mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-11 00:08:50 +00:00
68687 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Will Deacon
|
7221762c48 |
locking/refcount: Remove unused refcount_*_checked() variants
The full-fat refcount implementation is exposed via a set of functions suffixed with "_checked()", the idea being that code can choose to use the more expensive, yet more secure implementation on a case-by-case basis. In reality, this hasn't happened, so with a grand total of zero users, let's remove the checked variants for now by simply dropping the suffix and predicating the out-of-line functions on CONFIG_REFCOUNT_FULL=y. Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Hanjun Guo <guohanjun@huawei.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191121115902.2551-4-will@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Will Deacon
|
97a1420adf |
locking/refcount: Ensure integer operands are treated as signed
In preparation for changing the saturation point of REFCOUNT_FULL to INT_MIN/2, change the type of integer operands passed into the API from 'unsigned int' to 'int' so that we can avoid casting during comparisons when we don't want to fall foul of C integral conversion rules for signed and unsigned types. Since the kernel is compiled with '-fno-strict-overflow', we don't need to worry about the UB introduced by signed overflow here. Furthermore, we're already making heavy use of the atomic_t API, which operates exclusively on signed types. Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Hanjun Guo <guohanjun@huawei.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191121115902.2551-3-will@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Will Deacon
|
23e6b169c9 |
locking/refcount: Define constants for saturation and max refcount values
The REFCOUNT_FULL implementation uses a different saturation point than the x86 implementation, which means that the shared refcount code in lib/refcount.c (e.g. refcount_dec_not_one()) needs to be aware of the difference. Rather than duplicate the definitions from the lkdtm driver, instead move them into <linux/refcount.h> and update all references accordingly. Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Hanjun Guo <guohanjun@huawei.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191121115902.2551-2-will@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
3f186d9748 |
futex: Add mutex around futex exit
The mutex will be used in subsequent changes to replace the busy looping of a waiter when the futex owner is currently executing the exit cleanup to prevent a potential live lock. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.845798895@linutronix.de |
||
Thomas Gleixner
|
18f694385c |
futex: Mark the begin of futex exit explicitly
Instead of relying on PF_EXITING use an explicit state for the futex exit and set it in the futex exit function. This moves the smp barrier and the lock/unlock serialization into the futex code. As with the DEAD state this is restricted to the exit path as exec continues to use the same task struct. This allows to simplify that logic in a next step. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.539409004@linutronix.de |
||
Thomas Gleixner
|
150d71584b |
futex: Split futex_mm_release() for exit/exec
To allow separate handling of the futex exit state in the futex exit code for exit and exec, split futex_mm_release() into two functions and invoke them from the corresponding exit/exec_mm_release() callsites. Preparatory only, no functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.332094221@linutronix.de |
||
Thomas Gleixner
|
4610ba7ad8 |
exit/exec: Seperate mm_release()
mm_release() contains the futex exit handling. mm_release() is called from do_exit()->exit_mm() and from exec()->exec_mm(). In the exit_mm() case PF_EXITING and the futex state is updated. In the exec_mm() case these states are not touched. As the futex exit code needs further protections against exit races, this needs to be split into two functions. Preparatory only, no functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.240518241@linutronix.de |
||
Thomas Gleixner
|
3d4775df0a |
futex: Replace PF_EXITPIDONE with a state
The futex exit handling relies on PF_ flags. That's suboptimal as it requires a smp_mb() and an ugly lock/unlock of the exiting tasks pi_lock in the middle of do_exit() to enforce the observability of PF_EXITING in the futex code. Add a futex_state member to task_struct and convert the PF_EXITPIDONE logic over to the new state. The PF_EXITING dependency will be cleaned up in a later step. This prepares for handling various futex exit issues later. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.149449274@linutronix.de |
||
Thomas Gleixner
|
ba31c1a485 |
futex: Move futex exit handling into futex code
The futex exit handling is #ifdeffed into mm_release() which is not pretty to begin with. But upcoming changes to address futex exit races need to add more functionality to this exit code. Split it out into a function, move it into futex code and make the various futex exit functions static. Preparatory only and no functional change. Folded build fix from Borislav. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.049705556@linutronix.de |
||
Qian Cai
|
5facae4f35 |
locking/lockdep: Remove unused @nested argument from lock_release()
Since the following commit: b4adfe8e05f1 ("locking/lockdep: Remove unused argument in __lock_release") @nested is no longer used in lock_release(), so remove it from all lock_release() calls and friends. Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: alexander.levin@microsoft.com Cc: daniel@iogearbox.net Cc: davem@davemloft.net Cc: dri-devel@lists.freedesktop.org Cc: duyuyang@gmail.com Cc: gregkh@linuxfoundation.org Cc: hannes@cmpxchg.org Cc: intel-gfx@lists.freedesktop.org Cc: jack@suse.com Cc: jlbec@evilplan.or Cc: joonas.lahtinen@linux.intel.com Cc: joseph.qi@linux.alibaba.com Cc: jslaby@suse.com Cc: juri.lelli@redhat.com Cc: maarten.lankhorst@linux.intel.com Cc: mark@fasheh.com Cc: mhocko@kernel.org Cc: mripard@kernel.org Cc: ocfs2-devel@oss.oracle.com Cc: rodrigo.vivi@intel.com Cc: sean@poorly.run Cc: st@kernel.org Cc: tj@kernel.org Cc: tytso@mit.edu Cc: vdavydov.dev@gmail.com Cc: vincent.guittot@linaro.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1568909380-32199-1-git-send-email-cai@lca.pw Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
e3280b54af |
LED fixes for 5.4-rc3.
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQUwxxKyE5l/npt8ARiEGxRG/Sl2wUCXZzy3AAKCRBiEGxRG/Sl 2wFjAP9BFsZMqiz8wTxlvn/vuVXg8V1TAbJzwn0rJJKPJsggnQD9HFBKJ3Vq995R C02zqXE+8wJlqCGRK4pmJey5KamjLQo= =JF8E -----END PGP SIGNATURE----- Merge tag 'led-fixes-for-5.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski/linux-leds Pull LED fixes from Jacek Anaszewski: - fix a leftover from earlier stage of development in the documentation of recently added led_compose_name() and fix old mistake in the documentation of led_set_brightness_sync() parameter name. - MAINTAINERS: add pointer to Pavel Machek's linux-leds.git tree. Pavel is going to take over LED tree maintainership from myself. * tag 'led-fixes-for-5.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski/linux-leds: Add my linux-leds branch to MAINTAINERS leds: core: Fix leds.h structure documentation |
||
Dan Murphy
|
e3f1271474 |
leds: core: Fix leds.h structure documentation
Update the leds.h structure documentation to define the correct arguments. Signed-off-by: Dan Murphy <dmurphy@ti.com> Signed-off-by: Jacek Anaszewski <jacek.anaszewski@gmail.com> |
||
Linus Torvalds
|
eda57a0e42 |
Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton: "The usual shower of hotfixes. Chris's memcg patches aren't actually fixes - they're mature but a few niggling review issues were late to arrive. The ocfs2 fixes are quite old - those took some time to get reviewer attention. Subsystems affected by this patch series: ocfs2, hotfixes, mm/memcg, mm/slab-generic" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two) mm, sl[ou]b: improve memory accounting mm, memcg: make scan aggression always exclude protection mm, memcg: make memory.emin the baseline for utilisation determination mm, memcg: proportional memory.{low,min} reclaim mm/vmpressure.c: fix a signedness bug in vmpressure_register_event() mm/page_alloc.c: fix a crash in free_pages_prepare() mm/z3fold.c: claim page in the beginning of free kernel/sysctl.c: do not override max_threads provided by userspace memcg: only record foreign writebacks with dirty pages when memcg is not disabled mm: fix -Wmissing-prototypes warnings writeback: fix use-after-free in finish_writeback_work() mm/memremap: drop unused SECTION_SIZE and SECTION_MASK panic: ensure preemption is disabled during panic() fs: ocfs2: fix a possible null-pointer dereference in ocfs2_info_scan_inode_alloc() fs: ocfs2: fix a possible null-pointer dereference in ocfs2_write_end_nolock() fs: ocfs2: fix possible null-pointer dereferences in ocfs2_xa_prepare_entry() ocfs2: clear zero in unaligned direct IO |
||
Vlastimil Babka
|
59bb47985c |
