* pm-cpufreq: (60 commits)
cpufreq: pmac32-cpufreq: remove device tree parsing for cpu nodes
cpufreq: pmac64-cpufreq: remove device tree parsing for cpu nodes
cpufreq: maple-cpufreq: remove device tree parsing for cpu nodes
cpufreq: arm_big_little: remove device tree parsing for cpu nodes
cpufreq: kirkwood-cpufreq: remove device tree parsing for cpu nodes
cpufreq: spear-cpufreq: remove device tree parsing for cpu nodes
cpufreq: highbank-cpufreq: remove device tree parsing for cpu nodes
cpufreq: cpufreq-cpu0: remove device tree parsing for cpu nodes
cpufreq: imx6q-cpufreq: remove device tree parsing for cpu nodes
drivers/bus: arm-cci: avoid parsing DT for cpu device nodes
ARM: mvebu: remove device tree parsing for cpu nodes
ARM: topology: remove hwid/MPIDR dependency from cpu_capacity
of/device: add helper to get cpu device node from logical cpu index
driver/core: cpu: initialize of_node in cpu's device struture
ARM: DT/kernel: define ARM specific arch_match_cpu_phys_id
of: move of_get_cpu_node implementation to DT core library
powerpc: refactor of_get_cpu_node to support other architectures
openrisc: remove undefined of_get_cpu_node declaration
microblaze: remove undefined of_get_cpu_node declaration
cpufreq: fix bad unlock balance on !CONFIG_SMP
...
This patch moves the generalized implementation of of_get_cpu_node from
PowerPC to DT core library, thereby adding support for retrieving cpu
node for a given logical cpu index on any architecture.
The CPU subsystem can now use this function to assign of_node in the
cpu device while registering CPUs.
It is recommended to use these helper function only in pre-SMP/early
initialisation stages to retrieve CPU device node pointers in logical
ordering. Once the cpu devices are registered, it can be retrieved easily
from cpu device of_node which avoids unnecessary parsing and matching.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Acked-by: Rob Herring <rob.herring@calxeda.com>
Signed-off-by: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
CPU system maps are protected with reader/writer locks. The reader
lock, get_online_cpus(), assures that the maps are not updated while
holding the lock. The writer lock, cpu_hotplug_begin(), is used to
udpate the cpu maps along with cpu_maps_update_begin().
However, the ACPI processor handler updates the cpu maps without
holding the the writer lock.
acpi_map_lsapic() is called from acpi_processor_hotadd_init() to
update cpu_possible_mask and cpu_present_mask. acpi_unmap_lsapic()
is called from acpi_processor_remove() to update cpu_possible_mask.
Currently, they are either unprotected or protected with the reader
lock, which is not correct.
For example, the get_online_cpus() below is supposed to assure that
cpu_possible_mask is not changed while the code is iterating with
for_each_possible_cpu().
get_online_cpus();
for_each_possible_cpu(cpu) {
:
}
put_online_cpus();
However, this lock has no protection with CPU hotplug since the ACPI
processor handler does not use the writer lock when it updates
cpu_possible_mask. The reader lock does not serialize within the
readers.
This patch protects them with the writer lock with cpu_hotplug_begin()
along with cpu_maps_update_begin(), which must be held before calling
cpu_hotplug_begin(). It also protects arch_register_cpu() /
arch_unregister_cpu(), which creates / deletes a sysfs cpu device
interface. For this purpose it changes cpu_hotplug_begin() and
cpu_hotplug_done() to global and exports them in cpu.h.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Pull trivial tree updates from Jiri Kosina:
"The usual stuff from trivial tree"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits)
treewide: relase -> release
Documentation/cgroups/memory.txt: fix stat file documentation
sysctl/net.txt: delete reference to obsolete 2.4.x kernel
spinlock_api_smp.h: fix preprocessor comments
treewide: Fix typo in printk
doc: device tree: clarify stuff in usage-model.txt.
open firmware: "/aliasas" -> "/aliases"
md: bcache: Fixed a typo with the word 'arithmetic'
irq/generic-chip: fix a few kernel-doc entries
frv: Convert use of typedef ctl_table to struct ctl_table
sgi: xpc: Convert use of typedef ctl_table to struct ctl_table
doc: clk: Fix incorrect wording
Documentation/arm/IXP4xx fix a typo
Documentation/networking/ieee802154 fix a typo
Documentation/DocBook/media/v4l fix a typo
Documentation/video4linux/si476x.txt fix a typo
Documentation/virtual/kvm/api.txt fix a typo
Documentation/early-userspace/README fix a typo
Documentation/video4linux/soc-camera.txt fix a typo
lguest: fix CONFIG_PAE -> CONFIG_x86_PAE in comment
...
