* Whenever cpuset needs to rebuild sched_domain, it walked all tasks looking
for DEADLINE tasks as they need to be accounted on the new domain. Walking
all tasks can be expensive and there may not be any DEADLINE tasks at all.
Task iteration is now omitted if there are no DEADLINE tasks.
* Fixes DEADLINE bandwidth misaccounting after task migration failures.
* When no controller is enabled, -Wstringop-overflow warning is triggered.
The fix patch added an early exit which is too eager and got reverted for
now. Will fix later.
* Everything else are minor cleanups.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZJoRHw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGZatAQCKTv8pb5HEgochph4n26laSdVZs6ce3Y+s7V1T
rum+3QD/TyJFmCkZSMscolZGFuafpg41sjPbmc4SexeuAMYCMgY=
=nioD
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
- Whenever cpuset needs to rebuild sched_domain, it walked all tasks
looking for DEADLINE tasks as they need to be accounted on the new
domain. Walking all tasks can be expensive and there may not be any
DEADLINE tasks at all. Task iteration is now omitted if there are no
DEADLINE tasks
- Fixes DEADLINE bandwidth misaccounting after task migration failures
- When no controller is enabled, -Wstringop-overflow warning is
triggered. The fix patch added an early exit which is too eager and
got reverted for now. Will fix later
- Everything else is minor cleanups
* tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
Revert "cgroup: Avoid -Wstringop-overflow warnings"
cgroup/misc: Expose misc.current on cgroup v2 root
cgroup: Avoid -Wstringop-overflow warnings
cgroup: remove obsolete comment on cgroup_on_dfl()
cgroup: remove unused task_cgroup_path()
cgroup/cpuset: remove unneeded header files
cgroup: make cgroup_is_threaded() and cgroup_is_thread_root() static
rdmacg: fix kernel-doc warnings in rdmacg
cgroup: Replace the css_set call with cgroup_get
cgroup: remove unused macro for_each_e_css()
cgroup: Update out-of-date comment in cgroup_migrate()
cgroup: Replace all non-returning strlcpy with strscpy
cgroup/cpuset: remove unneeded header files
cgroup/cpuset: Free DL BW in case can_attach() fails
sched/deadline: Create DL BW alloc, free & check overflow interface
cgroup/cpuset: Iterate only if DEADLINE tasks are present
sched/cpuset: Keep track of SCHED_DEADLINE task in cpusets
sched/cpuset: Bring back cpuset_mutex
cgroup/cpuset: Rename functions dealing with DEADLINE accounting
According to the GRUB[1] rule, the runtime is depreciated as:
"dq = -max{u, (1 - Uinact - Uextra)} dt" (1)
To guarantee that deadline tasks doesn't starve lower class tasks,
we do not allocate the full bandwidth of the cpu to deadline tasks.
Maximum bandwidth usable by deadline tasks is denoted by "Umax".
Considering Umax, equation (1) becomes:
"dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt" (2)
Current implementation has a minor bug in equation (2), which this
patch fixes.
The reclamation logic is verified by a sample program which creates
multiple deadline threads and observing their utilization. The tests
were run on an isolated cpu(isolcpus=3) on a 4 cpu system.
Tests on 6.3.0
==============
RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95%
TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.33
TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.35
RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95%
TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69
TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69
RUN 3: 2 tasks
Task 1: runtime=1ms, deadline=period=10ms
Task 2: runtime=1ms, deadline=period=100ms
TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.67
TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.37
TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.38
TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.23
As seen above, the reclamation doesn't reclaim the maximum allowed
bandwidth and as the bandwidth of tasks gets smaller, the reclaimed
bandwidth also comes down.
Tests with this patch applied
=============================
RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95%
TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.19
TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.16
RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95%
TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.27
TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.21
RUN 3: 2 tasks
Task 1: runtime=1ms, deadline=period=10ms
Task 2: runtime=1ms, deadline=period=100ms
TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.64
TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.66
TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.45
TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.73
Running tasks on all cpus allowing for migration also showed that
the utilization is reclaimed to the maximum. Running 10 tasks on
3 cpus SCHED_FLAG_RECLAIM - top shows:
%Cpu0 : 94.6 us, 0.0 sy, 0.0 ni, 5.4 id, 0.0 wa
%Cpu1 : 95.2 us, 0.0 sy, 0.0 ni, 4.8 id, 0.0 wa
%Cpu2 : 95.8 us, 0.0 sy, 0.0 ni, 4.2 id, 0.0 wa
[1]: Abeni, Luca & Lipari, Giuseppe & Parri, Andrea & Sun, Youcheng.
(2015). Parallel and sequential reclaiming in multicore
real-time global scheduling.
Signed-off-by: Vineeth Pillai (Google) <vineeth@bitbyteword.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20230530135526.2385378-1-vineeth@bitbyteword.org
The default deadline bandwidth control structure has been removed since
commit eb77cf1c151c ("sched/deadline: Remove unused def_dl_bandwidth")
leading to unused init_dl_bandwidth() and struct dl_bandwidth. Remove
them to clean up the code.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20230524102514.407486-1-linmiaohe@huawei.com
While moving a set of tasks between exclusive cpusets,
cpuset_can_attach() -> task_can_attach() calls dl_cpu_busy(..., p) for
DL BW overflow checking and per-task DL BW allocation on the destination
root_domain for the DL tasks in this set.