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned (i.e. aligned to the block size itself) blocks for power of two sizes. That means some kmalloc() users might unknowingly rely on that alignment, until stuff breaks when the kernel is built with e.g. CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then developers have to devise workaround such as own kmem caches with specified alignment [1], which is not always practical, as recently evidenced in [2]. The topic has been discussed at LSF/MM 2019 [3]. Adding a 'kmalloc_aligned()' variant would not help with code unknowingly relying on the implicit alignment. For slab implementations it would either require creating more kmalloc caches, or allocate a larger size and only give back part of it. That would be wasteful, especially with a generic alignment parameter (in contrast with a fixed alignment to size). Ideally we should provide to mm users what they need without difficult workarounds or own reimplementations, so let's make the kmalloc() alignment to size explicitly guaranteed for power-of-two sizes under all configurations. What this means for the three available allocators? * SLAB object layout happens to be mostly unchanged by the patch. The implicitly provided alignment could be compromised with CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for caches with alignment larger than unsigned long long. Practically on at least x86 this includes kmalloc caches as they use cache line alignment, which is larger than that. Still, this patch ensures alignment on all arches and cache sizes. * SLUB layout is also unchanged unless redzoning is enabled through CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache. With this patch, explicit alignment is guaranteed with redzoning as well. This will result in more memory being wasted, but that should be acceptable in a debugging scenario. * SLOB has no implicit alignment so this patch adds it explicitly for kmalloc(). The potential downside is increased fragmentation. While pathological allocation scenarios are certainly possible, in my testing, after booting a x86_64 kernel+userspace with virtme, around 16MB memory was consumed by slab pages both before and after the patch, with difference in the noise. [1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/ [2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/ [3] https://lwn.net/Articles/787740/ [akpm@linux-foundation.org: documentation fixlet, per Matthew] Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Cc: David Sterba <dsterba@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: "Darrick J . Wong" <darrick.wong@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
1bc63fb127 |
mm, memcg: make scan aggression always exclude protection
This patch is an incremental improvement on the existing memory.{low,min} relative reclaim work to base its scan pressure calculations on how much protection is available compared to the current usage, rather than how much the current usage is over some protection threshold. This change doesn't change the experience for the user in the normal case too much. One benefit is that it replaces the (somewhat arbitrary) 100% cutoff with an indefinite slope, which makes it easier to ballpark a memory.low value. As well as this, the old methodology doesn't quite apply generically to machines with varying amounts of physical memory. Let's say we have a top level cgroup, workload.slice, and another top level cgroup, system-management.slice. We want to roughly give 12G to system-management.slice, so on a 32GB machine we set memory.low to 20GB in workload.slice, and on a 64GB machine we set memory.low to 52GB. However, because these are relative amounts to the total machine size, while the amount of memory we want to generally be willing to yield to system.slice is absolute (12G), we end up putting more pressure on system.slice just because we have a larger machine and a larger workload to fill it, which seems fairly unintuitive. With this new behaviour, we don't end up with this unintended side effect. Previously the way that memory.low protection works is that if you are 50% over a certain baseline, you get 50% of your normal scan pressure. This is certainly better than the previous cliff-edge behaviour, but it can be improved even further by always considering memory under the currently enforced protection threshold to be out of bounds. This means that we can set relatively low memory.low thresholds for variable or bursty workloads while still getting a reasonable level of protection, whereas with the previous version we may still trivially hit the 100% clamp. The previous 100% clamp is also somewhat arbitrary, whereas this one is more concretely based on the currently enforced protection threshold, which is likely easier to reason about. There is also a subtle issue with the way that proportional reclaim worked previously -- it promotes having no memory.low, since it makes pressure higher during low reclaim. This happens because we base our scan pressure modulation on how far memory.current is between memory.min and memory.low, but if memory.low is unset, we only use the overage method. In most cromulent configurations, this then means that we end up with *more* pressure than with no memory.low at all when we're in low reclaim, which is not really very usable or expected. With this patch, memory.low and memory.min affect reclaim pressure in a more understandable and composable way. For example, from a user standpoint, "protected" memory now remains untouchable from a reclaim aggression standpoint, and users can also have more confidence that bursty workloads will still receive some amount of guaranteed protection. Link: http://lkml.kernel.org/r/20190322160307.GA3316@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
9de7ca46ad |
mm, memcg: make memory.emin the baseline for utilisation determination
Roman points out that when when we do the low reclaim pass, we scale the reclaim pressure relative to position between 0 and the maximum protection threshold. However, if the maximum protection is based on memory.elow, and memory.emin is above zero, this means we still may get binary behaviour on second-pass low reclaim. This is because we scale starting at 0, not starting at memory.emin, and since we don't scan at all below emin, we end up with cliff behaviour. This should be a fairly uncommon case since usually we don't go into the second pass, but it makes sense to scale our low reclaim pressure starting at emin. You can test this by catting two large sparse files, one in a cgroup with emin set to some moderate size compared to physical RAM, and another cgroup without any emin. In both cgroups, set an elow larger than 50% of physical RAM. The one with emin will have less page scanning, as reclaim pressure is lower. Rebase on top of and apply the same idea as what was applied to handle cgroup_memory=disable properly for the original proportional patch http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name ("mm, memcg: Handle cgroup_disable=memory when getting memcg protection"). Link: http://lkml.kernel.org/r/20190201051810.GA18895@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Suggested-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
9783aa9917 |
mm, memcg: proportional memory.{low,min} reclaim
cgroup v2 introduces two memory protection thresholds: memory.low (best-effort) and memory.min (hard protection). While they generally do what they say on the tin, there is a limitation in their implementation that makes them difficult to use effectively: that cliff behaviour often manifests when they become eligible for reclaim. This patch implements more intuitive and usable behaviour, where we gradually mount more reclaim pressure as cgroups further and further exceed their protection thresholds. This cliff edge behaviour happens because we only choose whether or not to reclaim based on whether the memcg is within its protection limits (see the use of mem_cgroup_protected in shrink_node), but we don't vary our reclaim behaviour based on this information. Imagine the following timeline, with the numbers the lruvec size in this zone: 1. memory.low=1000000, memory.current=999999. 0 pages may be scanned. 2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned. 3. memory.low=1000000, memory.current=1000001. 1000001* pages may be scanned. (?!) * Of course, we won't usually scan all available pages in the zone even without this patch because of scan control priority, over-reclaim protection, etc. However, as shown by the tests at the end, these techniques don't sufficiently throttle such an extreme change in input, so cliff-like behaviour isn't really averted by their existence alone. Here's an example of how this plays out in practice. At Facebook, we are trying to protect various workloads from "system" software, like configuration management tools, metric collectors, etc (see this[0] case study). In order to find a suitable memory.low value, we start by determining the expected memory range within which the workload will be comfortable operating. This isn't an exact science -- memory usage deemed "comfortable" will vary over time due to user behaviour, differences in composition of work, etc, etc. As such we need to ballpark memory.low, but doing this is currently problematic: 1. If we end up setting it too low for the workload, it won't have *any* effect (see discussion above). The group will receive the full weight of reclaim and won't have any priority while competing with the less important system software, as if we had no memory.low configured at all. 2. Because of this behaviour, we end up erring on the side of setting it too high, such that the comfort range is reliably covered. However, protected memory is completely unavailable to the rest of the system, so we might cause undue memory and IO pressure there when we *know* we have some elasticity in the workload. 3. Even if we get the value totally right, smack in the middle of the comfort zone, we get extreme jumps between no pressure and full pressure that cause unpredictable pressure spikes in the workload due to the current binary reclaim behaviour. With this patch, we can set it to our ballpark estimation without too much worry. Any undesirable behaviour, such as too much or too little reclaim pressure on the workload or system will be proportional to how far our estimation is off. This means we can set memory.low much more conservatively and thus waste less resources *without* the risk of the workload falling off a cliff if we overshoot. As a more abstract technical description, this unintuitive behaviour results in having to give high-priority workloads a large protection buffer on top of their expected usage to function reliably, as otherwise we have abrupt periods of dramatically increased memory pressure which hamper performance. Having to set these thresholds so high wastes resources and generally works against the principle of work conservation. In addition, having proportional memory reclaim behaviour has other benefits. Most notably, before this patch it's basically mandatory to set memory.low to a higher than desirable value because otherwise as soon as you exceed memory.low, all protection is lost, and all pages are eligible to scan again. By contrast, having a gradual ramp in reclaim pressure means that you now still get some protection when thresholds are exceeded, which means that one can now be more comfortable setting memory.low to lower values without worrying that all protection will be lost. This is important because workingset size is really hard to know exactly, especially with variable workloads, so at least getting *some* protection if your workingset size grows larger than you expect increases user confidence in setting memory.low without a huge buffer on top being needed. Thanks a lot to Johannes Weiner and Tejun Heo for their advice and assistance in thinking about how to make this work better. In testing these changes, I intended to verify that: 1. Changes in page scanning become gradual and proportional instead of binary. To test this, I experimented stepping further and further down memory.low protection on a workload that floats around 19G workingset when under memory.low protection, watching page scan rates for the workload cgroup: +------------+-----------------+--------------------+--------------+ | memory.low | test (pgscan/s) | control (pgscan/s) | % of control | +------------+-----------------+--------------------+--------------+ | 21G | 0 | 0 | N/A | | 17G | 867 | 3799 | 23% | | 12G | 1203 | 3543 | 34% | | 8G | 2534 | 3979 | 64% | | 4G | 3980 | 4147 | 96% | | 0 | 3799 | 3980 | 95% | +------------+-----------------+--------------------+--------------+ As you can see, the test kernel (with a kernel containing this patch) ramps up page scanning significantly more gradually than the control kernel (without this patch). 