There are instances in the kernel where we would like to disable CPU
hotplug (from sysfs) during some important operation. Today the freezer
code depends on this and the code to do it was kinda tailor-made for
that.
Restructure the code and make it generic enough to be useful for other
usecases too.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Robin Holt <holt@sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Russ Anderson <rja@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Shawn Guo <shawn.guo@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Two minor changes to comments:
* Remove reference to drivers/base/sys.c, removed in 0a962657.
* CPUs are now exported by sysfs via devices/system/cpu.
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
All idle functions in arch/* are more or less the same, plus minus a
few bugs and extra instrumentation, tickless support and other
optional items.
Implement a generic idle function which resembles the functionality
found in arch/. Provide weak arch_cpu_idle_* functions which can be
overridden by the architecture code if needed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130321215233.646635455@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For now this calls cpu_idle(), but in the long run we want to move the
cpu bringup code to the core and therefor we add a state argument.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130321215233.583190032@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.
Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.
However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.
While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.
Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.
Workqueue cpu hotplug operations will soon go through further cleanup.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Many architectures clear tasks' mm_cpumask like this:
read_lock(&tasklist_lock);
for_each_process(p) {
if (p->mm)
cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
}
read_unlock(&tasklist_lock);
Depending on the context, the code above may have several problems,
such as:
1. Working with task->mm w/o getting mm or grabing the task lock is
dangerous as ->mm might disappear (exit_mm() assigns NULL under
task_lock(), so tasklist lock is not enough).
2. Checking for process->mm is not enough because process' main
thread may exit or detach its mm via use_mm(), but other threads
may still have a valid mm.
This patch implements a small helper function that does things
correctly, i.e.:
1. We take the task's lock while whe handle its mm (we can't use
get_task_mm()/mmput() pair as mmput() might sleep);
2. To catch exited main thread case, we use find_lock_task_mm(),
which walks up all threads and returns an appropriate task
(with task lock held).
Also, Per Peter Zijlstra's idea, now we don't grab tasklist_lock in
the new helper, instead we take the rcu read lock. We can do this
because the function is called after the cpu is taken down and marked
offline, so no new tasks will get this cpu set in their mm mask.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's been broken forever (i.e. it's not scheduling in a power
aware fashion), as reported by Suresh and others sending
patches, and nobody cares enough to fix it properly ...
so remove it to make space free for something better.
There's various problems with the code as it stands today, first
and foremost the user interface which is bound to topology
levels and has multiple values per level. This results in a
state explosion which the administrator or distro needs to
master and almost nobody does.
Furthermore large configuration state spaces aren't good, it
means the thing doesn't just work right because it's either
under so many impossibe to meet constraints, or even if
there's an achievable state workloads have to be aware of
it precisely and can never meet it for dynamic workloads.
So pushing this kind of decision to user-space was a bad idea
even with a single knob - it's exponentially worse with knobs
on every node of the topology.
There is a proposal to replace the user interface with a single
3 state knob:
sched_balance_policy := { performance, power, auto }
where 'auto' would be the preferred default which looks at things
like Battery/AC mode and possible cpufreq state or whatever the hw
exposes to show us power use expectations - but there's been no
progress on it in the past many months.
Aside from that, the actual implementation of the various knobs
is known to be broken. There have been sporadic attempts at
fixing things but these always stop short of reaching a mergable
state.
Therefore this wholesale removal with the hopes of spurring
people who care to come forward once again and work on a
coherent replacement.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1326104915.2442.53.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
"[RFC PATCH 0/2] audit of linux/device.h users in include/*"
https://lkml.org/lkml/2012/3/4/159
--
Nearly every subsystem has some kind of header with a proto like:
void foo(struct device *dev);
and yet there is no reason for most of these guys to care about the
sub fields within the device struct. This allows us to significantly
reduce the scope of headers including headers. For this instance, a
reduction of about 40% is achieved by replacing the include with the
simple fact that the device is some kind of a struct.