This approach has the issue of not freeing already allocated DL BW in
the following error cases:
(1) The set of tasks includes multiple DL tasks and DL BW overflow
checking fails for one of the subsequent DL tasks.
(2) Another controller next to the cpuset controller which is attached
to the same cgroup fails in its can_attach().
To address this problem rework dl_cpu_busy():
(1) Split it into dl_bw_check_overflow() & dl_bw_alloc() and add a
dedicated dl_bw_free().
(2) dl_bw_alloc() & dl_bw_free() take a `u64 dl_bw` parameter instead of
a `struct task_struct *p` used in dl_cpu_busy(). This allows to
allocate DL BW for a set of tasks too rather than only for a single
task.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Qais reported that iterating over all tasks when rebuilding root domains
for finding out which ones are DEADLINE and need their bandwidth
correctly restored on such root domains can be a costly operation (10+
ms delays on suspend-resume).
To fix the problem keep track of the number of DEADLINE tasks belonging
to each cpuset and then use this information (followup patch) to only
perform the above iteration if DEADLINE tasks are actually present in
the cpuset for which a corresponding root domain is being rebuilt.
Reported-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/lkml/20230206221428.2125324-1-qyousef@layalina.io/
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit 95158a89dd50 ("sched,rt: Use the full cpumask for balancing")
allows find_lock_lowest_rq() to pick a task with migration disabled.
The purpose of the commit is to push the current running task on the
CPU that has the migrate_disable() task away.
However, there is a race which allows a migrate_disable() task to be
migrated. Consider:
CPU0 CPU1
push_rt_task
check is_migration_disabled(next_task)
task not running and
migration_disabled == 0
find_lock_lowest_rq(next_task, rq);
_double_lock_balance(this_rq, busiest);
raw_spin_rq_unlock(this_rq);
double_rq_lock(this_rq, busiest);
<<wait for busiest rq>>
<wakeup>
task become running
migrate_disable();
<context out>
deactivate_task(rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
WARN_ON_ONCE(is_migration_disabled(p));
Fixes: 95158a89dd50 ("sched,rt: Use the full cpumask for balancing")
Signed-off-by: Schspa Shi <schspa@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Dwaine Gonyier <dgonyier@redhat.com>
When {rt, cfs}_rq or dl task is throttled, since cookied tasks
are not dequeued from the core tree, So sched_core_find() and
sched_core_next() may return throttled task, which may
cause throttled task to run on the CPU.
So we add checks in sched_core_find() and sched_core_next()
to make sure that the return is a runnable task that is
not throttled.
Co-developed-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230316081806.69544-1-jiahao.os@bytedance.com
I've been tracking down an issue on a ~5.17ish kernel where:
CPUx CPUy
<DL task p0 owns an rtmutex M>
<p0 depletes its runtime, gets throttled>
<rq switches to the idle task>
<DL task p1 blocks on M, boost/replenish p0>
<No call to resched_curr() happens here>
[idle task keeps running here until *something*
accidentally sets TIF_NEED_RESCHED]
On that kernel, it is quite easy to trigger using rt-tests's deadline_test
[1] with the test running on isolated CPUs (this reduces the chance of
something unrelated setting TIF_NEED_RESCHED on the idle tasks, making the
issue even more obvious as the hung task detector chimes in).
I haven't been able to reproduce this using a mainline kernel, even if I
revert
2972e3050e35 ("tracing: Make trace_marker{,_raw} stream-like")
which gets rid of the lock involved in the above test, *but* I cannot
convince myself the issue isn't there from looking at the code.
Make prio_changed_dl() issue a reschedule if the current task isn't a
deadline one. While at it, ensure a reschedule is emitted when a
queued-but-not-current task gets boosted with an earlier deadline that
current's.
[1]: https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20230206140612.701871-1-vschneid@redhat.com
In order to prepare for passing through additional data through the
affinity call-chains, convert the mask and flags argument into a
structure.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-5-longman@redhat.com
Introduce distinct struct balance_callback instead of performing function
pointer casting which will trip CFI. Avoids warnings as found by Clang's
future -Wcast-function-type-strict option:
In file included from kernel/sched/core.c:84:
kernel/sched/sched.h:1755:15: warning: cast from 'void (*)(struct rq *)' to 'void (*)(struct callback_head *)' converts to incompatible function type [-Wcast-function-type-strict]
head->func = (void (*)(struct callback_head *))func;
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
No binary differences result from this change.
This patch is a cleanup based on Brad Spengler/PaX Team's modifications
to sched code in their last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code
are mine and don't reflect the original grsecurity/PaX code.
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1724
Link: https://lkml.kernel.org/r/20221008000758.2957718-1-keescook@chromium.org
There is some ambiguity about task_running() in that it is unrelated
to TASK_RUNNING but instead tests ->on_cpu. As such, rename the thing
task_on_cpu().