2. More gradual ramp up in reclaim aggression doesn't result in premature OOMs. To test this, I wrote a script that slowly increments the number of pages held by stress(1)'s --vm-keep mode until a production system entered severe overall memory contention. This script runs in a highly protected slice taking up the majority of available system memory. Watching vmstat revealed that page scanning continued essentially nominally between test and control, without causing forward reclaim progress to become arrested. [0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project [akpm@linux-foundation.org: reflow block comments to fit in 80 cols] [chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection] Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baoquan He
|
08d1d0e6d0 |
memcg: only record foreign writebacks with dirty pages when memcg is not disabled
In kdump kernel, memcg usually is disabled with 'cgroup_disable=memory' for saving memory. Now kdump kernel will always panic when dump vmcore to local disk: BUG: kernel NULL pointer dereference, address: 0000000000000ab8 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 598 Comm: makedumpfile Not tainted 5.3.0+ #26 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 10/02/2018 RIP: 0010:mem_cgroup_track_foreign_dirty_slowpath+0x38/0x140 Call Trace: __set_page_dirty+0x52/0xc0 iomap_set_page_dirty+0x50/0x90 iomap_write_end+0x6e/0x270 iomap_write_actor+0xce/0x170 iomap_apply+0xba/0x11e iomap_file_buffered_write+0x62/0x90 xfs_file_buffered_aio_write+0xca/0x320 [xfs] new_sync_write+0x12d/0x1d0 vfs_write+0xa5/0x1a0 ksys_write+0x59/0xd0 do_syscall_64+0x59/0x1e0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 And this will corrupt the 1st kernel too with 'cgroup_disable=memory'. Via the trace and with debugging, it is pointing to commit 97b27821b485 ("writeback, memcg: Implement foreign dirty flushing") which introduced this regression. Disabling memcg causes the null pointer dereference at uninitialized data in function mem_cgroup_track_foreign_dirty_slowpath(). Fix it by returning directly if memcg is disabled, but not trying to record the foreign writebacks with dirty pages. Link: http://lkml.kernel.org/r/20190924141928.GD31919@MiWiFi-R3L-srv Fixes: 97b27821b485 ("writeback, memcg: Implement foreign dirty flushing") Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jan Kara <jack@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
c512c69187 |
uaccess: implement a proper unsafe_copy_to_user() and switch filldir over to it
In commit 9f79b78ef744 ("Convert filldir[64]() from __put_user() to unsafe_put_user()") I made filldir() use unsafe_put_user(), which improves code generation on x86 enormously. But because we didn't have a "unsafe_copy_to_user()", the dirent name copy was also done by hand with unsafe_put_user() in a loop, and it turns out that a lot of other architectures didn't like that, because unlike x86, they have various alignment issues. Most non-x86 architectures trap and fix it up, and some (like xtensa) will just fail unaligned put_user() accesses unconditionally. Which makes that "copy using put_user() in a loop" not work for them at all. I could make that code do explicit alignment etc, but the architectures that don't like unaligned accesses also don't really use the fancy "user_access_begin/end()" model, so they might just use the regular old __copy_to_user() interface. So this commit takes that looping implementation, turns it into the x86 version of "unsafe_copy_to_user()", and makes other architectures implement the unsafe copy version as __copy_to_user() (the same way they do for the other unsafe_xyz() accessor functions). Note that it only does this for the copying _to_ user space, and we still don't have a unsafe version of copy_from_user(). That's partly because we have no current users of it, but also partly because the copy_from_user() case is slightly different and cannot efficiently be implemented in terms of a unsafe_get_user() loop (because gcc can't do asm goto with outputs). It would be trivial to do this using "rep movsb", which would work really nicely on newer x86 cores, but really badly on some older ones. Al Viro is looking at cleaning up all our user copy routines to make this all a non-issue, but for now we have this simple-but-stupid version for x86 that works fine for the dirent name copy case because those names are short strings and we simply don't need anything fancier. Fixes: 9f79b78ef744 ("Convert filldir[64]() from __put_user() to unsafe_put_user()") Reported-by: Guenter Roeck <linux@roeck-us.net> Reported-and-tested-by: Tony Luck <tony.luck@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
9819a30c11 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from David Miller: 1) Fix ieeeu02154 atusb driver use-after-free, from Johan Hovold. 2) Need to validate TCA_CBQ_WRROPT netlink attributes, from Eric Dumazet. 3) txq null deref in mac80211, from Miaoqing Pan. 4) ionic driver needs to select NET_DEVLINK, from Arnd Bergmann. 5) Need to disable bh during nft_connlimit GC, from Pablo Neira Ayuso. 6) Avoid division by zero in taprio scheduler, from Vladimir Oltean. 7) Various xgmac fixes in stmmac driver from Jose Abreu. 8) Avoid 64-bit division in mlx5 leading to link errors on 32-bit from Michal Kubecek. 9) Fix bad VLAN check in rtl8366 DSA driver, from Linus Walleij. 10) Fix sleep while atomic in sja1105, from Vladimir Oltean. 11) Suspend/resume deadlock in stmmac, from Thierry Reding. 12) Various UDP GSO fixes from Josh Hunt. 13) Fix slab out of bounds access in tcp_zerocopy_receive(), from Eric Dumazet. 14) Fix OOPS in __ipv6_ifa_notify(), from David Ahern. 15) Memory leak in NFC's llcp_sock_bind, from Eric Dumazet. * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (72 commits) selftests/net: add nettest to .gitignore net: qlogic: Fix memory leak in ql_alloc_large_buffers nfc: fix memory leak in llcp_sock_bind() sch_dsmark: fix potential NULL deref in dsmark_init() net: phy: at803x: use operating parameters from PHY-specific status net: phy: extract pause mode net: phy: extract link partner advertisement reading net: phy: fix write to mii-ctrl1000 register ipv6: Handle missing host route in __ipv6_ifa_notify net: phy: allow for reset line to be tied to a sleepy GPIO controller net: ipv4: avoid mixed n_redirects and rate_tokens usage r8152: Set macpassthru in reset_resume callback cxgb4:Fix out-of-bounds MSI-X info array access Revert "ipv6: Handle race in addrconf_dad_work" net: make sock_prot_memory_pressure() return "const char *" rxrpc: Fix rxrpc_recvmsg tracepoint qmi_wwan: add support for Cinterion CLS8 devices tcp: fix slab-out-of-bounds in tcp_zerocopy_receive() lib: textsearch: fix escapes in example code udp: only do GSO if # of segs > 1 ... |
||
Russell King
|
2d880b8709 |
net: phy: extract pause mode
Extract the update of phylib's software pause mode state from genphy_read_status(), so that we can re-use this functionality with PHYs that have alternative ways to read the negotiation results. Tested-by: tinywrkb <tinywrkb@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Russell King
|
8d3dc3ac9d |
net: phy: extract link partner advertisement reading
Move reading the link partner advertisement out of genphy_read_status() into its own separate function. This will allow re-use of this code by PHY drivers that are able to read the resolved status from the PHY. Tested-by: tinywrkb <tinywrkb@gmail.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Russell King
|
4cf6c57e61 |
net: phy: fix write to mii-ctrl1000 register
When userspace writes to the MII_ADVERTISE register, we update phylib's advertising mask and trigger a renegotiation. However, writing to the MII_CTRL1000 register, which contains the gigabit advertisement, does neither. This can lead to phylib's copy of the advertisement becoming de-synced with the values in the PHY register set, which can result in incorrect negotiation resolution. Fixes: 5502b218e001 ("net: phy: use phy_resolve_aneg_linkmode in genphy_read_status") Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Linus Torvalds
|
b145b0eb20 |
ARM and x86 bugfixes of all kinds. The most visible one is that migrating
a nested hypervisor has always been busted on Broadwell and newer processors, and that has finally been fixed. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJdlzTRAAoJEL/70l94x66DElcH/Rvhn5VQE/n2J+tKEXAICxQu FqcTBJ5x2mp04aFe7xD3kWoKRJmz2lmHdw2ahFd4sqqLfGEFF/KW24ADI33vzLx/ UmT78O0Je3PX77TRnEXy+napbJny0iT6ikTAQKPbyQ151JlqlbPvatpDXXLPWQHv jj6nKHCvMBrhV3kgaXO3cTFl8swX1hvR9lo9PcA2gRNt+HMN0heUmpfKughPoOes JH+UNjsEr7MYlXYlIIc9o71EYH+kgPObwlLejy0ture+dvvZEJUJjZJE8H/XG5f2 ryXG9favaCOTAvaGf0R5Es+47A3crqUr6gHS0N28QKPn7x4hehIkKpA9dXQnWIw= =1/LN -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM fixes from Paolo Bonzini: "ARM and x86 bugfixes of all kinds. The most visible one is that migrating a nested hypervisor has always been busted on Broadwell and newer processors, and that has finally been fixed" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits) KVM: x86: omit "impossible" pmu MSRs from MSR list KVM: nVMX: Fix consistency check on injected exception error code KVM: x86: omit absent pmu MSRs from MSR list selftests: kvm: Fix libkvm build error kvm: vmx: Limit guest PMCs to those supported on the host kvm: x86, powerpc: do not allow clearing largepages debugfs entry KVM: selftests: x86: clarify what is reported on KVM_GET_MSRS failure KVM: VMX: Set VMENTER_L1D_FLUSH_NOT_REQUIRED if !X86_BUG_L1TF selftests: kvm: add test for dirty logging inside nested guests KVM: x86: fix nested guest live migration with PML KVM: x86: assign two bits to track SPTE kinds KVM: x86: Expose XSAVEERPTR to the guest kvm: x86: Enumerate support for CLZERO instruction kvm: x86: Use AMD CPUID semantics for AMD vCPUs kvm: x86: Improve emulation of CPUID leaves 0BH and 1FH KVM: X86: Fix userspace set invalid CR4 kvm: x86: Fix a spurious -E2BIG in __do_cpuid_func KVM: LAPIC: Loosen filter for adaptive tuning of lapic_timer_advance_ns KVM: arm/arm64: vgic: Use the appropriate TRACE_INCLUDE_PATH arm64: KVM: Kill hyp_alternate_select() ... |