Unlike the much larger module.h cleanup, this one is simply two
commits. One to fix the implicit <linux/device.h> users, and then
one to delete the device.h includes from the linux/include/ dir
wherever possible.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPbNxLAAoJEOvOhAQsB9HWR6QQAMRUZ94O2069/nW9h4TO/xTr
Hq/80lo/TBBiRmob3iWBP76lzgeeMPPVEX1I6N7YYlhL3IL7HsaJH1DvpIPPHXQP
GFKcBsZ5ZLV8c4CBDSr+/HFNdhXc0bw0awBjBvR7gAsWuZpNFn4WbhizJi4vWAoE
4ydhPu55G1G8TkBtYLJQ8xavxsmiNBSDhd2i+0vn6EVpgmXynjOMG8qXyaS97Jvg
pZLwnN5Wu21coj6+xH3QUKCl1mJ+KGyamWX5gFBVIfsDB3k5H4neijVm7t1en4b0
cWxmXeR/JE3VLEl/17yN2dodD8qw1QzmTWzz1vmwJl2zK+rRRAByBrL0DP7QCwCZ
ppeJbdhkMBwqjtknwrmMwsuAzUdJd79GXA+6Vm+xSEkr6FEPK1M0kGbvaqV9Usgd
ohMewewbO6ddgR9eF7Kw2FAwo0hwkPNEplXIym9rZzFG1h+T0STGSHvkn7LV765E
ul1FapSV3GCxEVRwWTwD28FLU2+0zlkOZ5sxXwNPTT96cNmW+R7TGuslZKNaMNjX
q7eBZxo8DtVt/jqJTntR8bs8052c8g1Ac1IKmlW8VSmFwT1M6VBGRn1/JWAhuUgv
dBK/FF+I1GJTAJWIhaFcKXLHvmV9uhS6JaIhLMDOetoOkpqSptJ42hDG+89WkFRk
o55GQ5TFdoOpqxVzGbvE
=3j4+
-----END PGP SIGNATURE-----
Merge tag 'device-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull <linux/device.h> avoidance patches from Paul Gortmaker:
"Nearly every subsystem has some kind of header with a proto like:
void foo(struct device *dev);
and yet there is no reason for most of these guys to care about the
sub fields within the device struct. This allows us to significantly
reduce the scope of headers including headers. For this instance, a
reduction of about 40% is achieved by replacing the include with the
simple fact that the device is some kind of a struct.
Unlike the much larger module.h cleanup, this one is simply two
commits. One to fix the implicit <linux/device.h> users, and then one
to delete the device.h includes from the linux/include/ dir wherever
possible."
* tag 'device-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
device.h: audit and cleanup users in main include dir
device.h: cleanup users outside of linux/include (C files)
The <linux/device.h> header includes a lot of stuff, and
it in turn gets a lot of use just for the basic "struct device"
which appears so often.
Clean up the users as follows:
1) For those headers only needing "struct device" as a pointer
in fcn args, replace the include with exactly that.
2) For headers not really using anything from device.h, simply
delete the include altogether.
3) For headers relying on getting device.h implicitly before
being included themselves, now explicitly include device.h
4) For files in which doing #1 or #2 uncovers an implicit
dependency on some other header, fix by explicitly adding
the required header(s).
Any C files that were implicitly relying on device.h to be
present have already been dealt with in advance.
Total removals from #1 and #2: 51. Total additions coming
from #3: 9. Total other implicit dependencies from #4: 7.
As of 3.3-rc1, there were 110, so a net removal of 42 gives
about a 38% reduction in device.h presence in include/*
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
This patch is based on Andi Kleen's work:
Implement autoprobing/loading of modules serving CPU
specific features (x86cpu autoloading).
And Kay Siever's work to get rid of sysdev cpu structures
and making use of struct device instead.
