Move declarations for libxfs symlink functions into a separate header
file like we do for most everything else.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper so that we can stop open-coding this decision
everywhere.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Whenever we encounter corrupt inode records, we should report that to
the health monitoring system for later reporting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
To use the new rwsem_assert_held()/rwsem_assert_held_write(), we can't
use the existing ASSERT macro. Add a new xfs_assert_ilocked() and
convert all the callers.
Fix an apparent bug in xfs_isilocked(): If the caller specifies
XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL, xfs_assert_ilocked() will check both
the IOLOCK and the ILOCK are held for write. xfs_isilocked() only
checked that the ILOCK was held for write.
xfs_assert_ilocked() is always on, even if DEBUG or XFS_WARN aren't
defined. It's a cheap check, so I don't think it's worth defining
it away.
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
When running in a transaction context, memory allocations are scoped
to GFP_NOFS. Hence we don't need to use GFP_NOFS contexts in pure
transaction context allocations - GFP_KERNEL will automatically get
converted to GFP_NOFS as appropriate.
Go through the code and convert all the obvious GFP_NOFS allocations
in transaction context to use GFP_KERNEL. This further reduces the
explicit use of GFP_NOFS in XFS.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
In the past we've had problems with lockdep false positives stemming
from inode locking occurring in memory reclaim contexts (e.g. from
superblock shrinkers). Lockdep doesn't know that inodes access from
above memory reclaim cannot be accessed from below memory reclaim
(and vice versa) but there has never been a good solution to solving
this problem with lockdep annotations.
This situation isn't unique to inode locks - buffers are also locked
above and below memory reclaim, and we have to maintain lock
ordering for them - and against inodes - appropriately. IOWs, the
same code paths and locks are taken both above and below memory
reclaim and so we always need to make sure the lock orders are
consistent. We are spared the lockdep problems this might cause
by the fact that semaphores and bit locks aren't covered by lockdep.
In general, this sort of lockdep false positive detection is cause
by code that runs GFP_KERNEL memory allocation with an actively
referenced inode locked. When it is run from a transaction, memory
allocation is automatically GFP_NOFS, so we don't have reclaim
recursion issues. So in the places where we do memory allocation
with inodes locked outside of a transaction, we have explicitly set
them to use GFP_NOFS allocations to prevent lockdep false positives
from being reported if the allocation dips into direct memory
reclaim.
More recently, __GFP_NOLOCKDEP was added to the memory allocation
flags to tell lockdep not to track that particular allocation for
the purposes of reclaim recursion detection. This is a much better
way of preventing false positives - it allows us to use GFP_KERNEL
context outside of transactions, and allows direct memory reclaim to
proceed normally without throwing out false positive deadlock
warnings.
The obvious places that lock inodes and do memory allocation are the
lookup paths and inode extent list initialisation. These occur in
non-transactional GFP_KERNEL contexts, and so can run direct reclaim
and lock inodes.
This patch makes a first path through all the explicit GFP_NOFS
allocations in XFS and converts the obvious ones to GFP_KERNEL |
__GFP_NOLOCKDEP as a first step towards removing explicit GFP_NOFS
allocations from the XFS code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.
This conversion was done with:
$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
kmem_alloc() is just a thin wrapper around kmalloc() these days.
Convert everything to use kmalloc() so we can get rid of the
wrapper.
Note: the transaction region allocation in xlog_add_to_transaction()
can be a high order allocation. Converting it to use
kmalloc(__GFP_NOFAIL) results in warnings in the page allocation
code being triggered because the mm subsystem does not want us to
use __GFP_NOFAIL with high order allocations like we've been doing
with the kmem_alloc() wrapper for a couple of decades. Hence this
specific case gets converted to xlog_kvmalloc() rather than
kmalloc() to avoid this issue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
sparse complains about struct xfs_attr_shortform because it embeds a
structure with a variable sized array in a variable sized array.
Given that xfs_attr_shortform is not a very useful structure, and the
dir2 equivalent has been removed a long time ago, remove it as well.
Provide a xfs_attr_sf_firstentry helper that returns the first
xfs_attr_sf_entry behind a xfs_attr_sf_hdr to replace the structure
dereference.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Many of the xfs_idata_realloc callers need to set a local pointer to the
just reallocated if_data memory. Return the pointer to simplify them a
bit and use the opportunity to re-use krealloc for freeing if_data if the
size hits 0.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
The xfs_ifork structure currently has a union of the if_root void pointer
and the if_data char pointer. In either case it is an opaque pointer
that depends on the fork format. Replace the union with a single if_data
void pointer as that is what almost all callers want. Only the symlink
NULL termination code in xfs_init_local_fork actually needs a new local
variable now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
Use the reverse-mapping btree information to rebuild an inode block map.