||
David S. Miller
|
4fbb97bac1 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
Pablo Neira Ayuso says: ==================== Netfilter fixes for net The following patchset contains Netfilter fixes for net: 1) Remove the skb_ext_del from nf_reset, and renames it to a more fitting nf_reset_ct(). Patch from Florian Westphal. 2) Fix deadlock in nft_connlimit between packet path updates and the garbage collector. ==================== Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Vladimir Oltean
|
3e8db7e560 |
net: dsa: sja1105: Fix sleeping while atomic in .port_hwtstamp_set
Currently this stack trace can be seen with CONFIG_DEBUG_ATOMIC_SLEEP=y: [ 41.568348] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:909 [ 41.576757] in_atomic(): 1, irqs_disabled(): 0, pid: 208, name: ptp4l [ 41.583212] INFO: lockdep is turned off. [ 41.587123] CPU: 1 PID: 208 Comm: ptp4l Not tainted 5.3.0-rc6-01445-ge950f2d4bc7f-dirty #1827 [ 41.599873] [<c0313d7c>] (unwind_backtrace) from [<c030e13c>] (show_stack+0x10/0x14) [ 41.607584] [<c030e13c>] (show_stack) from [<c1212d50>] (dump_stack+0xd4/0x100) [ 41.614863] [<c1212d50>] (dump_stack) from [<c037dfc8>] (___might_sleep+0x1c8/0x2b4) [ 41.622574] [<c037dfc8>] (___might_sleep) from [<c122ea90>] (__mutex_lock+0x48/0xab8) [ 41.630368] [<c122ea90>] (__mutex_lock) from [<c122f51c>] (mutex_lock_nested+0x1c/0x24) [ 41.638340] [<c122f51c>] (mutex_lock_nested) from [<c0c6fe08>] (sja1105_static_config_reload+0x30/0x27c) [ 41.647779] [<c0c6fe08>] (sja1105_static_config_reload) from [<c0c7015c>] (sja1105_hwtstamp_set+0x108/0x1cc) [ 41.657562] [<c0c7015c>] (sja1105_hwtstamp_set) from [<c0feb650>] (dev_ifsioc+0x18c/0x330) [ 41.665788] [<c0feb650>] (dev_ifsioc) from [<c0febbd8>] (dev_ioctl+0x320/0x6e8) [ 41.673064] [<c0febbd8>] (dev_ioctl) from [<c0f8b1f4>] (sock_ioctl+0x334/0x5e8) [ 41.680340] [<c0f8b1f4>] (sock_ioctl) from [<c05404a8>] (do_vfs_ioctl+0xb0/0xa10) [ 41.687789] [<c05404a8>] (do_vfs_ioctl) from [<c0540e3c>] (ksys_ioctl+0x34/0x58) [ 41.695151] [<c0540e3c>] (ksys_ioctl) from [<c0301000>] (ret_fast_syscall+0x0/0x28) [ 41.702768] Exception stack(0xe8495fa8 to 0xe8495ff0) [ 41.707796] 5fa0: beff4a8c 00000001 00000011 000089b0 beff4a8c beff4a80 [ 41.715933] 5fc0: beff4a8c 00000001 0000000c 00000036 b6fa98c8 004e19c1 00000001 00000000 [ 41.724069] 5fe0: 004dcedc beff4a6c 004c0738 b6e7af4c [ 41.729860] BUG: scheduling while atomic: ptp4l/208/0x00000002 [ 41.735682] INFO: lockdep is turned off. Enabling RX timestamping will logically disturb the fastpath (processing of meta frames). Replace bool hwts_rx_en with a bit that is checked atomically from the fastpath and temporarily unset from the sleepable context during a change of the RX timestamping process (a destructive operation anyways, requires switch reset). If found unset, the fastpath (net/dsa/tag_sja1105.c) will just drop any received meta frame and not take the meta_lock at all. Fixes: a602afd200f5 ("net: dsa: sja1105: Expose PTP timestamping ioctls to userspace") Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Florian Westphal
|
895b5c9f20 |
netfilter: drop bridge nf reset from nf_reset
commit 174e23810cd31 ("sk_buff: drop all skb extensions on free and skb scrubbing") made napi recycle always drop skb extensions. The additional skb_ext_del() that is performed via nf_reset on napi skb recycle is not needed anymore. Most nf_reset() calls in the stack are there so queued skb won't block 'rmmod nf_conntrack' indefinitely. This removes the skb_ext_del from nf_reset, and renames it to a more fitting nf_reset_ct(). In a few selected places, add a call to skb_ext_reset to make sure that no active extensions remain. I am submitting this for "net", because we're still early in the release cycle. The patch applies to net-next too, but I think the rename causes needless divergence between those trees. Suggested-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> |
||
Aleksa Sarai
|
f5a1a536fa |
lib: introduce copy_struct_from_user() helper
A common pattern for syscall extensions is increasing the size of a struct passed from userspace, such that the zero-value of the new fields result in the old kernel behaviour (allowing for a mix of userspace and kernel vintages to operate on one another in most cases). While this interface exists for communication in both directions, only one interface is straightforward to have reasonable semantics for (userspace passing a struct to the kernel). For kernel returns to userspace, what the correct semantics are (whether there should be an error if userspace is unaware of a new extension) is very syscall-dependent and thus probably cannot be unified between syscalls (a good example of this problem is [1]). Previously there was no common lib/ function that implemented the necessary extension-checking semantics (and different syscalls implemented them slightly differently or incompletely[2]). Future patches replace common uses of this pattern to make use of copy_struct_from_user(). Some in-kernel selftests that insure that the handling of alignment and various byte patterns are all handled identically to memchr_inv() usage. [1]: commit 1251201c0d34 ("sched/core: Fix uclamp ABI bug, clean up and robustify sched_read_attr() ABI logic and code") [2]: For instance {sched_setattr,perf_event_open,clone3}(2) all do do similar checks to copy_struct_from_user() while rt_sigprocmask(2) always rejects differently-sized struct arguments. Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: Aleksa Sarai <cyphar@cyphar.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com> Link: https://lore.kernel.org/r/20191001011055.19283-2-cyphar@cyphar.com Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
||
Paolo Bonzini
|
833b45de69 |
kvm: x86, powerpc: do not allow clearing largepages debugfs entry
The largepages debugfs entry is incremented/decremented as shadow pages are created or destroyed. Clearing it will result in an underflow, which is harmless to KVM but ugly (and could be misinterpreted by tools that use debugfs information), so make this particular statistic read-only. Cc: kvm-ppc@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Linus Torvalds
|
a3c0e7b1fe |
libnvdimm fixes v5.4-rc1
- Complete the reworks to interoperate with powerpc dynamic huge page sizes - Fix a crash due to missed accounting for the powerpc 'struct page'-memmap mapping granularity. - Fix badblock initialization for volatile (DRAM emulated) pmem ranges. - Stop triggering request_key() notifications to userspace when NVDIMM-security is disabled / not present. - Miscellaneous small fixups. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJdkAprAAoJEB7SkWpmfYgCjXoQAIwJE1VzNP1V+ARxfs1rTGVz pbNJiBnj4gxDaCkcKoatiadRkytUxeUNEcPslEKsfoNinXYqkpjMQoWm2VpILOMU nY+SvIudGRnuesq2/Y+CP8zrX6rV4eBDfHK05RN/Zp1IlW7pTDItUx8mJ7glmDwG PW0vkvK7yZ+dRFnpQ7QFjhA0Q3oudO5YcTVBDK5YYtDGlv69xfXqc9LW8SszJ1kU rhCIT1kdoL5of0TIgG5pTfmggPSQ9y1xPsKjllOHNa3m50eGOkkQLELOVzQb1frW cjAsPLjRDSzvdHHSLyu0Is04Q5JU2CucxHl2SXGHiOt5tigH8dk5XFxWt0Pc8EXx acYYiBqUXC3MomSYWeLK4BdO2cRTqcPPXgJYAqXblqr+/0ys+rFepjw+j8JkiLZa 5UCC30l1GXEpw9u6gdCMqvvHN2gHvDB0BV82Sx8wTewJpeL18wCUJoKVuFmpsHko p1cCe7St1TzcK3eO+xfeW1rxNrcXUpKVYXVa/WOJW0vwErqAZ6YCdNuyJHocZzXn vNyIQmVDOlubsgBAI2ExxeZO6xc8UIwLhLg7XEJ0mg3k6UXA8HZxH2B2THJk1BSF RppodkYiMknh11sqgpGp+Hz5XSEg/jvmCdL/qRDGAwhsFhFaxDH37Kg4Qncj2/dg uDvDHXNCjbGpzCo3tyNx =Z6Fa -----END PGP SIGNATURE----- Merge tag 'libnvdimm-fixes-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm More libnvdimm updates from Dan Williams: - Complete the reworks to interoperate with powerpc dynamic huge page sizes - Fix a crash due to missed accounting for the powerpc 'struct page'-memmap mapping granularity - Fix badblock initialization for volatile (DRAM emulated) pmem ranges - Stop triggering request_key() notifications to userspace when NVDIMM-security is disabled / not present - Miscellaneous small fixups * tag 'libnvdimm-fixes-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: libnvdimm/region: Enable MAP_SYNC for volatile regions libnvdimm: prevent nvdimm from requesting key when security is disabled libnvdimm/region: Initialize bad block for volatile namespaces libnvdimm/nfit_test: Fix acpi_handle redefinition libnvdimm/altmap: Track namespace boundaries in altmap libnvdimm: Fix endian conversion issues libnvdimm/dax: Pick the right alignment default when creating dax devices powerpc/book3s64: Export has_transparent_hugepage() related functions. |
||
Linus Torvalds
|
939ca9f175 |
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux-soc-thermal
Pull thermal SoC updates from Eduardo Valentin: "This is a really small pull in the midst of a lot of pending patches. We are in the middle of restructuring how we are maintaining the thermal subsystem, as per discussion in our last LPC. For now, I am sending just some changes that were pending in my tree. Looking forward to get a more streamlined process in the next merge window" * 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux-soc-thermal: thermal: db8500: Rewrite to be a pure OF sensor thermal: db8500: Use dev helper variable thermal: db8500: Finalize device tree conversion thermal: thermal_mmio: remove some dead code |
||
Linus Torvalds
|