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/Yxhkhn55uHZx+NGl@hirez.programming.kicks-ass.net
As members in sched_dl_entity are independent with dl_bw, move
__dl_clear_params out of dl_bw lock.
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Link: https://lore.kernel.org/r/20220827020911.30641-1-shangxiaojing@huawei.com
Wrap repeated code in helper function replenish_dl_new_period, which set
the deadline and runtime of input dl_se based on pi_of(dl_se). Note that
setup_new_dl_entity originally set the deadline and runtime base on
dl_se, which should equals to pi_of(dl_se) for non-boosted task.
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Link: https://lore.kernel.org/r/20220826100037.12146-1-shangxiaojing@huawei.com
Wrap repeated code in helper function dl_task_is_earliest_deadline, which
return true if there is no deadline task on the rq at all, or task's
deadline earlier than the whole rq.
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Link: https://lore.kernel.org/r/20220826083453.698-1-shangxiaojing@huawei.com
Wrap repeated code in helper function update_current_exec_runtime for
update the exec time of the current.
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220824082856.15674-1-shangxiaojing@huawei.com
There's no good reason to crash a user's system with a BUG_ON(),
chances are high that they'll never even see the crash message on
Xorg, and it won't make it into the syslog either.
By using a WARN_ON_ONCE() we at least give the user a chance to report
any bugs triggered here - instead of getting silent hangs.
None of these WARN_ON_ONCE()s are supposed to trigger, ever - so we ignore
cases where a NULL check is done via a BUG_ON() and we let a NULL
pointer through after a WARN_ON_ONCE().
There's one exception: WARN_ON_ONCE() arguments with side-effects,
such as locking - in this case we use the return value of the
WARN_ON_ONCE(), such as in:
- BUG_ON(!lock_task_sighand(p, &flags));
+ if (WARN_ON_ONCE(!lock_task_sighand(p, &flags)))
+ return;
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/YvSsKcAXISmshtHo@gmail.com
dl_cpuset_cpumask_can_shrink() is used to validate whether there is
still enough CPU capacity for DL tasks in the reduced cpuset.
Currently it still operates on `# remaining CPUs in the cpuset` (1).
Change this to use the already capacity-aware DL admission control
__dl_overflow() for the `cpumask can shrink` test.
dl_b->bw = sched_rt_period << BW_SHIFT / sched_rt_period
dl_b->bw * (1) >= currently allocated bandwidth in root_domain (rd)
Replace (1) w/ `\Sum CPU capacity in rd >> SCHED_CAPACITY_SHIFT`
Adapt __dl_bw_capacity() to take a cpumask instead of a CPU number
argument so that `rd->span` and `cpumask of the reduced cpuset` can
be used here.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220729111305.1275158-3-dietmar.eggemann@arm.com
Create an inline helper for conditional code to be only executed on
asymmetric CPU capacity systems. This makes these (currently ~10 and
future) conditions a lot more readable.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220729111305.1275158-2-dietmar.eggemann@arm.com
Load-balancing improvements:
============================
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness metrics (PELT),
and remove the conservative threshold requiring 6% energy savings to
migrate a task. Doing this improves power efficiency for most workloads,
and also increases the reliability of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time searching
for an idle CPU on overloaded systems. There's reports of several
milliseconds spent there on large systems with large workloads ...
[ Since the search logic changed, there might be behavioral side effects. ]
- Improve NUMA imbalance behavior. On certain systems
with spare capacity, initial placement of tasks is non-deterministic,
and such an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which benefit
from the artificial locality of the placement bug(s). Mel Gorman's
conclusion, with which we concur, was that consistency is better than
random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think it's
better to be consistent and use similar logic at both fork time
and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in sched_core_update_cookie() that
caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly
woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup latencies.
ABI improvements/fixes:
=======================
- Do not check capabilities and do not issue capability check denial messages
when a scheduler syscall doesn't require privileges. (Such as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
==============
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
======================
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not being
re-enabled when the last SCHED_RT task is gone from a runqueue but there's
still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLn2ywRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iNfxAAhPJMwM4tYCpIM6PhmxKiHl6kkiT2tt42
HhEmiJVLjczLybWaWwmGA2dSFkv1f4+hG7nqdZTm9QYn0Pqat2UTSRcwoKQc+gpB
x85Hwt2IUmnUman52fRl5r1miH9LTdCI6agWaFLQae5ds1XmOugFo52t2ahax+Gn
dB8LxS2fa/GrKj229EhkJSPWAK4Y94asoTProwpKLuKEeXhDkqUNrOWbKhz+wEnA
pVZySpA9uEOdNLVSr1s0VB6mZoh5/z6yQefj5YSNntsG71XWo9jxKCIm5buVdk2U
wjdn6UzoTThOy/5Ygm64eYRexMHG71UamF1JYUdmvDeUJZ5fhG6RD0FECUQNVcJB
Msu2fce6u1AV0giZGYtiooLGSawB/+e6MoDkjTl8guFHi/peve9CezKX1ZgDWPfE
eGn+EbYkUS9RMafXCKuEUBAC1UUqAavGN9sGGN1ufyR4za6ogZplOqAFKtTRTGnT
/Ne3fHTtvv73DLGW9ohO5vSS2Rp7zhAhB6FunhibhxCWlt7W6hA4Ze2vU9hf78Yn
SJDLAJjOEilLaKUkRG/d9uM3FjKJM1tqxuT76+sUbM0MNxdyiKcviQlP1b8oq5Um
xE1KNZUevnr/WXqOTGDKHH/HNPFgwxbwavMiP7dNFn8h/hEk4t9dkf5siDmVHtn4
nzDVOob1LgE=
=xr2b
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Load-balancing improvements:
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness
metrics (PELT), and remove the conservative threshold requiring 6%
energy savings to migrate a task. Doing this improves power
efficiency for most workloads, and also increases the reliability
of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time
searching for an idle CPU on overloaded systems. There's reports of
several milliseconds spent there on large systems with large
workloads ...