Update the btree bulk loading code as necessary to support inode rooted
btrees and fix some bitrot problems.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Determine if inode fork damage is responsible for the inode being unable
to pass the ifork verifiers in xfs_iget and zap the fork contents if
this is true. Once this is done the fork will be empty but we'll be
able to construct an in-core inode, and a subsequent call to the inode
fork repair ioctl will search the rmapbt to rebuild the records that
were in the fork.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
While I was cleaning things up for 6.1, I noticed that the btree
_query_range and _query_all functions don't perform the same checking
that the _get_rec functions perform. In fact, they don't perform /any/
sanity checking, which means that callers aren't warned about impossible
records.
Therefore, hoist the record validation and complaint logging code into
separate functions, and call them from any place where we convert an
ondisk record into an incore record. For online scrub, we can replace
checking code with a call to the record checking functions in libxfs,
thereby reducing the size of the codebase.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnwAKCRBKO3ySh0YR
ppn6AQCOWjqsq7klLAQdvEDm3O8v4k94geKdn4Ruvbptwa2iUQD/WAJ5LwKnEPuQ
+eB5AfzsziMQMNX7DtUwncaDJm1RBgY=
=ys9Z
-----END PGP SIGNATURE-----
Merge tag 'btree-complain-bad-records-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next
xfs: standardize btree record checking code [v24.5]
While I was cleaning things up for 6.1, I noticed that the btree
_query_range and _query_all functions don't perform the same checking
that the _get_rec functions perform. In fact, they don't perform /any/
sanity checking, which means that callers aren't warned about impossible
records.
Therefore, hoist the record validation and complaint logging code into
separate functions, and call them from any place where we convert an
ondisk record into an incore record. For online scrub, we can replace
checking code with a call to the record checking functions in libxfs,
thereby reducing the size of the codebase.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While fuzzing the data fork extent count on a btree-format directory
with xfs/375, I observed the following (excerpted) splat:
XFS: Assertion failed: xfs_isilocked(ip, XFS_ILOCK_EXCL), file: fs/xfs/libxfs/xfs_bmap.c, line: 1208
------------[ cut here ]------------
WARNING: CPU: 0 PID: 43192 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
Call Trace:
<TASK>
xfs_iread_extents+0x1af/0x210 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_dir_walk+0xb8/0x190 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_parent_count_parent_dentries+0x41/0x80 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_parent_validate+0x199/0x2e0 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xchk_parent+0xdf/0x130 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_scrub_metadata+0x2b8/0x730 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_scrubv_metadata+0x38b/0x4d0 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_ioc_scrubv_metadata+0x111/0x160 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
xfs_file_ioctl+0x367/0xf50 [xfs 09f66509ece4938760fac7de64732a0cbd3e39cd]
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The cause of this is a race condition in xfs_ilock_data_map_shared,
which performs an unlocked access to the data fork to guess which lock
mode it needs:
Thread 0 Thread 1
xfs_need_iread_extents
<observe no iext tree>
xfs_ilock(..., ILOCK_EXCL)
xfs_iread_extents
<observe no iext tree>
<check ILOCK_EXCL>
<load bmbt extents into iext>
<notice iext size doesn't
match nextents>
xfs_need_iread_extents
<observe iext tree>
xfs_ilock(..., ILOCK_SHARED)
<tear down iext tree>
xfs_iunlock(..., ILOCK_EXCL)
xfs_iread_extents
<observe no iext tree>
<check ILOCK_EXCL>
*BOOM*
Fix this race by adding a flag to the xfs_ifork structure to indicate
that we have not yet read in the extent records and changing the
predicate to look at the flag state, not if_height. The memory barrier
ensures that the flag will not be set until the very end of the
function.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Similar to what we've just done for the other btrees, create a function
to log corrupt bmbt records and call it whenever we encounter a bad
record in the ondisk btree.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The "%Ld" specifier, which represents long long unsigned,
doesn't meet C language standard, and even more,
it makes people easily mistake with "%ld", which represent
long unsigned. So replace "%Ld" with "lld".
Do the same with "%Lu".
Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
I observed the following evidence of a memory leak while running xfs/399
from the xfs fsck test suite (edited for brevity):
XFS (sde): Metadata corruption detected at xfs_attr_shortform_verify_struct.part.0+0x7b/0xb0 [xfs], inode 0x1172 attr fork
XFS: Assertion failed: ip->i_af.if_u1.if_data == NULL, file: fs/xfs/libxfs/xfs_inode_fork.c, line: 315
------------[ cut here ]------------
WARNING: CPU: 2 PID: 91635 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
CPU: 2 PID: 91635 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:assfail+0x46/0x4a [xfs]
Call Trace:
<TASK>
xfs_ifork_zap_attr+0x7c/0xb0
xfs_iformat_attr_fork+0x86/0x110
xfs_inode_from_disk+0x41d/0x480
xfs_iget+0x389/0xd70
xfs_bulkstat_one_int+0x5b/0x540
xfs_bulkstat_iwalk+0x1e/0x30
xfs_iwalk_ag_recs+0xd1/0x160
xfs_iwalk_run_callbacks+0xb9/0x180
xfs_iwalk_ag+0x1d8/0x2e0
xfs_iwalk+0x141/0x220
xfs_bulkstat+0x105/0x180
xfs_ioc_bulkstat.constprop.0.isra.0+0xc5/0x130
xfs_file_ioctl+0xa5f/0xef0
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This newly-added assertion checks that there aren't any incore data
structures hanging off the incore fork when we're trying to reset its
contents. From the call trace, it is evident that iget was trying to
construct an incore inode from the ondisk inode, but the attr fork
verifier failed and we were trying to undo all the memory allocations
that we had done earlier.
The three assertions in xfs_ifork_zap_attr check that the caller has
already called xfs_idestroy_fork, which clearly has not been done here.
As the zap function then zeroes the pointers, we've effectively leaked
the memory.
The shortest change would have been to insert an extra call to
xfs_idestroy_fork, but it makes more sense to bundle the _idestroy_fork
call into _zap_attr, since all other callsites call _idestroy_fork
immediately prior to calling _zap_attr. IOWs, it eliminates one way to
fail.
Note: This change only applies cleanly to 2ed5b09b3e8f, since we just
reworked the attr fork lifetime. However, I think this memory leak has
existed since 0f45a1b20cd8, since the chain xfs_iformat_attr_fork ->
xfs_iformat_local -> xfs_init_local_fork will allocate
ifp->if_u1.if_data, but if xfs_ifork_verify_local_attr fails,
xfs_iformat_attr_fork will free i_afp without freeing any of the stuff
hanging off i_afp. The solution for older kernels I think is to add the
missing call to xfs_idestroy_fork just prior to calling kmem_cache_free.
Found by fuzzing a.sfattr.hdr.totsize = lastbit in xfs/399.
Fixes: 2ed5b09b3e8f ("xfs: make inode attribute forks a permanent part of struct xfs_inode")
Probably-Fixes: 0f45a1b20cd8 ("xfs: improve local fork verification")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
These NULL check are no long needed after commit 2ed5b09b3e8f ("xfs:
make inode attribute forks a permanent part of struct xfs_inode").
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Replace the shouty macros here with typechecked helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Replace this shouty macro with a real C function that has a more
descriptive name.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the
attribute fork but i_forkoff is zero. This eliminates the ambiguity
between i_forkoff and i_af.if_present, which should make it easier to
understand the lifetime of attr forks.