02dc96ef6c |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from David Miller: 1) Sanity check URB networking device parameters to avoid divide by zero, from Oliver Neukum. 2) Disable global multicast filter in NCSI, otherwise LLDP and IPV6 don't work properly. Longer term this needs a better fix tho. From Vijay Khemka. 3) Small fixes to selftests (use ping when ping6 is not present, etc.) from David Ahern. 4) Bring back rt_uses_gateway member of struct rtable, it's semantics were not well understood and trying to remove it broke things. From David Ahern. 5) Move usbnet snaity checking, ignore endpoints with invalid wMaxPacketSize. From Bjørn Mork. 6) Missing Kconfig deps for sja1105 driver, from Mao Wenan. 7) Various small fixes to the mlx5 DR steering code, from Alaa Hleihel, Alex Vesker, and Yevgeny Kliteynik 8) Missing CAP_NET_RAW checks in various places, from Ori Nimron. 9) Fix crash when removing sch_cbs entry while offloading is enabled, from Vinicius Costa Gomes. 10) Signedness bug fixes, generally in looking at the result given by of_get_phy_mode() and friends. From Dan Crapenter. 11) Disable preemption around BPF_PROG_RUN() calls, from Eric Dumazet. 12) Don't create VRF ipv6 rules if ipv6 is disabled, from David Ahern. 13) Fix quantization code in tcp_bbr, from Kevin Yang. * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (127 commits) net: tap: clean up an indentation issue nfp: abm: fix memory leak in nfp_abm_u32_knode_replace tcp: better handle TCP_USER_TIMEOUT in SYN_SENT state sk_buff: drop all skb extensions on free and skb scrubbing tcp_bbr: fix quantization code to not raise cwnd if not probing bandwidth mlxsw: spectrum_flower: Fail in case user specifies multiple mirror actions Documentation: Clarify trap's description mlxsw: spectrum: Clear VLAN filters during port initialization net: ena: clean up indentation issue NFC: st95hf: clean up indentation issue net: phy: micrel: add Asym Pause workaround for KSZ9021 net: socionext: ave: Avoid using netdev_err() before calling register_netdev() ptp: correctly disable flags on old ioctls lib: dimlib: fix help text typos net: dsa: microchip: Always set regmap stride to 1 nfp: flower: fix memory leak in nfp_flower_spawn_vnic_reprs nfp: flower: prevent memory leak in nfp_flower_spawn_phy_reprs net/sched: Set default of CONFIG_NET_TC_SKB_EXT to N vrf: Do not attempt to create IPv6 mcast rule if IPv6 is disabled net: sched: sch_sfb: don't call qdisc_put() while holding tree lock ... |
||
Linus Torvalds
|
edf445ad7c |
Merge branch 'hugepage-fallbacks' (hugepatch patches from David Rientjes)
Merge hugepage allocation updates from David Rientjes: "We (mostly Linus, Andrea, and myself) have been discussing offlist how to implement a sane default allocation strategy for hugepages on NUMA platforms. With these reverts in place, the page allocator will happily allocate a remote hugepage immediately rather than try to make a local hugepage available. This incurs a substantial performance degradation when memory compaction would have otherwise made a local hugepage available. This series reverts those reverts and attempts to propose a more sane default allocation strategy specifically for hugepages. Andrea acknowledges this is likely to fix the swap storms that he originally reported that resulted in the patches that removed __GFP_THISNODE from hugepage allocations. The immediate goal is to return 5.3 to the behavior the kernel has implemented over the past several years so that remote hugepages are not immediately allocated when local hugepages could have been made available because the increased access latency is untenable. The next goal is to introduce a sane default allocation strategy for hugepages allocations in general regardless of the configuration of the system so that we prevent thrashing of local memory when compaction is unlikely to succeed and can prefer remote hugepages over remote native pages when the local node is low on memory." Note on timing: this reverts the hugepage VM behavior changes that got introduced fairly late in the 5.3 cycle, and that fixed a huge performance regression for certain loads that had been around since 4.18. Andrea had this note: "The regression of 4.18 was that it was taking hours to start a VM where 3.10 was only taking a few seconds, I reported all the details on lkml when it was finally tracked down in August 2018. https://lore.kernel.org/linux-mm/20180820032640.9896-2-aarcange@redhat.com/ __GFP_THISNODE in MADV_HUGEPAGE made the above enterprise vfio workload degrade like in the "current upstream" above. And it still would have been that bad as above until 5.3-rc5" where the bad behavior ends up happening as you fill up a local node, and without that change, you'd get into the nasty swap storm behavior due to compaction working overtime to make room for more memory on the nodes. As a result 5.3 got the two performance fix reverts in rc5. However, David Rientjes then noted that those performance fixes in turn regressed performance for other loads - although not quite to the same degree. He suggested reverting the reverts and instead replacing them with two small changes to how hugepage allocations are done (patch descriptions rephrased by me): - "avoid expensive reclaim when compaction may not succeed": just admit that the allocation failed when you're trying to allocate a huge-page and compaction wasn't successful. - "allow hugepage fallback to remote nodes when madvised": when that node-local huge-page allocation failed, retry without forcing the local node. but by then I judged it too late to replace the fixes for a 5.3 release. So 5.3 was released with behavior that harked back to the pre-4.18 logic. But now we're in the merge window for 5.4, and we can see if this alternate model fixes not just the horrendous swap storm behavior, but also restores the performance regression that the late reverts caused. Fingers crossed. * emailed patches from David Rientjes <rientjes@google.com>: mm, page_alloc: allow hugepage fallback to remote nodes when madvised mm, page_alloc: avoid expensive reclaim when compaction may not succeed Revert "Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask"" Revert "Revert "mm, thp: restore node-local hugepage allocations"" |
||
David Rientjes
|
19deb7695e |
Revert "Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask""
This reverts commit 92717d429b38e4f9f934eed7e605cc42858f1839. Since commit a8282608c88e ("Revert "mm, thp: restore node-local hugepage allocations"") is reverted in this series, it is better to restore the previous 5.2 behavior between the thp allocation and the page allocator rather than to attempt any consolidation or cleanup for a policy that is now reverted. It's less risky during an rc cycle and subsequent patches in this series further modify the same policy that the pre-5.3 behavior implements. Consolidation and cleanup can be done subsequent to a sane default page allocation strategy, so this patch reverts a cleanup done on a strategy that is now reverted and thus is the least risky option. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
ac79f78dab |
Revert "Revert "mm, thp: restore node-local hugepage allocations""
This reverts commit a8282608c88e08b1782141026eab61204c1e533f. The commit references the original intended semantic for MADV_HUGEPAGE which has subsequently taken on three unique purposes: - enables or disables thp for a range of memory depending on the system's config (is thp "enabled" set to "always" or "madvise"), - determines the synchronous compaction behavior for thp allocations at fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"), and - reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only clear previous hugepage advice). These are the three purposes that currently exist in 5.2 and over the past several years that userspace has been written around. Adding a NUMA locality preference adds a fourth dimension to an already conflated advice mode. Based on the semantic that MADV_HUGEPAGE has provided over the past several years, there exist workloads that use the tunable based on these principles: specifically that the allocation should attempt to defragment a local node before falling back. It is agreed that remote hugepages typically (but not always) have a better access latency than remote native pages, although on Naples this is at parity for intersocket. The revert commit that this patch reverts allows hugepage allocation to immediately allocate remotely when local memory is fragmented. This is contrary to the semantic of MADV_HUGEPAGE over the past several years: that is, memory compaction should be attempted locally before falling back. The performance degradation of remote hugepages over local hugepages on Rome, for example, is 53.5% increased access latency. For this reason, the goal is to revert back to the 5.2 and previous behavior that would attempt local defragmentation before falling back. With the patch that is reverted by this patch, we see performance degradations at the tail because the allocator happily allocates the remote hugepage rather than even attempting to make a local hugepage available. zone_reclaim_mode is not a solution to this problem since it does not only impact hugepage allocations but rather changes the memory allocation strategy for *all* page allocations. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
9c5efe9ae7 |
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar: - Apply a number of membarrier related fixes and cleanups, which fixes a use-after-free race in the membarrier code - Introduce proper RCU protection for tasks on the runqueue - to get rid of the subtle task_rcu_dereference() interface that was easy to get wrong - Misc fixes, but also an EAS speedup * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Avoid redundant EAS calculation sched/core: Remove double update_max_interval() call on CPU startup sched/core: Fix preempt_schedule() interrupt return comment sched/fair: Fix -Wunused-but-set-variable warnings sched/core: Fix migration to invalid CPU in __set_cpus_allowed_ptr() sched/membarrier: Return -ENOMEM to userspace on memory allocation failure sched/membarrier: Skip IPIs when mm->mm_users == 1 selftests, sched/membarrier: Add multi-threaded test sched/membarrier: Fix p->mm->membarrier_state racy load sched/membarrier: Call sync_core only before usermode for same mm sched/membarrier: Remove redundant check sched/membarrier: Fix private expedited registration check tasks, sched/core: RCUify the assignment of rq->curr tasks, sched/core: With a grace period after finish_task_switch(), remove unnecessary code tasks, sched/core: Ensure tasks are available for a grace period after leaving the runqueue tasks: Add a count of task RCU users sched/core: Convert vcpu_is_preempted() from macro to an inline function sched/fair: Remove unused cfs_rq_clock_task() function |