[ Since the search logic changed, there might be behavioral side
effects. ]
- Improve NUMA imbalance behavior. On certain systems with spare
capacity, initial placement of tasks is non-deterministic, and such
an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which
benefit from the artificial locality of the placement bug(s). Mel
Gorman's conclusion, with which we concur, was that consistency is
better than random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think
it's better to be consistent and use similar logic at both fork
time and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in
sched_core_update_cookie() that caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs
for newly woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup
latencies.
ABI improvements/fixes:
- Do not check capabilities and do not issue capability check denial
messages when a scheduler syscall doesn't require privileges. (Such
as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the
previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not
being re-enabled when the last SCHED_RT task is gone from a
runqueue but there's still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes"
* tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
rseq: Kill process when unknown flags are encountered in ABI structures
rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags
sched/core: Fix the bug that task won't enqueue into core tree when update cookie
nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt()
sched/core: Always flush pending blk_plug
sched/fair: fix case with reduced capacity CPU
sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling
sched/core: add forced idle accounting for cgroups
sched/fair: Remove the energy margin in feec()
sched/fair: Remove task_util from effective utilization in feec()
sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu()
sched/fair: Rename select_idle_mask to select_rq_mask
sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util()
sched/fair: Decay task PELT values during wakeup migration
sched/fair: Provide u64 read for 32-bits arch helper
sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg
sched: only perform capability check on privileged operation
sched: Remove unused function group_first_cpu()
sched/fair: Remove redundant word " *"
selftests/rseq: check if libc rseq support is registered
...
Tasks the are being deboosted from SCHED_DEADLINE might enter
enqueue_task_dl() one last time and hit an erroneous BUG_ON condition:
since they are not boosted anymore, the if (is_dl_boosted()) branch is
not taken, but the else if (!dl_prio) is and inside this one we
BUG_ON(!is_dl_boosted), which is of course false (BUG_ON triggered)
otherwise we had entered the if branch above. Long story short, the
current condition doesn't make sense and always leads to triggering of a
BUG.
Fix this by only checking enqueue flags, properly: ENQUEUE_REPLENISH has
to be present, but additional flags are not a problem.
Fixes: 64be6f1f5f71 ("sched/deadline: Don't replenish from a !SCHED_DEADLINE entity")
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220714151908.533052-1-juri.lelli@redhat.com
sysctl_sched_dl_period_max and sysctl_sched_dl_period_min are unsigned
integer, but proc_dointvec() wouldn't return error even if we set a
negative number.
Use proc_douintvec_minmax() instead of proc_dointvec(). Add extra1 for
sysctl_sched_dl_period_max and extra2 for sysctl_sched_dl_period_min.
It's just an optimization for match data and proc_handler in struct
ctl_table. The 'if (period < min || period > max)' in __checkparam_dl()
will work fine even if there hasn't this patch.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Link: https://lore.kernel.org/r/20220607101807.249965-1-yajun.deng@linux.dev
For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and
all this caused merge conflicts with one susbystem or another.
This tree was put together to help try to avoid conflicts with these cleanups
going on different trees at time. So nothing exciting on this pull request,
just cleanups.
I actually had this sysctl-next tree up since v5.18 but I missed sending a
pull request for it on time during the last merge window. And so these changes
have been being soaking up on sysctl-next and so linux-next for a while.
The last change was merged May 4th.
Most of the compile issues were reported by 0day and fixed.
To help avoid a conflict with bpf folks at Daniel Borkmann's request
I merged bpf-next/pr/bpf-sysctl into sysctl-next to get the effor which
moves the BPF sysctls from kernel/sysctl.c to BPF core.
