see if unprivileged
users are exceeding limits on memory consumption.

While documenting and testing the operation of these limits I noticed
that, as currently implemented, these checks have a number of problems:

(1) When increasing the pipe capacity, the checks against the limits
    in /proc/sys/fs/pipe-user-pages-{soft,hard} are made against
    existing consumption, and exclude the memory required for the
    increased pipe capacity. The new increase in pipe capacity can then
    push the total memory used by the user for pipes (possibly far) over
    a limit. This can also trigger the problem described next.

(2) The limit checks are performed even when the new pipe capacity
    is less than the existing pipe capacity. This can lead to problems
    if a user sets a large pipe capacity, and then the limits are
    lowered, with the result that the user will no longer be able to
    decrease the pipe capacity.

(3) As currently implemented, accounting and checking against the
    limits is done as follows:

    (a) Test whether the user has exceeded the limit.
    (b) Make new pipe buffer allocation.
    (c) Account new allocation against the limits.

    This is racey. Multiple processes may pass point (a) simultaneously,
    and then allocate pipe buffers that are accounted for only in step
    (c).  The race means that the user's pipe buffer allocation could be
    pushed over the limit (by an arbitrary amount, depending on how
    unlucky we were in the race). [Thanks to Vegard Nossum for spotting
    this point, which I had missed.]

This patch series addresses these three problems.

This patch (of 8):

This is a minor preparatory patch.  After subsequent patches,
round_pipe_size() will be called from pipe_set_size(), so place
round_pipe_size() above pipe_set_size().

Link: http://lkml.kernel.org/r/91a91fdb-a959-ba7f-b551-b62477cc98a1@gmail.com
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Reviewed-by: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: <socketpair@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Jens Axboe <axboe@fb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:31 -07:00
Linus Torvalds
101105b171 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
 ">rename2() work from Miklos + current_time() from Deepa"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  fs: Replace current_fs_time() with current_time()
  fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
  fs: Replace CURRENT_TIME with current_time() for inode timestamps
  fs: proc: Delete inode time initializations in proc_alloc_inode()
  vfs: Add current_time() api
  vfs: add note about i_op->rename changes to porting
  fs: rename "rename2" i_op to "rename"
  vfs: remove unused i_op->rename
  fs: make remaining filesystems use .rename2
  libfs: support RENAME_NOREPLACE in simple_rename()
  fs: support RENAME_NOREPLACE for local filesystems
  ncpfs: fix unused variable warning
2016-10-10 20:16:43 -07:00
Miklos Szeredi
fba597db42 pipe: add pipe_buf_confirm() helper
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-05 18:23:59 -04:00
Miklos Szeredi
a779638cf6 pipe: add pipe_buf_release() helper
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-05 18:23:58 -04:00
Deepa Dinamani
078cd8279e fs: Replace CURRENT_TIME with current_time() for inode timestamps
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.

CURRENT_TIME is also not y2038 safe.

This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.

Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.

Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-09-27 21:06:21 -04:00
Vladimir Davydov
c4159a75b6 mm: memcontrol: only mark charged pages with PageKmemcg
To distinguish non-slab pages charged to kmemcg we mark them PageKmemcg,
which sets page->_mapcount to -512.  Currently, we set/clear PageKmemcg
in __alloc_pages_nodemask()/free_pages_prepare() for any page allocated
with __GFP_ACCOUNT, including those that aren't actually charged to any
cgroup, i.e. allocated from the root cgroup context.  To avoid overhead
in case cgroups are not used, we only do that if memcg_kmem_enabled() is
true.  The latter is set iff there are kmem-enabled memory cgroups
(online or offline).  The root cgroup is not considered kmem-enabled.

As a result, if a page is allocated with __GFP_ACCOUNT for the root
cgroup when there are kmem-enabled memory cgroups and is freed after all
kmem-enabled memory cgroups were removed, e.g.

  # no memory cgroups has been created yet, create one
  mkdir /sys/fs/cgroup/memory/test
  # run something allocating pages with __GFP_ACCOUNT, e.g.
  # a program using pipe
  dmesg | tail
  # remove the memory cgroup
  rmdir /sys/fs/cgroup/memory/test

we'll get bad page state bug complaining about page->_mapcount != -1:

  BUG: Bad page state in process swapper/0  pfn:1fd945c
  page:ffffea007f651700 count:0 mapcount:-511 mapping:          (null) index:0x0
  flags: 0x1000000000000000()

To avoid that, let's mark with PageKmemcg only those pages that are
actually charged to and hence pin a non-root memory cgroup.