||
Linus Torvalds
|
aefcf2f4b5 |
Merge branch 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull kernel lockdown mode from James Morris: "This is the latest iteration of the kernel lockdown patchset, from Matthew Garrett, David Howells and others. From the original description: This patchset introduces an optional kernel lockdown feature, intended to strengthen the boundary between UID 0 and the kernel. When enabled, various pieces of kernel functionality are restricted. Applications that rely on low-level access to either hardware or the kernel may cease working as a result - therefore this should not be enabled without appropriate evaluation beforehand. The majority of mainstream distributions have been carrying variants of this patchset for many years now, so there's value in providing a doesn't meet every distribution requirement, but gets us much closer to not requiring external patches. There are two major changes since this was last proposed for mainline: - Separating lockdown from EFI secure boot. Background discussion is covered here: https://lwn.net/Articles/751061/ - Implementation as an LSM, with a default stackable lockdown LSM module. This allows the lockdown feature to be policy-driven, rather than encoding an implicit policy within the mechanism. The new locked_down LSM hook is provided to allow LSMs to make a policy decision around whether kernel functionality that would allow tampering with or examining the runtime state of the kernel should be permitted. The included lockdown LSM provides an implementation with a simple policy intended for general purpose use. This policy provides a coarse level of granularity, controllable via the kernel command line: lockdown={integrity|confidentiality} Enable the kernel lockdown feature. If set to integrity, kernel features that allow userland to modify the running kernel are disabled. If set to confidentiality, kernel features that allow userland to extract confidential information from the kernel are also disabled. This may also be controlled via /sys/kernel/security/lockdown and overriden by kernel configuration. New or existing LSMs may implement finer-grained controls of the lockdown features. Refer to the lockdown_reason documentation in include/linux/security.h for details. The lockdown feature has had signficant design feedback and review across many subsystems. This code has been in linux-next for some weeks, with a few fixes applied along the way. Stephen Rothwell noted that commit 9d1f8be5cf42 ("bpf: Restrict bpf when kernel lockdown is in confidentiality mode") is missing a Signed-off-by from its author. Matthew responded that he is providing this under category (c) of the DCO" * 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits) kexec: Fix file verification on S390 security: constify some arrays in lockdown LSM lockdown: Print current->comm in restriction messages efi: Restrict efivar_ssdt_load when the kernel is locked down tracefs: Restrict tracefs when the kernel is locked down debugfs: Restrict debugfs when the kernel is locked down kexec: Allow kexec_file() with appropriate IMA policy when locked down lockdown: Lock down perf when in confidentiality mode bpf: Restrict bpf when kernel lockdown is in confidentiality mode lockdown: Lock down tracing and perf kprobes when in confidentiality mode lockdown: Lock down /proc/kcore x86/mmiotrace: Lock down the testmmiotrace module lockdown: Lock down module params that specify hardware parameters (eg. ioport) lockdown: Lock down TIOCSSERIAL lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down acpi: Disable ACPI table override if the kernel is locked down acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down ACPI: Limit access to custom_method when the kernel is locked down x86/msr: Restrict MSR access when the kernel is locked down x86: Lock down IO port access when the kernel is locked down ... |
||
Linus Torvalds
|
f1f2f614d5 |
Merge branch 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity
Pull integrity updates from Mimi Zohar: "The major feature in this time is IMA support for measuring and appraising appended file signatures. In addition are a couple of bug fixes and code cleanup to use struct_size(). In addition to the PE/COFF and IMA xattr signatures, the kexec kernel image may be signed with an appended signature, using the same scripts/sign-file tool that is used to sign kernel modules. Similarly, the initramfs may contain an appended signature. This contained a lot of refactoring of the existing appended signature verification code, so that IMA could retain the existing framework of calculating the file hash once, storing it in the IMA measurement list and extending the TPM, verifying the file's integrity based on a file hash or signature (eg. xattrs), and adding an audit record containing the file hash, all based on policy. (The IMA support for appended signatures patch set was posted and reviewed 11 times.) The support for appended signature paves the way for adding other signature verification methods, such as fs-verity, based on a single system-wide policy. The file hash used for verifying the signature and the signature, itself, can be included in the IMA measurement list" * 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity: ima: ima_api: Use struct_size() in kzalloc() ima: use struct_size() in kzalloc() sefltest/ima: support appended signatures (modsig) ima: Fix use after free in ima_read_modsig() MODSIGN: make new include file self contained ima: fix freeing ongoing ahash_request ima: always return negative code for error ima: Store the measurement again when appraising a modsig ima: Define ima-modsig template ima: Collect modsig ima: Implement support for module-style appended signatures ima: Factor xattr_verify() out of ima_appraise_measurement() ima: Add modsig appraise_type option for module-style appended signatures integrity: Select CONFIG_KEYS instead of depending on it PKCS#7: Introduce pkcs7_get_digest() PKCS#7: Refactor verify_pkcs7_signature() MODSIGN: Export module signature definitions ima: initialize the "template" field with the default template |
||
Linus Torvalds
|
298fb76a55 |
Highlights:
- add a new knfsd file cache, so that we don't have to open and close on each (NFSv2/v3) READ or WRITE. This can speed up read and write in some cases. It also replaces our readahead cache. - Prevent silent data loss on write errors, by treating write errors like server reboots for the purposes of write caching, thus forcing clients to resend their writes. - Tweak the code that allocates sessions to be more forgiving, so that NFSv4.1 mounts are less likely to hang when a server already has a lot of clients. - Eliminate an arbitrary limit on NFSv4 ACL sizes; they should now be limited only by the backend filesystem and the maximum RPC size. - Allow the server to enforce use of the correct kerberos credentials when a client reclaims state after a reboot. And some miscellaneous smaller bugfixes and cleanup. -----BEGIN PGP SIGNATURE----- iQJJBAABCAAzFiEEYtFWavXG9hZotryuJ5vNeUKO4b4FAl2OoFcVHGJmaWVsZHNA ZmllbGRzZXMub3JnAAoJECebzXlCjuG+dRoP/3OW1NxPjpjbCQWZL0M+O3AYJJla W8E+uoZKMosFEe/ymokMD0Vn5s47jPaMCifMjHZa2GygW8zHN9X2v0HURx/lob+o /rJXwMn78N/8kdbfDz2FvaCPeT0IuNzRIFBV8/sSXofqwCBwvPo+cl0QGrd4/xLp X35qlupx62TRk+kbdRjvv8kpS5SJ7BvR+FSA1WubNYWw2hpdEsr2OCFdGq2Wvthy DK6AfGBXfJGsOE+HGCSj6ejRV6i0UOJ17P8gRSsx+YT0DOe5E7ROjt+qvvRwk489 wmR8Vjuqr1e40eGAUq3xuLfk5F5NgycY4ekVxk/cTVFNwWcz2DfdjXQUlyPAbrSD SqIyxN1qdKT24gtr7AHOXUWJzBYPWDgObCVBXUGzyL81RiDdhf38HRNjL2TcSDld tzCjQ0wbPw+iT74v6qQRY05oS+h3JOtDjU4pxsBnxVtNn4WhGJtaLfWW8o1C1QwU bc4aX3TlYhDmzU7n7Zjt4rFXGJfyokM+o6tPao1Z60Pmsv1gOk4KQlzLtW/jPHx4 ZwYTwVQUKRDBfC62nmgqDyGI3/Qu11FuIxL2KXUCgkwDxNWN4YkwYjOGw9Lb5qKM wFpxq6CDNZB/IWLEu8Yg85kDPPUJMoI657lZb7Osr/MfBpU0YljcMOIzLBy8uV1u 9COUbPaQipiWGu/0 =diBo -----END PGP SIGNATURE----- Merge tag 'nfsd-5.4' of git://linux-nfs.org/~bfields/linux Pull nfsd updates from Bruce Fields: "Highlights: - Add a new knfsd file cache, so that we don't have to open and close on each (NFSv2/v3) READ or WRITE. This can speed up read and write in some cases. It also replaces our readahead cache. - Prevent silent data loss on write errors, by treating write errors like server reboots for the purposes of write caching, thus forcing clients to resend their writes. - Tweak the code that allocates sessions to be more forgiving, so that NFSv4.1 mounts are less likely to hang when a server already has a lot of clients. - Eliminate an arbitrary limit on NFSv4 ACL sizes; they should now be limited only by the backend filesystem and the maximum RPC size. - Allow the server to enforce use of the correct kerberos credentials when a client reclaims state after a reboot. And some miscellaneous smaller bugfixes and cleanup" * tag 'nfsd-5.4' of git://linux-nfs.org/~bfields/linux: (34 commits) sunrpc: clean up indentation issue nfsd: fix nfs read eof detection nfsd: Make nfsd_reset_boot_verifier_locked static nfsd: degraded slot-count more gracefully as allocation nears exhaustion. nfsd: handle drc over-allocation gracefully. nfsd: add support for upcall version 2 nfsd: add a "GetVersion" upcall for nfsdcld nfsd: Reset the boot verifier on all write I/O errors nfsd: Don't garbage collect files that might contain write errors nfsd: Support the server resetting the boot verifier nfsd: nfsd_file cache entries should be per net namespace nfsd: eliminate an unnecessary acl size limit Deprecate nfsd fault injection nfsd: remove duplicated include from filecache.c nfsd: Fix the documentation for svcxdr_tmpalloc() nfsd: Fix up some unused variable warnings nfsd: close cached files prior to a REMOVE or RENAME that would replace target nfsd: rip out the raparms cache nfsd: have nfsd_test_lock use the nfsd_file cache nfsd: hook up nfs4_preprocess_stateid_op to the nfsd_file cache ... |
||
Linus Torvalds
|
8bbe0dec38 |
x86 KVM changes:
* The usual accuracy improvements for nested virtualization * The usual round of code cleanups from Sean * Added back optimizations that were prematurely removed in 5.2 (the bare minimum needed to fix the regression was in 5.3-rc8, here comes the rest) * Support for UMWAIT/UMONITOR/TPAUSE * Direct L2->L0 TLB flushing when L0 is Hyper-V and L1 is KVM * Tell Windows guests if SMT is disabled on the host * More accurate detection of vmexit cost * Revert a pvqspinlock pessimization -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJdjfaKAAoJEL/70l94x66D8MAH/2thJnM47tYtMTFA4GBFugeH mAx8OApWFBo8apOip+8ElFLPQ8FQdZCzr9ti8H4JkuzKxgsxCs1iqEg5pHEKxSTi K9kLOZwoFtwgy3XmxC0PIZ9lT2Wx74ruh1HF+QG/YsjKH636UPv2VpmulsTNbm62 2ryzOb3TlGT/cjf+gv9l6IYIxZa2Ff19PF4i//H8u4YRBj358/jr99CK01iE0M9r 4NhEKiQZywzREWtKxymGOM6HEbwbWcIa+loYjj2htq8epep6f9Y1zQ0Jcn5+nPA0 cn1T2gGJAJ0OUahKLwNbz8pzrFDkW+eoQgqCBJZ4RT9Uf8WCESfl14p+/vRkAMg= =tk5S -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull more KVM updates from Paolo Bonzini: "x86 KVM changes: - The usual accuracy improvements for nested virtualization - The usual round of code cleanups from Sean - Added back optimizations that were prematurely removed in 5.2 (the bare minimum needed to fix the regression was in 5.3-rc8, here comes the rest) - Support for UMWAIT/UMONITOR/TPAUSE - Direct L2->L0 TLB flushing when L0 is Hyper-V and L1 is KVM - Tell Windows guests if SMT is disabled on the host - More accurate detection of vmexit cost - Revert a pvqspinlock pessimization" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (56 commits) KVM: nVMX: cleanup and fix host 64-bit mode checks KVM: vmx: fix build warnings in hv_enable_direct_tlbflush() on i386 KVM: x86: Don't check kvm_rebooting in __kvm_handle_fault_on_reboot() KVM: x86: Drop ____kvm_handle_fault_on_reboot() KVM: VMX: Add error handling to VMREAD helper KVM: VMX: Optimize VMX instruction error and fault handling KVM: x86: Check kvm_rebooting in kvm_spurious_fault() KVM: selftests: fix ucall on x86 Revert "locking/pvqspinlock: Don't wait if vCPU is preempted" kvm: nvmx: limit atomic switch MSRs kvm: svm: Intercept RDPRU kvm: x86: Add "significant index" flag to a few CPUID leaves KVM: x86/mmu: Skip invalid pages during zapping iff root_count is zero KVM: x86/mmu: Explicitly track only a single invalid mmu generation KVM: x86/mmu: Revert "KVM: x86/mmu: Remove is_obsolete() call" KVM: x86/mmu: Revert "Revert "KVM: MMU: reclaim the zapped-obsolete page first"" KVM: x86/mmu: Revert "Revert "KVM: MMU: collapse TLB flushes when zap all pages"" KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch"" KVM: x86/mmu: Revert "Revert "KVM: MMU: add tracepoint for kvm_mmu_invalidate_all_pages"" KVM: x86/mmu: Revert "Revert "KVM: MMU: show mmu_valid_gen in shadow page related tracepoints"" ... |
||
Linus Torvalds
|
e37e3bc7e2 |
pwm: Changes for v5.4-rc1
Besides one new driver being added for the PWM controller found in various Spreadtrum SoCs, this series of changes brings a slew of, mostly minor, fixes and cleanups for existing drivers, as well as some enhancements to the core code. Lastly, Uwe is added to the PWM subsystem entry of the MAINTAINERS file, making official his role as a reviewer. -----BEGIN PGP SIGNATURE----- iQJNBAABCAA3FiEEiOrDCAFJzPfAjcif3SOs138+s6EFAl2ON5UZHHRoaWVycnku cmVkaW5nQGdtYWlsLmNvbQAKCRDdI6zXfz6zoVg2EAC2QP51EywsDVQd8ZFvXBZB SL2RN9EWY0nHFnjGL2VSEOvsWWoE2HgrzXbWuiKDSkpRMTGtz/R1VznmBegZpVz/ eKP1ebFU+1EQ2A1GB4VLGslGVs0R7uvQap7KMRf+nD6qzstwWlz5nPP8E/4dipAX fYZBU37sTvAXycVosqAOiGaJvwfbo0ExysCD0bWccp52O06osgbZwGDhShDRTQv0 wOLR/rPbYXbVMyETlO8gjHVGU/N6cAq0SDR2VGcXqIe3H86K3R7ec8TEhcLJy6R5 nLX9Wx+gMyiWJGrU+s5i682VUdzQeLE4sH9c47M8qqreM4ytXfdttMeg3hgmalra eVm4uWtJ2+ZDRSl+yqJ8GfuSVGV4S9uQNlJ0OkAizmz+mU2WGeM1v8aOFlGokSi0 mxt+EZFdS7M0rZpWU0Fv01urxdhhVgsFXkD72xldV2vnIP6afhzGgKN3S6zbwzAQ WOgTHgVmcenM4hRcEmV8n7nF6f8BIA5RSNx+jrrkRD4gwHwDAiEK7hWJTCDXisB9 J6HgChqztrNtnyZMOealHxEgTtJqRUVX69mo9NaUeYps2Qg4y1gStLC3b1YnJZcI sTCrKhVjhFn1bNOe1UBSvcehIorL3mFV203TBgJJaMMhoJYE28XqYTNkGVDZ2bLP DdyExtL1Dx7IxEwS7IGOwA== =C9sW -----END PGP SIGNATURE----- Merge tag 'pwm/for-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry.reding/linux-pwm Pull pwm updates from Thierry Reding: "Besides one new driver being added for the PWM controller found in various Spreadtrum SoCs, this series of changes brings a slew of, mostly minor, fixes and cleanups for existing drivers, as well as some enhancements to the core code. Lastly, Uwe is added to the PWM subsystem entry of the MAINTAINERS file, making official his role as a reviewer" * tag 'pwm/for-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry.reding/linux-pwm: (34 commits) MAINTAINERS: Add myself as reviewer for the PWM subsystem MAINTAINERS: Add patchwork link for PWM entry MAINTAINERS: Add a selection of PWM related keywords to the PWM entry pwm: mediatek: Add MT7629 compatible string dt-bindings: pwm: Update bindings for MT7629 SoC pwm: mediatek: Update license and switch to SPDX tag pwm: mediatek: Use pwm_mediatek as common prefix pwm: mediatek: Allocate the clks array dynamically pwm: mediatek: Remove the has_clks field pwm: mediatek: Drop the check for of_device_get_match_data() pwm: atmel: Consolidate driver data initialization pwm: atmel: Remove unneeded check for match data pwm: atmel: Remove platform_device_id and use only dt bindings pwm: stm32-lp: Add check in case requested period cannot be achieved pwm: Ensure pwm_apply_state() doesn't modify the state argument pwm: fsl-ftm: Don't update the state for the caller of pwm_apply_state() pwm: sun4i: Don't update the state for the caller of pwm_apply_state() pwm: rockchip: Don't update the state for the caller of pwm_apply_state() pwm: Let pwm_get_state() return the last implemented state pwm: Introduce local struct pwm_chip in pwm_apply_state() ... |
||
Florian Westphal
|
174e23810c |
sk_buff: drop all skb extensions on free and skb scrubbing
Now that we have a 3rd extension, add a new helper that drops the extension space and use it when we need to scrub an sk_buff. At this time, scrubbing clears secpath and bridge netfilter data, but retains the tc skb extension, after this patch all three get cleared. NAPI reuse/free assumes we can only have a secpath attached to skb, but it seems better to clear all extensions there as well. v2: add unlikely hint (Eric Dumazet) Fixes: 95a7233c452a ("net: openvswitch: Set OvS recirc_id from tc chain index") Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Linus Torvalds
|
972a2bf7df |
NFS Client Updates for Linux 5.3
Stable bugfixes: - Dequeue the request from the receive queue while we're re-encoding # v4.20+ - Fix buffer handling of GSS MIC without slack # 5.1 Features: - Increase xprtrdma maximum transport header and slot table sizes - Add support for nfs4_call_sync() calls using a custom rpc_task_struct - Optimize the default readahead size - Enable pNFS filelayout LAYOUTGET on OPEN Other bugfixes and cleanups: - Fix possible null-pointer dereferences and memory leaks - Various NFS over RDMA cleanups - Various NFS over RDMA comment updates - Don't receive TCP data into a reset request buffer - Don't try to parse incomplete RPC messages - Fix congestion window race with disconnect - Clean up pNFS return-on-close error handling - Fixes for NFS4ERR_OLD_STATEID handling -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEnZ5MQTpR7cLU7KEp18tUv7ClQOsFAl2NC04ACgkQ18tUv7Cl QOs4Tg//bAlGs+dIKixAmeMKmTd6I34laUnuyV/12yPQDgo6bryLrTngfe2BYvmG 2l+8H7yHfR4/gQE4vhR0c15xFgu6pvjBGR0/nNRaXienIPXO4xsQkcaxVA7SFRY2 HjffZwyoBfjyRps0jL+2sTsKbRtSkf9Dn+BONRgesg51jK1jyWkXqXpmgi4uMO4i ojpTrW81dwo7Yhv08U2A/Q1ifMJ8F9dVYuL5sm+fEbVI/Nxoz766qyB8rs8+b4Xj 3gkfyh/Y1zoMmu6c+r2Q67rhj9WYbDKpa6HH9yX1zM/RLTiU7czMX+kjuQuOHWxY YiEk73NjJ48WJEep3odess1q/6WiAXX7UiJM1SnDFgAa9NZMdfhqMm6XduNO1m60 sy0i8AdxdQciWYexOXMsBuDUCzlcoj4WYs1QGpY3uqO1MznQS/QUfu65fx8CzaT5 snm6ki5ivqXH/js/0Z4MX2n/sd1PGJ5ynMkekxJ8G3gw+GC/oeSeGNawfedifLKK OdzyDdeiel5Me1p4I28j1WYVLHvtFmEWEU9oytdG0D/rjC/pgYgW/NYvAao8lQ4Z 06wdcyAM66ViAPrbYeE7Bx4jy8zYRkiw6Y3kIbLgrlMugu3BhIW5Mi3BsgL4f4am KsqkzUqPZMCOVwDuUILSuPp4uHaR+JTJttywiLniTL6reF5kTiA= =4Ey6 -----END PGP SIGNATURE----- Merge tag 'nfs-for-5.4-1' of git://git.linux-nfs.org/projects/anna/linux-nfs Pull NFS client updates from Anna Schumaker: "Stable bugfixes: - Dequeue the request from the receive queue while we're re-encoding # v4.20+ - Fix buffer handling of GSS MIC without slack # 5.1 Features: - Increase xprtrdma maximum transport header and slot table sizes - Add support for nfs4_call_sync() calls using a custom rpc_task_struct - Optimize the default readahead size - Enable pNFS filelayout LAYOUTGET on OPEN Other bugfixes and cleanups: - Fix possible null-pointer dereferences and memory leaks - Various NFS over RDMA cleanups - Various NFS over RDMA comment updates - Don't receive TCP data into a reset request buffer - Don't try to parse incomplete RPC messages - Fix congestion window race with disconnect - Clean up pNFS return-on-close error handling - Fixes for NFS4ERR_OLD_STATEID handling" * tag 'nfs-for-5.4-1' of git://git.linux-nfs.org/projects/anna/linux-nfs: (53 commits) pNFS/filelayout: enable LAYOUTGET on OPEN NFS: Optimise the default readahead size NFSv4: Handle NFS4ERR_OLD_STATEID in LOCKU NFSv4: Handle NFS4ERR_OLD_STATEID in CLOSE/OPEN_DOWNGRADE NFSv4: Fix OPEN_DOWNGRADE error handling pNFS: Handle NFS4ERR_OLD_STATEID on layoutreturn by bumping the state seqid NFSv4: Add a helper to increment stateid seqids NFSv4: Handle RPC level errors in LAYOUTRETURN NFSv4: Handle NFS4ERR_DELAY correctly in return-on-close NFSv4: Clean up pNFS return-on-close error handling pNFS: Ensure we do clear the return-on-close layout stateid on fatal errors NFS: remove unused check for negative dentry NFSv3: use nfs_add_or_obtain() to create and reference inodes NFS: Refactor nfs_instantiate() for dentry referencing callers SUNRPC: Fix congestion window race with disconnect SUNRPC: Don't try to parse incomplete RPC messages SUNRPC: Rename xdr_buf_read_netobj to xdr_buf_read_mic SUNRPC: Fix buffer handling of GSS MIC without slack SUNRPC: RPC level errors should always set task->tk_rpc_status SUNRPC: Don't receive TCP data into a request buffer that has been reset ... |
||
Linus Torvalds
|
cbafe18c71 |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: - almost all of the rest of -mm - various other subsystems Subsystems affected by this patch series: memcg, misc, core-kernel, lib, checkpatch, reiserfs, fat, fork, cpumask, kexec, uaccess, kconfig, kgdb, bug, ipc, lzo, kasan, madvise, cleanups, pagemap * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (77 commits) arch/sparc/include/asm/pgtable_64.h: fix build mm: treewide: clarify pgtable_page_{ctor,dtor}() naming ntfs: remove (un)?likely() from IS_ERR() conditions IB/hfi1: remove unlikely() from IS_ERR*() condition xfs: remove unlikely() from WARN_ON() condition wimax/i2400m: remove unlikely() from WARN*() condition fs: remove unlikely() from WARN_ON() condition xen/events: remove unlikely() from WARN() condition checkpatch: check for nested (un)?likely() calls hexagon: drop empty and unused free_initrd_mem mm: factor out common parts between MADV_COLD and MADV_PAGEOUT mm: introduce MADV_PAGEOUT mm: change PAGEREF_RECLAIM_CLEAN with PAGE_REFRECLAIM mm: introduce MADV_COLD mm: untag user pointers in mmap/munmap/mremap/brk vfio/type1: untag user pointers in vaddr_get_pfn tee/shm: untag user pointers in tee_shm_register media/v4l2-core: untag user pointers in videobuf_dma_contig_user_get drm/radeon: untag user pointers in radeon_gem_userptr_ioctl drm/amdgpu: untag user pointers ... |