While we're at it, remove the if_present checks around calls to
xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr
forks that have already been torn down.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Syzkaller reported a UAF bug a while back:
==================================================================
BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958
CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted
5.15.0-0.30.3-20220406_1406 #3
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106
print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459
xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159
xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36
__vfs_getxattr+0xdf/0x13d fs/xattr.c:399
cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300
security_inode_need_killpriv+0x4c/0x97 security/security.c:1408
dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912
dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908
do_truncate+0xc3/0x1e0 fs/open.c:56
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
RIP: 0033:0x7f7ef4bb753d
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48
89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73
01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d
RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0
RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e
R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0
</TASK>
Allocated by task 2953:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
__kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467
kasan_slab_alloc include/linux/kasan.h:254 [inline]
slab_post_alloc_hook mm/slab.h:519 [inline]
slab_alloc_node mm/slub.c:3213 [inline]
slab_alloc mm/slub.c:3221 [inline]
kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226
kmem_cache_zalloc include/linux/slab.h:711 [inline]
xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287
xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098
xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_setxattr+0x11b/0x177 fs/xattr.c:180
__vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214
__vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275
vfs_setxattr+0x154/0x33d fs/xattr.c:301
setxattr+0x216/0x29f fs/xattr.c:575
__do_sys_fsetxattr fs/xattr.c:632 [inline]
__se_sys_fsetxattr fs/xattr.c:621 [inline]
__x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
Freed by task 2949:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track+0x1c/0x21 mm/kasan/common.c:46
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360
____kasan_slab_free mm/kasan/common.c:366 [inline]
____kasan_slab_free mm/kasan/common.c:328 [inline]
__kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:230 [inline]
slab_free_hook mm/slub.c:1700 [inline]
slab_free_freelist_hook mm/slub.c:1726 [inline]
slab_free mm/slub.c:3492 [inline]
kmem_cache_free+0xdc/0x3ce mm/slub.c:3508
xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773
xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822
xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413
xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684
xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_removexattr+0x106/0x16a fs/xattr.c:468
cap_inode_killpriv+0x24/0x47 security/commoncap.c:324
security_inode_killpriv+0x54/0xa1 security/security.c:1414
setattr_prepare+0x1a6/0x897 fs/attr.c:146
xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682
xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065
xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093
notify_change+0xae5/0x10a1 fs/attr.c:410
do_truncate+0x134/0x1e0 fs/open.c:64
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
The buggy address belongs to the object at ffff88802cec9188
which belongs to the cache xfs_ifork of size 40
The buggy address is located 20 bytes inside of
40-byte region [ffff88802cec9188, ffff88802cec91b0)
The buggy address belongs to the page:
page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2cec9
flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80
raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb
ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc
>ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb
^
ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb
ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb
==================================================================
The root cause of this bug is the unlocked access to xfs_inode.i_afp
from the getxattr code paths while trying to determine which ILOCK mode
to use to stabilize the xattr data. Unfortunately, the VFS does not
acquire i_rwsem when vfs_getxattr (or listxattr) call into the
filesystem, which means that getxattr can race with a removexattr that's
tearing down the attr fork and crash:
xfs_attr_set: xfs_attr_get:
xfs_attr_fork_remove: xfs_ilock_attr_map_shared:
xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_cache, ip->i_afp);
if (ip->i_afp &&
ip->i_afp = NULL;
xfs_need_iread_extents(ip->i_afp))
<KABOOM>
ip->i_forkoff = 0;
Regrettably, the VFS is much more lax about i_rwsem and getxattr than
is immediately obvious -- not only does it not guarantee that we hold
i_rwsem, it actually doesn't guarantee that we *don't* hold it either.
The getxattr system call won't acquire the lock before calling XFS, but
the file capabilities code calls getxattr with and without i_rwsem held
to determine if the "security.capabilities" xattr is set on the file.
Fixing the VFS locking requires a treewide investigation into every code
path that could touch an xattr and what i_rwsem state it expects or sets
up. That could take years or even prove impossible; fortunately, we
can fix this UAF problem inside XFS.
An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to
ensure that i_forkoff is always zeroed before i_afp is set to null and
changed the read paths to use smp_rmb before accessing i_forkoff and
i_afp, which avoided these UAF problems. However, the patch author was
too busy dealing with other problems in the meantime, and by the time he
came back to this issue, the situation had changed a bit.
On a modern system with selinux, each inode will always have at least
one xattr for the selinux label, so it doesn't make much sense to keep
incurring the extra pointer dereference. Furthermore, Allison's
upcoming parent pointer patchset will also cause nearly every inode in
the filesystem to have extended attributes. Therefore, make the inode
attribute fork structure part of struct xfs_inode, at a cost of 40 more
bytes.
This patch adds a clunky if_present field where necessary to maintain
the existing logic of xattr fork null pointer testing in the existing
codebase. The next patch switches the logic over to XFS_IFORK_Q and it
all goes away.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We're about to make this logic do a bit more, so convert the macro to a
static inline function for better typechecking and fewer shouty macros.
No functional changes here.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Callers currently have to round out the size of buffers to match the
aligment constraints of log iovecs and xlog_write(). They should not
need to know this detail, so introduce a new function to calculate
the iovec length (for use in ->iop_size implementations). Also
modify xlog_finish_iovec() to round up the length to the correct
alignment so the callers don't need to do this, either.