Before, the cpuid driver had to be loaded to get the x86cpu
autoloading feature. With this patch autoloading works through
the /sys/devices/system/cpu object
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Len Brown <lenb@kernel.org>
Acked-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Renninger <trenn@suse.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (73 commits)
arm: fix up some samsung merge sysdev conversion problems
firmware: Fix an oops on reading fw_priv->fw in sysfs loading file
Drivers:hv: Fix a bug in vmbus_driver_unregister()
driver core: remove __must_check from device_create_file
debugfs: add missing #ifdef HAS_IOMEM
arm: time.h: remove device.h #include
driver-core: remove sysdev.h usage.
clockevents: remove sysdev.h
arm: convert sysdev_class to a regular subsystem
arm: leds: convert sysdev_class to a regular subsystem
kobject: remove kset_find_obj_hinted()
m86k: gpio - convert sysdev_class to a regular subsystem
mips: txx9_sram - convert sysdev_class to a regular subsystem
mips: 7segled - convert sysdev_class to a regular subsystem
sh: dma - convert sysdev_class to a regular subsystem
sh: intc - convert sysdev_class to a regular subsystem
power: suspend - convert sysdev_class to a regular subsystem
power: qe_ic - convert sysdev_class to a regular subsystem
power: cmm - convert sysdev_class to a regular subsystem
s390: time - convert sysdev_class to a regular subsystem
...
Fix up conflicts with 'struct sysdev' removal from various platform
drivers that got changed:
- arch/arm/mach-exynos/cpu.c
- arch/arm/mach-exynos/irq-eint.c
- arch/arm/mach-s3c64xx/common.c
- arch/arm/mach-s3c64xx/cpu.c
- arch/arm/mach-s5p64x0/cpu.c
- arch/arm/mach-s5pv210/common.c
- arch/arm/plat-samsung/include/plat/cpu.h
- arch/powerpc/kernel/sysfs.c
and fix up cpu_is_hotpluggable() as per Greg in include/linux/cpu.h
This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem
and converts the devices to regular devices. The sysdev drivers are
implemented as subsystem interfaces now.
After all sysdev classes are ported to regular driver core entities, the
sysdev implementation will be entirely removed from the kernel.
Userspace relies on events and generic sysfs subsystem infrastructure
from sysdev devices, which are made available with this conversion.
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@amd64.org>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Cc: Len Brown <lenb@kernel.org>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When architectures register CPUs, they indicate whether the CPU allows
hotplugging; notably, x86 and ARM don't allow hotplugging CPU 0.
Userspace can easily query the hotpluggability of a CPU via sysfs;
however, the kernel has no convenient way of accessing that property in
an architecture-independent way. While the kernel can simply try it and
see, some code needs to distinguish between "hotplug failed" and
"hotplug has no hope of working on this CPU"; for example, rcutorture's
CPU hotplug tests want to avoid drowning out real hotplug failures with
expected failures.
Expose this property via a new cpu_is_hotpluggable function, so that the
rest of the kernel can access it in an architecture-independent way.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Remove the suspend_cpu_hotplug declaration, which doesn't correspond
to an existing variable.
[rjw: Added the changelog.]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
We presently define all kinds of notifiers in notifier.h. This is not
necessary at all, since different subsystems use different notifiers, they
are almost non-related with each other.
This can also save much build time. Suppose I add a new netdevice event,
really I don't have to recompile all the source, just network related.
Without this patch, all the source will be recompiled.
I move the notify events near to their subsystem notifier registers, so
that they can be found more easily.
This patch:
It is not necessary to share the same notifier.h.
Signed-off-by: WANG Cong <amwang@redhat.com>
Cc: David Miller <davem@davemloft.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drivers/base/intf.c was removed before the beginning of (git) time but
its Documentation stuck around. Remove it.
Signed-off-by: Brandon Philips <brandon@ifup.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Reimplement CPU hotplugging support using trustee thread. On CPU
down, a trustee thread is created and each step of CPU down is
executed by the trustee and workqueue_cpu_callback() simply drives and
waits for trustee state transitions.
CPU down operation no longer waits for works to be drained but trustee
sticks around till all pending works have been completed. If CPU is
brought back up while works are still draining,
workqueue_cpu_callback() tells trustee to step down and tell workers
to rebind to the cpu.