Possible merge conflicts and known resolutions as per linux-next:
bfp:
https://lkml.kernel.org/r/20220414112812.652190b5@canb.auug.org.au
rcu:
https://lkml.kernel.org/r/20220420153746.4790d532@canb.auug.org.au
powerpc:
https://lkml.kernel.org/r/20220520154055.7f964b76@canb.auug.org.au
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmKOq8ASHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinDAkQAJVo5YVM9f74UwYp4PQhTpjxJBCjRoZD
z1u9bp5rMj2ujTC8Fr7VmzKaHrb8+r1C1WvCvZtIzemYNB4lZUrHpVDYfXuXiPRB
ihPmEjhlPO5PFBx6cVCpI3cu9bEhG00rLc1QXnABx/pXwNPcOTJAGZJVamZvqubk
chjgZrb7N+adHPfvS55v1+zpwdeKfpp5U3zuu5qlT/nn0GS0HCVzOj5fj4oC4wtJ
IqfUubo+FX50Ga58yQABWNrjaPD9Crykz5ohVazy3ElQl0hJ4VsK65ct3blqc2vz
1Bb8kPpWuv6aZ5nr1lCVE8qvF4ZIL33ySvpg5BSdWLQEDrBbSpzvJe9Yn7wgR+eq
y7fhpO24+zRM82EoDMEvyxX9u1n1RsvoXRtf3ds9BGf63MUxk8a1cgjlU6vuyO2U
JhDmfM1xzdKvPoY4COOnHzcAiIqzItTqKd09N5y0cahmYstROU8lvp9huhTAHqk1
SjQMbLIZG7OnX8ZeQcR1EB8sq/IOPZT48ejj0iJmQ8FyMaep71MOQLYyLPAq4lgh
JHXm8P6QdB57jfJbqAeNSyZoK0qdxOUR/83Zcah7Jjns6vkju1DNatEsaEEI2y2M
4n7/rkHeZ3TyFHBUX4e9FomKvGLsAalDBRiqsuxLSOPMU8rGrNLAslOAtKwvp90X
4ht3M2VP098l
=btwh
-----END PGP SIGNATURE-----
Merge tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of
#ifdefs and all this caused merge conflicts with one susbystem or
another.
This tree was put together to help try to avoid conflicts with these
cleanups going on different trees at time. So nothing exciting on this
pull request, just cleanups.
Thanks a lot to the Uniontech and Huawei folks for doing some of this
nasty work"
* tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits)
sched: Fix build warning without CONFIG_SYSCTL
reboot: Fix build warning without CONFIG_SYSCTL
kernel/kexec_core: move kexec_core sysctls into its own file
sysctl: minor cleanup in new_dir()
ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n
fs/proc: Introduce list_for_each_table_entry for proc sysctl
mm: fix unused variable kernel warning when SYSCTL=n
latencytop: move sysctl to its own file
ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y
ftrace: Fix build warning
ftrace: move sysctl_ftrace_enabled to ftrace.c
kernel/do_mount_initrd: move real_root_dev sysctls to its own file
kernel/delayacct: move delayacct sysctls to its own file
kernel/acct: move acct sysctls to its own file
kernel/panic: move panic sysctls to its own file
kernel/lockdep: move lockdep sysctls to its own file
mm: move page-writeback sysctls to their own file
mm: move oom_kill sysctls to their own file
kernel/reboot: move reboot sysctls to its own file
sched: Move energy_aware sysctls to topology.c
...
The change to call update_rq_clock() before activate_task()
commit 840d719604b0 ("sched/deadline: Update rq_clock of later_rq
when pushing a task") is no longer needed since commit f4904815f97a
("sched/deadline: Fix double accounting of rq/running bw in push & pull")
removed the add_running_bw() before the activate_task().
So we remove some comments that are no longer needed and update
rq clock in activate_task().
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lore.kernel.org/r/20220430085843.62939-3-jiahao.os@bytedance.com
When we use raw_spin_rq_lock() to acquire the rq lock and have to
update the rq clock while holding the lock, the kernel may issue
a WARN_DOUBLE_CLOCK warning.
Since we directly use raw_spin_rq_lock() to acquire rq lock instead of
rq_lock(), there is no corresponding change to rq->clock_update_flags.
In particular, we have obtained the rq lock of other CPUs, the
rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and
then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning.
So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid
the WARN_DOUBLE_CLOCK warning.
For the sched_rt_period_timer() and migrate_task_rq_dl() cases
we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with
rq_lock()/rq_unlock().
For the {pull,push}_{rt,dl}_task() cases, we add the
double_rq_clock_clear_update() function to clear RQCF_UPDATED of
rq->clock_update_flags, and call double_rq_clock_clear_update()
before double_lock_balance()/double_rq_lock() returns to avoid the
WARN_DOUBLE_CLOCK warning.