Fixes: 4949148ad4 ("mm: charge/uncharge kmemcg from generic page allocator paths")
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-09 10:14:10 -07:00
Vladimir Davydov
d86133bd39 pipe: account to kmemcg
Pipes can consume a significant amount of system memory, hence they
should be accounted to kmemcg.

This patch marks pipe_inode_info and anonymous pipe buffer page
allocations as __GFP_ACCOUNT so that they would be charged to kmemcg.
Note, since a pipe buffer page can be "stolen" and get reused for other
purposes, including mapping to userspace, we clear PageKmemcg thus
resetting page->_mapcount and uncharge it in anon_pipe_buf_steal, which
is introduced by this patch.

A note regarding anon_pipe_buf_steal implementation.  We allow to steal
the page if its ref count equals 1.  It looks racy, but it is correct
for anonymous pipe buffer pages, because:

 - We lock out all other pipe users, because ->steal is called with
   pipe_lock held, so the page can't be spliced to another pipe from
   under us.

 - The page is not on LRU and it never was.

 - Thus a parallel thread can access it only by PFN. Although this is
   quite possible (e.g. see page_idle_get_page and balloon_page_isolate)
   this is not dangerous, because all such functions do is increase page
   ref count, check if the page is the one they are looking for, and
   decrease ref count if it isn't. Since our page is clean except for
   PageKmemcg mark, which doesn't conflict with other _mapcount users,
   the worst that can happen is we see page_count > 2 due to a transient
   ref, in which case we false-positively abort ->steal, which is still
   fine, because ->steal is not guaranteed to succeed.

Link: http://lkml.kernel.org/r/20160527150313.GD26059@esperanza
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Willy Tarreau
759c01142a pipe: limit the per-user amount of pages allocated in pipes
On no-so-small systems, it is possible for a single process to cause an
OOM condition by filling large pipes with data that are never read. A
typical process filling 4000 pipes with 1 MB of data will use 4 GB of
memory. On small systems it may be tricky to set the pipe max size to
prevent this from happening.

This patch makes it possible to enforce a per-user soft limit above
which new pipes will be limited to a single page, effectively limiting
them to 4 kB each, as well as a hard limit above which no new pipes may
be created for this user. This has the effect of protecting the system
against memory abuse without hurting other users, and still allowing
pipes to work correctly though with less data at once.

The limit are controlled by two new sysctls : pipe-user-pages-soft, and
pipe-user-pages-hard. Both may be disabled by setting them to zero. The
default soft limit allows the default number of FDs per process (1024)
to create pipes of the default size (64kB), thus reaching a limit of 64MB
before starting to create only smaller pipes. With 256 processes limited
to 1024 FDs each, this results in 1024*64kB + (256*1024 - 1024) * 4kB =
1084 MB of memory allocated for a user. The hard limit is disabled by
default to avoid breaking existing applications that make intensive use
of pipes (eg: for splicing).

Reported-by: socketpair@gmail.com
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Mitigates: CVE-2013-4312 (Linux 2.0+)
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-19 19:25:21 -05:00
Eric Biggers
6ae0806993 fs/pipe.c: return error code rather than 0 in pipe_write()
pipe_write() would return 0 if it failed to merge the beginning of the
data to write with the last, partially filled pipe buffer.  It should
return an error code instead.  Userspace programs could be confused by
write() returning 0 when called with a nonzero 'count'.

The EFAULT error case was a regression from f0d1bec9d5 ("new helper:
copy_page_from_iter()"), while the ops->confirm() error case was a much
older bug.