Convert the only user - inode forks - of this alignment rounding to
use the new interface.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we first allocate or resize an inline inode fork, we round up
the allocation to 4 byte alingment to make journal alignment
constraints. We don't clear the unused bytes, so we can copy up to
three uninitialised bytes into the journal. Zero those bytes so we
only ever copy zeros into the journal.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This commit enables upgrading existing inodes to use large extent counters
provided that underlying filesystem's superblock has large extent counter
feature enabled.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
This commit defines new macros to represent maximum extent counts allowed by
filesystems which have support for large per-inode extent counters.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
A future commit will introduce a 64-bit on-disk data extent counter and a
32-bit on-disk attr extent counter. This commit promotes xfs_extnum_t and
xfs_aextnum_t to 64 and 32-bits in order to correctly handle in-core versions
of these quantities.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
This commit replaces the macro XFS_DFORK_NEXTENTS() with the helper function
xfs_dfork_nextents(). As of this commit, xfs_dfork_nextents() returns the same
value as XFS_DFORK_NEXTENTS(). A future commit which extends inode's extent
counter fields will add more logic to this helper.
This commit also replaces direct accesses to xfs_dinode->di_[a]nextents
with calls to xfs_dfork_nextents().
No functional changes have been made.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
xfs_extnum_t is the type to use to declare variables which have values
obtained from xfs_dinode->di_[a]nextents. This commit replaces basic
types (e.g. uint32_t) with xfs_extnum_t for such variables.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
xfs_iext_max_nextents() returns the maximum number of extents possible for one
of data, cow or attribute fork. This helper will be extended further in a
future commit when maximum extent counts associated with data/attribute forks
are increased.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Remove these typedefs by referencing kmem_cache directly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Remove the few leftover instances of the xfs_dinode_t typedef.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The in-memory XFS_IFEXTENTS is now only used to check if an inode with
extents still needs the extents to be read into memory before doing
operations that need the extent map. Add a new xfs_need_iread_extents
helper that returns true for btree format forks that do not have any
entries in the in-memory extent btree, and use that instead of checking
the XFS_IFEXTENTS flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just check for an inline format fork instead of the using the equivalent
in-memory XFS_IFINLINE flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Just check for a btree format fork instead of the using the equivalent
in-memory XFS_IFBROOT flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Stop using the XFS_IFEXTENTS flag, and instead switch on the fork format
in xfs_idestroy_fork to decide how to cleanup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the nblocks
field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation of removing the historic icinode struct, move the on-disk
size field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
When we allocate a new inode, we often need to add an attribute to
the inode as part of the create. This can happen as a result of
needing to add default ACLs or security labels before the inode is
made visible to userspace.
This is highly inefficient right now. We do the create transaction
to allocate the inode, then we do an "add attr fork" transaction to
modify the just created empty inode to set the inode fork offset to
allow attributes to be stored, then we go and do the attribute
creation.
This means 3 transactions instead of 1 to allocate an inode, and
this greatly increases the load on the CIL commit code, resulting in
excessive contention on the CIL spin locks and performance
degradation:
18.99% [kernel] [k] __pv_queued_spin_lock_slowpath
3.57% [kernel] [k] do_raw_spin_lock
2.51% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
2.48% [kernel] [k] memcpy
2.34% [kernel] [k] xfs_log_commit_cil
The typical profile resulting from running fsmark on a selinux enabled
filesytem is adds this overhead to the create path:
- 15.30% xfs_init_security
- 15.23% security_inode_init_security
- 13.05% xfs_initxattrs
- 12.94% xfs_attr_set
- 6.75% xfs_bmap_add_attrfork
- 5.51% xfs_trans_commit
- 5.48% __xfs_trans_commit
- 5.35% xfs_log_commit_cil
- 3.86% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.70% xfs_trans_alloc
0.52% xfs_trans_reserve
- 5.41% xfs_attr_set_args
- 5.39% xfs_attr_set_shortform.constprop.0
- 4.46% xfs_trans_commit
- 4.46% __xfs_trans_commit
- 4.33% xfs_log_commit_cil
- 2.74% _raw_spin_lock
- do_raw_spin_lock
__pv_queued_spin_lock_slowpath
0.60% xfs_inode_item_format
0.90% xfs_attr_try_sf_addname
- 1.99% selinux_inode_init_security
- 1.02% security_sid_to_context_force
- 1.00% security_sid_to_context_core
- 0.92% sidtab_entry_to_string
- 0.90% sidtab_sid2str_get
0.59% sidtab_sid2str_put.part.0
- 0.82% selinux_determine_inode_label
- 0.77% security_transition_sid
0.70% security_compute_sid.part.0
And fsmark creation rate performance drops by ~25%. The key point to
note here is that half the additional overhead comes from adding the
attribute fork to the newly created inode. That's crazy, considering
we can do this same thing at inode create time with a couple of
lines of code and no extra overhead.