As it's difficult to tell whether cwqs are empty if it's freezing or
frozen, trustee doesn't consider draining to be complete while a gcwq
is freezing or frozen (tracked by new GCWQ_FREEZING flag). Also,
workers which get unbound from their cpu are marked with WORKER_ROGUE.
Trustee based implementation doesn't bring any new feature at this
point but it will be used to manage worker pool when dynamic shared
worker pool is implemented.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, when a cpu goes down, cpu_active is cleared before
CPU_DOWN_PREPARE starts and cpuset configuration is updated from a
default priority cpu notifier. When a cpu is coming up, it's set
before CPU_ONLINE but cpuset configuration again is updated from the
same cpu notifier.
For cpu notifiers, this presents an inconsistent state. Threads which
a CPU_DOWN_PREPARE notifier expects to be bound to the CPU can be
migrated to other cpus because the cpu is no more inactive.
Fix it by updating cpu_active in the highest priority cpu notifier and
cpuset configuration in the second highest when a cpu is coming up.
Down path is updated similarly. This guarantees that all other cpu
notifiers see consistent cpu_active and cpuset configuration.
cpuset_track_online_cpus() notifier is converted to
cpuset_update_active_cpus() which just updates the configuration and
now called from cpuset_cpu_[in]active() notifiers registered from
sched_init_smp(). If cpuset is disabled, cpuset_update_active_cpus()
degenerates into partition_sched_domains() making separate notifier
for !CONFIG_CPUSETS unnecessary.
This problem is triggered by cmwq. During CPU_DOWN_PREPARE, hotplug
callback creates a kthread and kthread_bind()s it to the target cpu,
and the thread is expected to run on that cpu.
* Ingo's test discovered __cpuinit/exit markups were incorrect.
Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Menage <menage@google.com>
Instead of hardcoding priority 10 and 20 in sched and perf, collect
them into CPU_PRI_* enums.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Currently the cpu-allocation/deallocation process comprises of two steps:
- Set the indicators and to update the device tree with DLPAR node
information.
- Online/offline the allocated/deallocated CPU.
This is achieved by writing to the sysfs tunables "probe" during allocation
and "release" during deallocation.
At the sametime, the userspace can independently online/offline the CPUs of
the system using the sysfs tunable "online".
It is quite possible that when a userspace tool offlines a CPU
for the purpose of deallocation and is in the process of updating the device
tree, some other userspace tool could bring the CPU back online by writing to
the "online" sysfs tunable thereby causing the deallocate process to fail.
The solution to this is to serialize writes to the "probe/release" sysfs
tunable with the writes to the "online" sysfs tunable.
This patch employs a mutex to provide this serialization, which is a no-op on
all architectures except PPC_PSERIES
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Acked-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Version 3 of this patch is updated with documentation added to
Documentation/ABI. There are no changes to any of the C code from v2
of the patch.
In order to support kernel DLPAR of CPU resources we need to provide an
interface to add (probe) and remove (release) the resource from the system.
This patch Creates new generic probe and release sysfs files to facilitate
cpu probe/release. The probe/release interface provides for allowing each
arch to supply their own routines for implementing the backend of adding
and removing cpus to/from the system.
This also creates the powerpc specific stubs to handle the arch callouts
from writes to the sysfs files.
The creation and use of these files is regulated by the
CONFIG_ARCH_CPU_PROBE_RELEASE option so that only architectures that need the
capability will have the files created.
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
SLAB uses get/put_online_cpus() which use a mutex which is itself only
initialized when cpu_hotplug_init() is called. Currently we hang suring
boot in SLAB due to doing that too late.
Reported by James Bottomley and Sachin Sant (and possibly others).
Debugged by Benjamin Herrenschmidt.
This just removes the dynamic initialization of the data structures, and
replaces it with a static one, avoiding this dependency entirely, and
removing one unnecessary special initcall.
Tested-by: Sachin Sant <sachinp@in.ibm.com>
Tested-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Tested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cpuhotplug_mutex_lock() is not used, remove it.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, there is no notifier that is called on a new cpu, before the new
cpu begins processing interrupts/softirqs.
Various kernel function would need that notification, e.g. kvm works around
by calling smp_call_function_single(), rcu polls cpu_online_map.
The patch adds a CPU_STARTING notification. It also adds a helper function
that sends the message to all cpu_chain handlers.