Test program:

	#include <assert.h>
	#include <errno.h>
	#include <unistd.h>

	int main(void)
	{
		int fd[2];
		char data[1] = {0};

		assert(0 == pipe(fd));
		assert(1 == write(fd[1], data, 1));

		/* prior to this patch, write() returned 0 here  */
		assert(-1 == write(fd[1], NULL, 1));
		assert(errno == EFAULT);
	}

Cc: stable@vger.kernel.org # at least v3.15+
Signed-off-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-11-11 02:18:26 -05:00
Eric Biggers
e9bb1f9b12 fs/pipe.c: preserve alloc_file() error code
If sys_pipe() was unable to allocate a 'struct file', it always failed
with ENFILE, which means "The number of simultaneously open files in the
system would exceed a system-imposed limit." However, alloc_file()
actually returns an ERR_PTR value and might fail with other error codes.
Currently, in addition to ENFILE, it can fail with ENOMEM, potentially
when there are few open files in the system.  Update sys_pipe() to
preserve this error code.

In a prior submission of a similar patch (1) some concern was raised
about introducing a new error code for sys_pipe().  However, for most
system calls, programs cannot assume that new error codes will never be
introduced.  In addition, ENOMEM was, in fact, already a possible error
code for sys_pipe(), in the case where the file descriptor table could
not be expanded due to insufficient memory.

	(1) http://comments.gmane.org/gmane.linux.kernel/1357942

Signed-off-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-11-11 02:18:23 -05:00
David Howells
75c3cfa855 VFS: assorted weird filesystems: d_inode() annotations
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-15 15:06:58 -04:00
Al Viro
5d5d568975 make new_sync_{read,write}() static
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-11 22:29:40 -04:00
Christoph Hellwig
e2e40f2c1e fs: move struct kiocb to fs.h
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-03-25 20:28:11 -04:00
Al Viro
f0d1bec9d5 new helper: copy_page_from_iter()
parallel to copy_page_to_iter().  pipe_write() switched to it (and became
->write_iter()).

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-05-06 17:39:42 -04:00
Al Viro
fb9096a344 pipe: switch to ->read_iter()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-05-06 17:37:58 -04:00
Al Viro
71d8e532b1 start adding the tag to iov_iter
For now, just use the same thing we pass to ->direct_IO() - it's all
iovec-based at the moment.  Pass it explicitly to iov_iter_init() and
account for kvec vs. iovec in there, by the same kludge NFS ->direct_IO()
uses.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-05-06 17:32:49 -04:00
Al Viro
637b58c288 switch pipe_read() to copy_page_to_iter()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-04-01 23:19:22 -04:00
Al Viro
fbb32750a6 pipe: kill ->map() and ->unmap()
all pipe_buffer_operations have the same instances of those...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-04-01 23:19:19 -04:00
Dmitry Monakhov
7e775f46a1 fs/pipe.c: skip file_update_time on frozen fs
Pipe has no data associated with fs so it is not good idea to block
pipe_write() if FS is frozen, but we can not update file's time on such
filesystem.  Let's use same idea as we use in touch_time().

Addresses https://bugzilla.kernel.org/show_bug.cgi?id=65701

Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:37:00 -08:00
Linus Torvalds
b0d8d22921 vfs: fix subtle use-after-free of pipe_inode_info
The pipe code was trying (and failing) to be very careful about freeing
the pipe info only after the last access, with a pattern like:

        spin_lock(&inode->i_lock);
        if (!--pipe->files) {
                inode->i_pipe = NULL;
                kill = 1;
        }
        spin_unlock(&inode->i_lock);
        __pipe_unlock(pipe);
        if (kill)
                free_pipe_info(pipe);

where the final freeing is done last.

HOWEVER.  The above is actually broken, because while the freeing is
done at the end, if we have two racing processes releasing the pipe
inode info, the one that *doesn't* free it will decrement the ->files
count, and unlock the inode i_lock, but then still use the
"pipe_inode_info" afterwards when it does the "__pipe_unlock(pipe)".

This is *very* hard to trigger in practice, since the race window is
very small, and adding debug options seems to just hide it by slowing
things down.

Simon originally reported this way back in July as an Oops in
kmem_cache_allocate due to a single bit corruption (due to the final
"spin_unlock(pipe->mutex.wait_lock)" incrementing a field in a different
allocation that had re-used the free'd pipe-info), it's taken this long
to figure out.

Since the 'pipe->files' accesses aren't even protected by the pipe lock
(we very much use the inode lock for that), the simple solution is to
just drop the pipe lock early.  And since there were two users of this
pattern, create a helper function for it.