So, if we know we are going to add an attribute immediately after
creating the inode, let's just initialise the attribute fork inside
the create transaction and chop that whole chunk of code out of
the create fast path. This completely removes the performance
drop caused by enabling SELinux, and the profile looks like:
- 8.99% xfs_init_security
- 9.00% security_inode_init_security
- 6.43% xfs_initxattrs
- 6.37% xfs_attr_set
- 5.45% xfs_attr_set_args
- 5.42% xfs_attr_set_shortform.constprop.0
- 4.51% xfs_trans_commit
- 4.54% __xfs_trans_commit
- 4.59% xfs_log_commit_cil
- 2.67% _raw_spin_lock
- 3.28% do_raw_spin_lock
3.08% __pv_queued_spin_lock_slowpath
0.66% xfs_inode_item_format
- 0.90% xfs_attr_try_sf_addname
- 0.60% xfs_trans_alloc
- 2.35% selinux_inode_init_security
- 1.25% security_sid_to_context_force
- 1.21% security_sid_to_context_core
- 1.19% sidtab_entry_to_string
- 1.20% sidtab_sid2str_get
- 0.86% sidtab_sid2str_put.part.0
- 0.62% _raw_spin_lock_irqsave
- 0.77% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.84% selinux_determine_inode_label
- 0.83% security_transition_sid
0.86% security_compute_sid.part.0
Which indicates the XFS overhead of creating the selinux xattr has
been halved. This doesn't fix the CIL lock contention problem, just
means it's not a limiting factor for this workload. Lock contention
in the security subsystems is going to be an issue soon, though...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: fix compilation error when CONFIG_SECURITY=n]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Use the AG btree height limits that we precomputed into the xfs_mount to
validate the AG headers instead of using XFS_BTREE_MAXLEVELS.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This commit adds XFS_ERRTAG_REDUCE_MAX_IEXTENTS error tag which enables
userspace programs to test "Inode fork extent count overflow detection"
by reducing maximum possible inode fork extent count to 10.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS does not check for possible overflow of per-inode extent counter
fields when adding extents to either data or attr fork.
For e.g.
1. Insert 5 million xattrs (each having a value size of 255 bytes) and
then delete 50% of them in an alternating manner.
2. On a 4k block sized XFS filesystem instance, the above causes 98511
extents to be created in the attr fork of the inode.
xfsaild/loop0 2008 [003] 1475.127209: probe:xfs_inode_to_disk: (ffffffffa43fb6b0) if_nextents=98511 i_ino=131
3. The incore inode fork extent counter is a signed 32-bit
quantity. However the on-disk extent counter is an unsigned 16-bit
quantity and hence cannot hold 98511 extents.
4. The following incorrect value is stored in the attr extent counter,
# xfs_db -f -c 'inode 131' -c 'print core.naextents' /dev/loop0
core.naextents = -32561
This commit adds a new helper function (i.e.
xfs_iext_count_may_overflow()) to check for overflow of the per-inode
data and xattr extent counters. Future patches will use this function to
make sure that an FS operation won't cause the extent counter to
overflow.
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Babu R <chandanrlinux@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove kmem_realloc() function and convert its users to use MM API
directly (krealloc())
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use kmem_cache_zalloc() directly.
With the exception of xlog_ticket_alloc() which will be dealt on the
next patch for readability.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move freeing the dynamically allocated attr and COW fork, as well
as zeroing the pointers where actually needed into the callers, and
just pass the xfs_ifork structure to xfs_idestroy_fork. Also simplify
the kmem_free calls by not checking for NULL first.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Both the data and attr fork have a format that is stored in the legacy
idinode. Move it into the xfs_ifork structure instead, where it uses
up padding.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are there are three extents counters per inode, one for each of
the forks. Two are in the legacy icdinode and one is directly in
struct xfs_inode. Switch to a single counter in the xfs_ifork structure
where it uses up padding at the end of the structure. This simplifies
various bits of code that just wants the number of extents counter and
can now directly dereference it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>