Tested on x86-64.
All other archs are untested. Especially on sparc, I'm not sure if I got
it right.
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
workqueue_cpu_callback(CPU_DEAD) flushes cwq->thread under
cpu_maps_update_begin(). This means that the multithreaded workqueues
can't use get_online_cpus() due to the possible deadlock, very bad and
very old problem.
Introduce the new state, CPU_POST_DEAD, which is called after
cpu_hotplug_done() but before cpu_maps_update_done().
Change workqueue_cpu_callback() to use CPU_POST_DEAD instead of CPU_DEAD.
This means that create/destroy functions can't rely on get_online_cpus()
any longer and should take cpu_add_remove_lock instead.
[akpm@linux-foundation.org: fix CONFIG_SMP=n]
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Gautham R Shenoy <ego@in.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix following warnings:
WARNING: vmlinux.o(.data+0x5020): Section mismatch in reference from the variable cpu_vsyscall_notifier_nb.12876 to the function .cpuinit.text:cpu_vsyscall_notifier()
WARNING: vmlinux.o(.data+0x9ce0): Section mismatch in reference from the variable profile_cpu_callback_nb.17654 to the function .devinit.text:profile_cpu_callback()
WARNING: vmlinux.o(.data+0xd380): Section mismatch in reference from the variable workqueue_cpu_callback_nb.15004 to the function .devinit.text:workqueue_cpu_callback()
WARNING: vmlinux.o(.data+0x11d00): Section mismatch in reference from the variable relay_hotcpu_callback_nb.19626 to the function .cpuinit.text:relay_hotcpu_callback()
WARNING: vmlinux.o(.data+0x12970): Section mismatch in reference from the variable cpu_callback_nb.24694 to the function .devinit.text:cpu_callback()
WARNING: vmlinux.o(.data+0x3fee0): Section mismatch in reference from the variable percpu_counter_hotcpu_callback_nb.10903 to the function .cpuinit.text:percpu_counter_hotcpu_callback()
WARNING: vmlinux.o(.data+0x74ce0): Section mismatch in reference from the variable topology_cpu_callback_nb.12506 to the function .cpuinit.text:topology_cpu_callback()
Functions used as argument are by definition only used in HOTPLUG_CPU
situations so thay are annotated __cpuinit. Annotate the static variable used
by hotcpu_register with __cpuinitdata to match this definition.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of these files use any of the functionality promised by
asm/semaphore.h. It's possible that they (or some user of them) rely
on it dragging in some unrelated header file, but I can't build all
these files, so we'll have to fix any build failures as they come up.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Replace all lock_cpu_hotplug/unlock_cpu_hotplug from the kernel and use
get_online_cpus and put_online_cpus instead as it highlights the
refcount semantics in these operations.
The new API guarantees protection against the cpu-hotplug operation, but
it doesn't guarantee serialized access to any of the local data
structures. Hence the changes needs to be reviewed.
In case of pseries_add_processor/pseries_remove_processor, use
cpu_maps_update_begin()/cpu_maps_update_done() as we're modifying the
cpu_present_map there.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch implements a Refcount + Waitqueue based model for
cpu-hotplug.
Now, a thread which wants to prevent cpu-hotplug, will bump up a global
refcount and the thread which wants to perform a cpu-hotplug operation
will block till the global refcount goes to zero.
The readers, if any, during an ongoing cpu-hotplug operation are blocked
until the cpu-hotplug operation is over.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Paul Jackson <pj@sgi.com> [For !CONFIG_HOTPLUG_CPU ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
make randconfig bootup testing found that the cpufreq code
crashes on bootup, if the powernow-k8 driver is enabled and
if maxcpus=1 passed on the boot line to a !CONFIG_HOTPLUG_CPU
kernel.
First lockdep found out that there's an inconsistent unlock
sequence:
=====================================
[ BUG: bad unlock balance detected! ]
-------------------------------------
swapper/1 is trying to release lock (&per_cpu(cpu_policy_rwsem, cpu)) at:
[<ffffffff806ffd8e>] unlock_policy_rwsem_write+0x3c/0x42
but there are no more locks to release!
