Fix crc32c-pcl-intel-asm_64.S to access 32-bit arguments as 32-bit
values instead of 64-bit, since the upper bits of the corresponding
64-bit registers are not guaranteed to be zero. Also update the type of
the length argument to be unsigned int rather than int, as the assembly
code treats it as unsigned.
Note: there haven't been any reports of this bug actually causing
incorrect behavior. Neither gcc nor clang guarantee zero-extension to
64 bits, but zero-extension is likely to happen in practice because most
instructions that operate on 32-bit registers zero-extend to 64 bits.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Current minimum required version of binutils is 2.23,
which supports CRC32 instruction mnemonic.
Replace the byte-wise specification of CRC32 with this proper mnemonic.
The compiler is now able to pass memory operand to the instruction,
so there is no need for a temporary register anymore.
Some examples of the improvement:
12a: 48 8b 08 mov (%rax),%rcx
12d: f2 48 0f 38 f1 f1 crc32q %rcx,%rsi
133: 48 83 c0 08 add $0x8,%rax
137: 48 39 d0 cmp %rdx,%rax
13a: 75 ee jne 12a <crc32c_intel_update+0x1a>
to:
125: f2 48 0f 38 f1 06 crc32q (%rsi),%rax
12b: 48 83 c6 08 add $0x8,%rsi
12f: 48 39 d6 cmp %rdx,%rsi
132: 75 f1 jne 125 <crc32c_intel_update+0x15>
and:
146: 0f b6 08 movzbl (%rax),%ecx
149: f2 0f 38 f0 f1 crc32b %cl,%esi
14e: 48 83 c0 01 add $0x1,%rax
152: 48 39 d0 cmp %rdx,%rax
155: 75 ef jne 146 <crc32c_intel_update+0x36>
to:
13b: f2 0f 38 f0 02 crc32b (%rdx),%eax
140: 48 83 c2 01 add $0x1,%rdx
144: 48 39 ca cmp %rcx,%rdx
147: 75 f2 jne 13b <crc32c_intel_update+0x2b>
As the compiler has some more freedom w.r.t. register allocation,
there is also a couple of reg-reg moves removed.
There are no hidden states for CRC32 insn, so there is no need to mark
assembly as volatile.
v2: Introduce CRC32_INST define.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: "David S. Miller" <davem@davemloft.net>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Ingo Molnar <mingo@redhat.com>
CC: Borislav Petkov <bp@alien8.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The new macro set has a consistent namespace and uses C99 initializers
instead of the grufty C89 ones.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20200320131510.700250889@linutronix.de
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably
many more in arch/*/crypto/ and drivers/crypto/.
Some algorithms can even set this flag when the key is the correct
length. For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.
So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly. But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation inc 51 franklin st fifth floor boston ma 02110
1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 111 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.567572064@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Replace all calls to irq_fpu_usable() in the x86 crypto code with
crypto_simd_usable(), in order to allow testing the no-SIMD code paths.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We need to consistently enforce that keyed hashes cannot be used without
setting the key. To do this we need a reliable way to determine whether
a given hash algorithm is keyed or not. AF_ALG currently does this by
checking for the presence of a ->setkey() method. However, this is
actually slightly broken because the CRC-32 algorithms implement
->setkey() but can also be used without a key. (The CRC-32 "key" is not
actually a cryptographic key but rather represents the initial state.
If not overridden, then a default initial state is used.)
Prepare to fix this by introducing a flag CRYPTO_ALG_OPTIONAL_KEY which
indicates that the algorithm has a ->setkey() method, but it is not
required to be called. Then set it on all the CRC-32 algorithms.
The same also applies to the Adler-32 implementation in Lustre.
Also, the cryptd and mcryptd templates have to pass through the flag
from their underlying algorithm.
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The crypto code was checking both use_eager_fpu() and
defined(X86_FEATURE_EAGER_FPU). The latter was nonsensical, so
remove it. This will avoid breakage when we remove
X86_FEATURE_EAGER_FPU.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pbonzini@redhat.com
Link: http://lkml.kernel.org/r/1475627678-20788-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move them to a separate header and have the following
dependency:
x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h
This makes it easier to use the header in asm code and not
include the whole cpufeature.h and add guards for asm.
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Those are stupid and code should use static_cpu_has_safe() or
boot_cpu_has() instead. Kill the least used and unused ones.
The remaining ones need more careful inspection before a conversion can
happen. On the TODO.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1449481182-27541-4-git-send-email-bp@alien8.de
Cc: David Sterba <dsterba@suse.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This unifies all the FPU related header files under a unified, hiearchical
naming scheme:
- asm/fpu/types.h: FPU related data types, needed for 'struct task_struct',
widely included in almost all kernel code, and hence kept
as small as possible.
- asm/fpu/api.h: FPU related 'public' methods exported to other subsystems.
- asm/fpu/internal.h: FPU subsystem internal methods
- asm/fpu/xsave.h: XSAVE support internal methods
(Also standardize the header guard in asm/fpu/internal.h.)
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix a minor header file dependency bug in asm/fpu-internal.h: it
relies on i387.h but does not include it. All users of fpu-internal.h
included it explicitly.
Also remove unnecessary includes, to reduce compilation time.
This also makes it easier to use it as a standalone header file
for FPU internals, such as an upcoming C module in arch/x86/kernel/fpu/.
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This prefixes all crypto module loading with "crypto-" so we never run
the risk of exposing module auto-loading to userspace via a crypto API,
as demonstrated by Mathias Krause:
https://lkml.org/lkml/2013/3/4/70
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the crc_pcl function that calculates CRC32C checksum using the
PCLMULQDQ instruction on processors that support this feature. This will
provide speedup over using CRC32 instruction only.
The usage of PCLMULQDQ necessitate the invocation of kernel_fpu_begin and
kernel_fpu_end and incur some overhead. So the new crc_pcl function is only
invoked for buffer size of 512 bytes or more. Larger sized
buffers will expect to see greater speedup. This feature is best used coupled
with eager_fpu which reduces the kernel_fpu_begin/end overhead. For
buffer size of 1K the speedup is around 1.6x and for buffer size greater than
4K, the speedup is around 3x compared to original implementation in crc32c-intel
module. Test was performed on Sandy Bridge based platform with constant frequency
set for cpu.
A white paper detailing the algorithm can be found here:
http://download.intel.com/design/intarch/papers/323405.pdf
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch renames the crc32c-intel.c file to crc32c-intel_glue.c file
in preparation for linking with the new crc32c-pcl-intel-asm.S file,
which contains optimized crc32c calculation based on PCLMULQDQ
instruction.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>