Some call trace reports:
Call Trace 1:
<IRQ>
sched_rt_period_timer+0x10f/0x3a0
? enqueue_top_rt_rq+0x110/0x110
__hrtimer_run_queues+0x1a9/0x490
hrtimer_interrupt+0x10b/0x240
__sysvec_apic_timer_interrupt+0x8a/0x250
sysvec_apic_timer_interrupt+0x9a/0xd0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20
Call Trace 2:
<TASK>
activate_task+0x8b/0x110
push_rt_task.part.108+0x241/0x2c0
push_rt_tasks+0x15/0x30
finish_task_switch+0xaa/0x2e0
? __switch_to+0x134/0x420
__schedule+0x343/0x8e0
? hrtimer_start_range_ns+0x101/0x340
schedule+0x4e/0xb0
do_nanosleep+0x8e/0x160
hrtimer_nanosleep+0x89/0x120
? hrtimer_init_sleeper+0x90/0x90
__x64_sys_nanosleep+0x96/0xd0
do_syscall_64+0x34/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 3:
<TASK>
deactivate_task+0x93/0xe0
pull_rt_task+0x33e/0x400
balance_rt+0x7e/0x90
__schedule+0x62f/0x8e0
do_task_dead+0x3f/0x50
do_exit+0x7b8/0xbb0
do_group_exit+0x2d/0x90
get_signal+0x9df/0x9e0
? preempt_count_add+0x56/0xa0
? __remove_hrtimer+0x35/0x70
arch_do_signal_or_restart+0x36/0x720
? nanosleep_copyout+0x39/0x50
? do_nanosleep+0x131/0x160
? audit_filter_inodes+0xf5/0x120
exit_to_user_mode_prepare+0x10f/0x1e0
syscall_exit_to_user_mode+0x17/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 4:
update_rq_clock+0x128/0x1a0
migrate_task_rq_dl+0xec/0x310
set_task_cpu+0x84/0x1e4
try_to_wake_up+0x1d8/0x5c0
wake_up_process+0x1c/0x30
hrtimer_wakeup+0x24/0x3c
__hrtimer_run_queues+0x114/0x270
hrtimer_interrupt+0xe8/0x244
arch_timer_handler_phys+0x30/0x50
handle_percpu_devid_irq+0x88/0x140
generic_handle_domain_irq+0x40/0x60
gic_handle_irq+0x48/0xe0
call_on_irq_stack+0x2c/0x60
do_interrupt_handler+0x80/0x84
Steps to reproduce:
1. Enable CONFIG_SCHED_DEBUG when compiling the kernel
2. echo 1 > /sys/kernel/debug/clear_warn_once
echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features
echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features
3. Run some rt/dl tasks that periodically work and sleep, e.g.
Create 2*n rt or dl (90% running) tasks via rt-app (on a system
with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running
on PREEMPT_RT kernel.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com
A W=1 build emits more than a dozen missing prototype warnings related to
scheduler and scheduler specific includes.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de
move deadline_period sysctls to deadline.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The need_pull_[rt|dl]_task() and pull_[rt|dl]_task() functions are not
used on a !CONFIG_SMP system. Remove them.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-6-dietmar.eggemann@arm.com
Deploy __node_2_pdl(node), __node_2_dle(node) and rb_first_cached()
consistently throughout the sched class source file which makes the
code at least easier to read.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-5-dietmar.eggemann@arm.com
Both functions are doing almost the same, that is checking if admission
control is still respected.
With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.
dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.
Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Move the deadline bandwidth management (admission control) functions
__dl_add(), __dl_sub() and __dl_overflow() as well as the bandwidth
reclaim function __dl_update() from private task scheduler header file
to the deadline sched class source file.
The functions are only used internally so they don't have to be
exported.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-3-dietmar.eggemann@arm.com
Since commit 1724813d9f2c ("sched/deadline: Remove the sysctl_sched_dl
knobs") the default deadline bandwidth control structure has no purpose.
Remove it.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-2-dietmar.eggemann@arm.com
John reported that push_rt_task() can end up invoking
find_lowest_rq(rq->curr) when curr is not an RT task (in this case a CFS
one), which causes mayhem down convert_prio().
This can happen when current gets demoted to e.g. CFS when releasing an
rt_mutex, and the local CPU gets hit with an rto_push_work irqwork before
getting the chance to reschedule. Exactly who triggers this work isn't
entirely clear to me - switched_from_rt() only invokes rt_queue_pull_task()
if there are no RT tasks on the local RQ, which means the local CPU can't
be in the rto_mask.
My current suspected sequence is something along the lines of the below,
with the demoted task being current.
mark_wakeup_next_waiter()
rt_mutex_adjust_prio()
rt_mutex_setprio() // deboost originally-CFS task
check_class_changed()
switched_from_rt() // Only rt_queue_pull_task() if !rq->rt.rt_nr_running
switched_to_fair() // Sets need_resched
__balance_callbacks() // if pull_rt_task(), tell_cpu_to_push() can't select local CPU per the above
raw_spin_rq_unlock(rq)
// need_resched is set, so task_woken_rt() can't
// invoke push_rt_tasks(). Best I can come up with is
// local CPU has rt_nr_migratory >= 2 after the demotion, so stays
// in the rto_mask, and then:
<some other CPU running rto_push_irq_work_func() queues rto_push_work on this CPU>
push_rt_task()
// breakage follows here as rq->curr is CFS
Move an existing check to check rq->curr vs the next pushable task's
priority before getting anywhere near find_lowest_rq(). While at it, add an
explicit sched_class of rq->curr check prior to invoking
find_lowest_rq(rq->curr). Align the DL logic to also reschedule regardless
of next_task's migratability.
Fixes: a7c81556ec4d ("sched: Fix migrate_disable() vs rt/dl balancing")
Reported-by: John Keeping <john@metanate.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: John Keeping <john@metanate.com>
Link: https://lore.kernel.org/r/20220127154059.974729-1-valentin.schneider@arm.com
Similarly to kernel/sched/build_utility.c, collect all 'scheduling policy' related
source code files into kernel/sched/build_policy.c:
kernel/sched/idle.c
kernel/sched/rt.c
kernel/sched/cpudeadline.c
kernel/sched/pelt.c
kernel/sched/cputime.c
kernel/sched/deadline.c
With the exception of fair.c, which we continue to build as a separate file
for build efficiency and parallelism reasons.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
After we make the struct sched_statistics and the helpers of it
independent of fair sched class, we can easily use the schedstats
facility for deadline sched class.