Call Trace:
[<ffffffff806ffd8e>] unlock_policy_rwsem_write+0x3c/0x42
[<ffffffff80251c29>] print_unlock_inbalance_bug+0x104/0x12c
[<ffffffff80252f3a>] mark_held_locks+0x56/0x94
[<ffffffff806ffd8e>] unlock_policy_rwsem_write+0x3c/0x42
[<ffffffff807008b6>] cpufreq_add_dev+0x2a8/0x5c4
...
then shortly afterwards the cpufreq code crashed on an assert:
------------[ cut here ]------------
kernel BUG at drivers/cpufreq/cpufreq.c:1068!
invalid opcode: 0000 [1] SMP
[...]
Call Trace:
[<ffffffff805145d6>] sysdev_driver_unregister+0x5b/0x91
[<ffffffff806ff520>] cpufreq_register_driver+0x15d/0x1a2
[<ffffffff80cc0596>] powernowk8_init+0x86/0x94
[...]
---[ end trace 1e9219be2b4431de ]---
the bug was caused by maxcpus=1 bootup, which brought up the
secondary core as !cpu_online() but !cpu_is_offline() either,
which on on !CONFIG_HOTPLUG_CPU is always 0 (include/linux/cpu.h):
/* CPUs don't go offline once they're online w/o CONFIG_HOTPLUG_CPU */
static inline int cpu_is_offline(int cpu) { return 0; }
but the cpufreq code uses cpu_online() and cpu_is_offline() in
a mixed way - the low-level drivers use cpu_online(), while
the cpufreq core uses cpu_is_offline(). This opened up the
possibility to add the non-initialized sysdev device of the
secondary core:
cpufreq-core: trying to register driver powernow-k8
cpufreq-core: adding CPU 0
powernow-k8: BIOS error - no PSB or ACPI _PSS objects
cpufreq-core: initialization failed
cpufreq-core: adding CPU 1
cpufreq-core: initialization failed
which then blew up. The fix is to make cpu_is_offline() always
the negation of cpu_online(). With that fix applied the kernel
boots up fine without crashing:
Calling initcall 0xffffffff80cc0510: powernowk8_init+0x0/0x94()
powernow-k8: Found 1 AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ processors (1 cpu cores) (version 2.20.00)
powernow-k8: BIOS error - no PSB or ACPI _PSS objects
initcall 0xffffffff80cc0510: powernowk8_init+0x0/0x94() returned -19.
initcall 0xffffffff80cc0510 ran for 19 msecs: powernowk8_init+0x0/0x94()
Calling initcall 0xffffffff80cc328f: init_lapic_nmi_sysfs+0x0/0x39()
We could fix this by making CPU enumeration aware of max_cpus, but that
would be more fragile IMO, and the cpu_online(cpu) != cpu_is_offline(cpu)
possibility was quite confusing and a continuous source of bugs too.
Most distributions have kernels with CPU hotplug enabled, so this bug
remained hidden for a long time.
Bug forensics:
The broken cpu_is_offline() API variant was introduced via:
commit a59d2e4e6977e7b94e003c96a41f07e96cddc340
Author: Rusty Russell <rusty@rustcorp.com.au>
Date: Mon Mar 8 06:06:03 2004 -0800
[PATCH] minor cleanups for hotplug CPUs
( this predates linux-2.6.git, this commit is available from Thomas's
historic git tree. )
Then 1.5 years later the cpufreq code made use of it:
commit c32b6b8e524d2c337767d312814484d9289550cf
Author: Ashok Raj <ashok.raj@intel.com>
Date: Sun Oct 30 14:59:54 2005 -0800
[PATCH] create and destroy cpufreq sysfs entries based on cpu notifiers
+ if (cpu_is_offline(cpu))
+ return 0;
which is a correct use of the subtly broken new API. v2.6.15 then
shipped with this bug included.
then it took two more years for random-kernel qa to hit it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return of the present "do {} while" based stub definition of
register_hotcpu_notifier() cannot be checked. This makes the stub
asymmetric w.r.t. the real HOTPLUG_CPU=y implementation that is
int-returning. So let us redefine this to be consistent with the full
version. Also do the same for unregister_hotcpu_notifier().
We cannot define these as static inline functions due to an existing GCC
bug (#33172). So define as macros that return appropriately instead (int
'0' for the register_hotcpu_notifier case and void for
unregister_hotcpu_notifier).