Introduced commit ba5bb14733 ("pipe: take allocation and freeing of
pipe_inode_info out of ->i_mutex").

Reported-by: Simon Kirby <sim@hostway.ca>
Reported-by: Ian Applegate <ia@cloudflare.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@kernel.org   # v3.10+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-02 09:44:51 -08:00
Kent Overstreet
a27bb332c0 aio: don't include aio.h in sched.h
Faster kernel compiles by way of fewer unnecessary includes.

[akpm@linux-foundation.org: fix fallout]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Kent Overstreet <koverstreet@google.com>
Cc: Zach Brown <zab@redhat.com>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Asai Thambi S P <asamymuthupa@micron.com>
Cc: Selvan Mani <smani@micron.com>
Cc: Sam Bradshaw <sbradshaw@micron.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-07 20:16:25 -07:00
Al Viro
4b8a8f1e4f get rid of the last free_pipe_info() callers
and rename __free_pipe_info() to free_pipe_info()

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:13:02 -04:00
Al Viro
7bee130e22 get rid of alloc_pipe_info() argument
not used anymore

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:13:01 -04:00
Al Viro
6447a3cf19 get rid of pipe->inode
it's used only as a flag to distinguish normal pipes/FIFOs from the
internal per-task one used by file-to-file splice.  And pipe->files
would work just as well for that purpose...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:13:01 -04:00
Al Viro
ebec73f475 introduce variants of pipe_lock/pipe_unlock for real pipes/FIFOs
fs/pipe.c file_operations methods *know* that pipe is not an internal one;
no need to check pipe->inode for those callers.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:13:01 -04:00
Al Viro
de32ec4cfe pipe: set file->private_data to ->i_pipe
simplify get_pipe_info(), while we are at it

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:13:00 -04:00
Al Viro
72b0d9aacb pipe: don't use ->i_mutex
now it can be done - put mutex into pipe_inode_info, use it instead
of ->i_mutex

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:13:00 -04:00
Al Viro
ba5bb14733 pipe: take allocation and freeing of pipe_inode_info out of ->i_mutex
* new field - pipe->files; number of struct file over that pipe (all
  sharing the same inode, of course); protected by inode->i_lock.
* pipe_release() decrements pipe->files, clears inode->i_pipe when
  if the counter has reached 0 (all under ->i_lock) and, in that case,
  frees pipe after having done pipe_unlock()
* fifo_open() starts with grabbing ->i_lock, and either bumps pipe->files
  if ->i_pipe was non-NULL or allocates a new pipe (dropping and regaining
  ->i_lock) and rechecks ->i_pipe; if it's still NULL, inserts new pipe
  there, otherwise bumps ->i_pipe->files and frees the one we'd allocated.
  At that point we know that ->i_pipe is non-NULL and won't go away, so
  we can do pipe_lock() on it and proceed as we used to.  If we end up
  failing, decrement pipe->files and if it reaches 0 clear ->i_pipe and
  free the sucker after pipe_unlock().

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:12:59 -04:00
Al Viro
18c03cfd40 pipe: preparation to new locking rules
* use the fact that file_inode(file)->i_pipe doesn't change
  while the file is opened - no locks needed to access that.
* switch to pipe_lock/pipe_unlock where it's easy to do

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:12:59 -04:00
Al Viro
fc7478a2bf pipe: switch wait_for_partner() and wake_up_partner() to pipe_inode_info
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:12:59 -04:00
Al Viro
599a0ac14e pipe: fold file_operations instances in one
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:12:58 -04:00
Al Viro
f776c73888 fold fifo.c into pipe.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-04-09 14:12:58 -04:00
Al Viro
a930d87905 vfs: fix pipe counter breakage
If you open a pipe for neither read nor write, the pipe code will not
add any usage counters to the pipe, causing the 'struct pipe_inode_info"
to be potentially released early.

That doesn't normally matter, since you cannot actually use the pipe,
but the pipe release code - particularly fasync handling - still expects
the actual pipe infrastructure to all be there.  And rather than adding
NULL pointer checks, let's just disallow this case, the same way we
already do for the named pipe ("fifo") case.

This is ancient going back to pre-2.4 days, and until trinity, nobody
naver noticed.

Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-03-12 08:29:17 -07:00