The schedstat usage in DL sched class is similar with fair sched class,
for example,
fair deadline
enqueue update_stats_enqueue_fair update_stats_enqueue_dl
dequeue update_stats_dequeue_fair update_stats_dequeue_dl
put_prev_task update_stats_wait_start update_stats_wait_start_dl
set_next_task update_stats_wait_end update_stats_wait_end_dl
The user can get the schedstats information in the same way in fair sched
class. For example,
fair deadline
/proc/[pid]/sched /proc/[pid]/sched
The output of a deadline task's schedstats as follows,
$ cat /proc/69662/sched
...
se.sum_exec_runtime : 3067.696449
se.nr_migrations : 0
sum_sleep_runtime : 720144.029661
sum_block_runtime : 0.547853
wait_start : 0.000000
sleep_start : 14131540.828955
block_start : 0.000000
sleep_max : 2999.974045
block_max : 0.283637
exec_max : 1.000269
slice_max : 0.000000
wait_max : 0.002217
wait_sum : 0.762179
wait_count : 733
iowait_sum : 0.547853
iowait_count : 3
nr_migrations_cold : 0
nr_failed_migrations_affine : 0
nr_failed_migrations_running : 0
nr_failed_migrations_hot : 0
nr_forced_migrations : 0
nr_wakeups : 246
nr_wakeups_sync : 2
nr_wakeups_migrate : 0
nr_wakeups_local : 244
nr_wakeups_remote : 2
nr_wakeups_affine : 0
nr_wakeups_affine_attempts : 0
nr_wakeups_passive : 0
nr_wakeups_idle : 0
...
The sched:sched_stat_{wait, sleep, iowait, blocked} tracepoints can
be used to trace deadlline tasks as well.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-9-laoar.shao@gmail.com
The runtime of a DL task has already been there, so we only need to
add a tracepoint.
One difference between fair task and DL task is that there is no vruntime
in dl task. To reuse the sched_stat_runtime tracepoint, '0' is passed as
vruntime for DL task.
The output of this tracepoint for DL task as follows,
top-36462 [047] d.h. 6083.452103: sched_stat_runtime: comm=top pid=36462 runtime=409898 [ns] vruntime=0 [ns]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-8-laoar.shao@gmail.com
If we want to use the schedstats facility to trace other sched classes, we
should make it independent of fair sched class. The struct sched_statistics
is the schedular statistics of a task_struct or a task_group. So we can
move it into struct task_struct and struct task_group to achieve the goal.
After the patch, schestats are orgnized as follows,
struct task_struct {
...
struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;
...
struct sched_statistics stats;
...
};
Regarding the task group, schedstats is only supported for fair group
sched, and a new struct sched_entity_stats is introduced, suggested by
Peter -
struct sched_entity_stats {
struct sched_entity se;
struct sched_statistics stats;
} __no_randomize_layout;
Then with the se in a task_group, we can easily get the stats.
The sched_statistics members may be frequently modified when schedstats is
enabled, in order to avoid impacting on random data which may in the same
cacheline with them, the struct sched_statistics is defined as cacheline
aligned.
As this patch changes the core struct of scheduler, so I verified the
performance it may impact on the scheduler with 'perf bench sched
pipe', suggested by Mel. Below is the result, in which all the values
are in usecs/op.
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the earlier version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no impact on the sched performance.
No functional change.
[lkp@intel.com: reported build failure in earlier version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
A missing clock update is causing the following warning:
rq->clock_update_flags < RQCF_ACT_SKIP
WARNING: CPU: 112 PID: 2041 at kernel/sched/sched.h:1453
sub_running_bw.isra.0+0x190/0x1a0
...
CPU: 112 PID: 2041 Comm: sugov:112 Tainted: G W 5.14.0-rc1 #1
Hardware name: WIWYNN Mt.Jade Server System
B81.030Z1.0007/Mt.Jade Motherboard, BIOS 1.6.20210526 (SCP:
1.06.20210526) 2021/05/26
...
Call trace:
sub_running_bw.isra.0+0x190/0x1a0
migrate_task_rq_dl+0xf8/0x1e0
set_task_cpu+0xa8/0x1f0
try_to_wake_up+0x150/0x3d4
wake_up_q+0x64/0xc0
__up_write+0xd0/0x1c0
up_write+0x4c/0x2b0
cppc_set_perf+0x120/0x2d0
cppc_cpufreq_set_target+0xe0/0x1a4 [cppc_cpufreq]
__cpufreq_driver_target+0x74/0x140
sugov_work+0x64/0x80
kthread_worker_fn+0xe0/0x230
kthread+0x138/0x140
ret_from_fork+0x10/0x18
The task causing this is the `cppc_fie` DL task introduced by
commit 1eb5dde674f5 ("cpufreq: CPPC: Add support for frequency
invariance").