Signed-off-by: Satyam Sharma <satyam@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dependencies of CONFIG_SUSPEND and CONFIG_HIBERNATION introduced by commit
296699de6bdc717189a331ab6bbe90e05c94db06 "Introduce CONFIG_SUSPEND for
suspend-to-Ram and standby" are incorrect, as they don't cover the facts that
(1) not all architectures support suspend and (2) SMP hibernation is only
possible on X86 and PPC64 (if CONFIG_PPC64_SWSUSP is set).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes the following needlessly global code static:
- arch_reinit_sched_domains()
- struct attr_sched_mc_power_savings
- struct attr_sched_smt_power_savings
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
aa95387774039096c11803c04011f1aa42d85758 removed the implementation of
lock_cpu_hotplug_interruptible and all users of it. This stub definition
for !CONFIG_HOTPLUG_CPU was left over -- kill it now.
Signed-off-by: Nathan Lynch <ntl@pobox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the regression resulting from the recent change of suspend code
ordering that causes systems based on Intel x86 CPUs using the microcode
driver to hang during the resume.
The problem occurs since the microcode driver uses request_firmware() in
its CPU hotplug notifier, which is called after tasks has been frozen and
hangs. It can be fixed by telling the microcode driver to use the
microcode stored in memory during the resume instead of trying to load it
from disk.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Adrian Bunk <bunk@stusta.de>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Maxim <maximlevitsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following patchset allows a host with running virtual machines to be
suspended and, on at least a subset of the machines tested, resumed. Note
that this is orthogonal to suspending and resuming an individual guest to a
file.
A side effect of implementing suspend/resume is that cpu hotplug is now
supported. This should please the owners of big iron.
This patch:
KVM wants the cpu hotplug notifications, both for cpu hotplug itself, but more
commonly for host suspend/resume.
In order to avoid extensive #ifdefs, provide stubs when CONFIG_CPU_HOTPLUG is
not defined.
In all, we have four cases:
- UP: register and unregister stubbed out
- SMP+hotplug: full register and unregister
- SMP, no hotplug, core: register as __init, unregister stubbed
(cpus are brought up during core initialization)
- SMP, no hotplug, module: register and unregister stubbed out
(cpus cannot be brought up during module lifetime)
Signed-off-by: Avi Kivity <avi@qumranet.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide a common interface for all the subsystems to lock and unlock their
per-subsystem hotcpu mutexes.
When CONFIG_HOTPLUG_CPU is not set, these operations would be no-ops.
[akpm@osdl.org: macros -> inlines]
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There was lots of #ifdef noise in the kernel due to hotcpu_notifier(fn,
prio) not correctly marking 'fn' as used in the !HOTPLUG_CPU case, and thus
generating compiler warnings of unused symbols, hence forcing people to add
#ifdefs.
the compiler can skip truly unused functions just fine:
text data bss dec hex filename
1624412 728710 3674856 6027978 5bfaca vmlinux.before
1624412 728710 3674856 6027978 5bfaca vmlinux.after
[akpm@osdl.org: topology.c fix]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Change the 'no_control' field in the cpu struct to a more positive
and better term 'hotpluggable'. And change(/cleanup) the logic accordingly.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: "Li, Shaohua" <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
This patch adds two functions to create and remove sysfs attributes and
attribute_group to all cpus. That allows to register sysfs attributes in
a subdirectory like: /sys/devices/system/cpu/cpuX/group_name/what_ever
This will be used by cbe_thermal to group all attributes dealing with
thermal support in one directory.
Signed-of-by: Christian Krafft <krafft@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The current suspend code has to be run on one CPU, so we use the CPU
hotplug to take the non-boot CPUs offline on SMP machines. However, we
should also make sure that these CPUs will not be enabled by someone else
after we have disabled them.
The functions disable_nonboot_cpus() and enable_nonboot_cpus() are moved to
kernel/cpu.c, because they now refer to some stuff in there that should
better be static. Also it's better if disable_nonboot_cpus() returns an
error instead of panicking if something goes wrong, and
enable_nonboot_cpus() has no reason to panic(), because the CPUs may have
been enabled by the userland before it tries to take them online.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>