With CONFIG_ACPI_CPPC_CPUFREQ_FIE=y and schedutil cpufreq governor on
slow-switching system (like on this Ampere Altra WIWYNN Mt. Jade Arm
Server):
DL task `curr=sugov:112` lets `p=cppc_fie` migrate and since the latter
is in `non_contending` state, migrate_task_rq_dl() calls
sub_running_bw()->__sub_running_bw()->cpufreq_update_util()->
rq_clock()->assert_clock_updated()
on p.
Fix this by updating the clock for a non_contending task in
migrate_task_rq_dl() before calling sub_running_bw().
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20210804135925.3734605-1-dietmar.eggemann@arm.com
It is possible for sched_getattr() to incorrectly report the state of
the reset_on_fork flag when called on a deadline task.
Indeed, if the flag was set on a deadline task using sched_setattr()
with flags (SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_KEEP_PARAMS), then
p->sched_reset_on_fork will be set, but __setscheduler() will bail out
early, which means that the dl_se->flags will not get updated by
__setscheduler_params()->__setparam_dl(). Consequently, if
sched_getattr() is then called on the task, __getparam_dl() will
override kattr.sched_flags with the now out-of-date copy in dl_se->flags
and report the stale value to userspace.
To fix this, make sure to only copy the flags that are relevant to
sched_deadline to and from the dl_se->flags field.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210727101103.2729607-2-qperret@google.com
DL keeps track of the utilization on a per-rq basis with the structure
avg_dl. This utilization is updated during task_tick_dl(),
put_prev_task_dl() and set_next_task_dl(). However, when the current
running task changes its policy, set_next_task_dl() which would usually
take care of updating the utilization when the rq starts running DL
tasks, will not see a such change, leaving the avg_dl structure outdated.
When that very same task will be dequeued later, put_prev_task_dl() will
then update the utilization, based on a wrong last_update_time, leading to
a huge spike in the DL utilization signal.
The signal would eventually recover from this issue after few ms. Even
if no DL tasks are run, avg_dl is also updated in
__update_blocked_others(). But as the CPU capacity depends partly on the
avg_dl, this issue has nonetheless a significant impact on the scheduler.
Fix this issue by ensuring a load update when a running task changes
its policy to DL.
Fixes: 3727e0e ("sched/dl: Add dl_rq utilization tracking")
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/1624271872-211872-3-git-send-email-vincent.donnefort@arm.com
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
Because sched_class::pick_next_task() also implies
sched_class::set_next_task() (and possibly put_prev_task() and
newidle_balance) it is not state invariant. This makes it unsuitable
for remote task selection.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[Vineeth: folded fixes]
Signed-off-by: Vineeth Remanan Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.437092775@infradead.org
rq_lockp() includes a static_branch(), which is asm-goto, which is
asm volatile which defeats regular CSE. This means that:
if (!static_branch(&foo))
return simple;
if (static_branch(&foo) && cond)
return complex;
Doesn't fold and we get horrible code. Introduce __rq_lockp() without
the static_branch() on.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.316696988@infradead.org
In preparation of playing games with rq->lock, abstract the thing
using an accessor.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
Fix ~42 single-word typos in scheduler code comments.
We have accumulated a few fun ones over the years. :-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-kernel@vger.kernel.org
The HRTICK feature has traditionally been servicing configurations that
need precise preemptions point for NORMAL tasks. More recently, the
feature has been extended to also service DEADLINE tasks with stringent
runtime enforcement needs (e.g., runtime < 1ms with HZ=1000).
Enabling HRTICK sched feature currently enables the additional timer and
task tick for both classes, which might introduced undesired overhead
for no additional benefit if one needed it only for one of the cases.
Separate HRTICK sched feature in two (and leave the traditional case
name unmodified) so that it can be selectively enabled when needed.
With:
$ echo HRTICK > /sys/kernel/debug/sched_features
the NORMAL/fair hrtick gets enabled.
With:
$ echo HRTICK_DL > /sys/kernel/debug/sched_features
the DEADLINE hrtick gets enabled.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-3-juri.lelli@redhat.com
dl_add_task_root_domain() is called during sched domain rebuild:
rebuild_sched_domains_locked()
partition_and_rebuild_sched_domains()
rebuild_root_domains()
for all top_cpuset descendants:
update_tasks_root_domain()
for all tasks of cpuset:
dl_add_task_root_domain()
Change it so that only the task pi lock is taken to check if the task
has a SCHED_DEADLINE (DL) policy. In case that p is a DL task take the
rq lock as well to be able to safely de-reference root domain's DL
bandwidth structure.
Most of the tasks will have another policy (namely SCHED_NORMAL) and
can now bail without taking the rq lock.
One thing to note here: Even in case that there aren't any DL user
tasks, a slow frequency switching system with cpufreq gov schedutil has
a DL task (sugov) per frequency domain running which participates in DL
bandwidth management.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20210119083542.19856-1-dietmar.eggemann@arm.com
Reduce rbtree boiler plate by using the new helpers.
Make rb_add_cached() / rb_erase_cached() return a pointer to the
leftmost node to aid in updating additional state.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Davidlohr Bueso <dbueso@suse.de>