||
Mark Rutland
|
b4ed71f557 |
mm: treewide: clarify pgtable_page_{ctor,dtor}() naming
The naming of pgtable_page_{ctor,dtor}() seems to have confused a few people, and until recently arm64 used these erroneously/pointlessly for other levels of page table. To make it incredibly clear that these only apply to the PTE level, and to align with the naming of pgtable_pmd_page_{ctor,dtor}(), let's rename them to pgtable_pte_page_{ctor,dtor}(). These changes were generated with the following shell script: ---- git grep -lw 'pgtable_page_.tor' | while read FILE; do sed -i '{s/pgtable_page_ctor/pgtable_pte_page_ctor/}' $FILE; sed -i '{s/pgtable_page_dtor/pgtable_pte_page_dtor/}' $FILE; done ---- ... with the documentation re-flowed to remain under 80 columns, and whitespace fixed up in macros to keep backslashes aligned. There should be no functional change as a result of this patch. Link: http://lkml.kernel.org/r/20190722141133.3116-1-mark.rutland@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
1a4e58cce8 |
mm: introduce MADV_PAGEOUT
When a process expects no accesses to a certain memory range for a long time, it could hint kernel that the pages can be reclaimed instantly but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall. MADV_PAGEOUT can be used by a process to mark a memory range as not expected to be used for a long time so that kernel reclaims *any LRU* pages instantly. The hint can help kernel in deciding which pages to evict proactively. A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit intentionally because it's automatically bounded by PMD size. If PMD size(e.g., 256) makes some trouble, we could fix it later by limit it to SWAP_CLUSTER_MAX[1]. - man-page material MADV_PAGEOUT (since Linux x.x) Do not expect access in the near future so pages in the specified regions could be reclaimed instantly regardless of memory pressure. Thus, access in the range after successful operation could cause major page fault but never lose the up-to-date contents unlike MADV_DONTNEED. Pages belonging to a shared mapping are only processed if a write access is allowed for the calling process. MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/ [minchan@kernel.org: clear PG_active on MADV_PAGEOUT] Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
9c276cc65a |
mm: introduce MADV_COLD
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7. - Background The Android terminology used for forking a new process and starting an app from scratch is a cold start, while resuming an existing app is a hot start. While we continually try to improve the performance of cold starts, hot starts will always be significantly less power hungry as well as faster so we are trying to make hot start more likely than cold start. To increase hot start, Android userspace manages the order that apps should be killed in a process called ActivityManagerService. ActivityManagerService tracks every Android app or service that the user could be interacting with at any time and translates that into a ranked list for lmkd(low memory killer daemon). They are likely to be killed by lmkd if the system has to reclaim memory. In that sense they are similar to entries in any other cache. Those apps are kept alive for opportunistic performance improvements but those performance improvements will vary based on the memory requirements of individual workloads. - Problem Naturally, cached apps were dominant consumers of memory on the system. However, they were not significant consumers of swap even though they are good candidate for swap. Under investigation, swapping out only begins once the low zone watermark is hit and kswapd wakes up, but the overall allocation rate in the system might trip lmkd thresholds and cause a cached process to be killed(we measured performance swapping out vs. zapping the memory by killing a process. Unsurprisingly, zapping is 10x times faster even though we use zram which is much faster than real storage) so kill from lmkd will often satisfy the high zone watermark, resulting in very few pages actually being moved to swap. - Approach The approach we chose was to use a new interface to allow userspace to proactively reclaim entire processes by leveraging platform information. This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages that are known to be cold from userspace and to avoid races with lmkd by reclaiming apps as soon as they entered the cached state. Additionally, it could provide many chances for platform to use much information to optimize memory efficiency. To achieve the goal, the patchset introduce two new options for madvise. One is MADV_COLD which will deactivate activated pages and the other is MADV_PAGEOUT which will reclaim private pages instantly. These new options complement MADV_DONTNEED and MADV_FREE by adding non-destructive ways to gain some free memory space. MADV_PAGEOUT is similar to MADV_DONTNEED in a way that it hints the kernel that memory region is not currently needed and should be reclaimed immediately; MADV_COLD is similar to MADV_FREE in a way that it hints the kernel that memory region is not currently needed and should be reclaimed when memory pressure rises. This patch (of 5): When a process expects no accesses to a certain memory range, it could give a hint to kernel that the pages can be reclaimed when memory pressure happens but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_COLD hint to madvise(2) syscall. MADV_COLD can be used by a process to mark a memory range as not expected to be used in the near future. The hint can help kernel in deciding which pages to evict early during memory pressure. It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves active file page -> inactive file LRU active anon page -> inacdtive anon LRU Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file LRU's head because MADV_COLD is a little bit different symantic. MADV_FREE means it's okay to discard when the memory pressure because the content of the page is *garbage* so freeing such pages is almost zero overhead since we don't need to swap out and access afterward causes just minor fault. Thus, it would make sense to put those freeable pages in inactive file LRU to compete other used-once pages. It makes sense for implmentaion point of view, too because it's not swapbacked memory any longer until it would be re-dirtied. Even, it could give a bonus to make them be reclaimed on swapless system. However, MADV_COLD doesn't mean garbage so reclaiming them requires swap-out/in in the end so it's bigger cost. Since we have designed VM LRU aging based on cost-model, anonymous cold pages would be better to position inactive anon's LRU list, not file LRU. Furthermore, it would help to avoid unnecessary scanning if system doesn't have a swap device. Let's start simpler way without adding complexity at this moment. However, keep in mind, too that it's a caveat that workloads with a lot of pages cache are likely to ignore MADV_COLD on anonymous memory because we rarely age anonymous LRU lists. * man-page material MADV_COLD (since Linux x.x) Pages in the specified regions will be treated as less-recently-accessed compared to pages in the system with similar access frequencies. In contrast to MADV_FREE, the contents of the region are preserved regardless of subsequent writes to pages. MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Douglas Anderson
|
7d92bda271 |
kgdb: don't use a notifier to enter kgdb at panic; call directly
Right now kgdb/kdb hooks up to debug panics by registering for the panic notifier. This works OK except that it means that kgdb/kdb gets called _after_ the CPUs in the system are taken offline. That means that if anything important was happening on those CPUs (like something that might have contributed to the panic) you can't debug them. Specifically I ran into a case where I got a panic because a task was "blocked for more than 120 seconds" which was detected on CPU 2. I nicely got shown stack traces in the kernel log for all CPUs including CPU 0, which was running 'PID: 111 Comm: kworker/0:1H' and was in the middle of __mmc_switch(). I then ended up at the kdb prompt where switched over to kgdb to try to look at local variables of the process on CPU 0. I found that I couldn't. Digging more, I found that I had no info on any tasks running on CPUs other than CPU 2 and that asking kdb for help showed me "Error: no saved data for this cpu". This was because all the CPUs were offline. Let's move the entry of kdb/kgdb to a direct call from panic() and stop using the generic notifier. Putting a direct call in allows us to order things more properly and it also doesn't seem like we're breaking any abstractions by calling into the debugger from the panic function. Daniel said: : This patch changes the way kdump and kgdb interact with each other. : However it would seem rather odd to have both tools simultaneously armed : and, even if they were, the user still has the option to use panic_timeout : to force a kdump to happen. Thus I think the change of order is : acceptable. Link: http://lkml.kernel.org/r/20190703170354.217312-1-dianders@chromium.org Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Kees Cook <keescook@chromium.org> Cc: Borislav Petkov <bp@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Feng Tang <feng.tang@intel.com> Cc: YueHaibing <yuehaibing@huawei.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kees Cook
|
9dd819a151 |
uaccess: add missing __must_check attributes
The usercopy implementation comments describe that callers of the copy_*_user() family of functions must always have their return values checked. This can be enforced at compile time with __must_check, so add it where needed. Link: http://lkml.kernel.org/r/201908251609.ADAD5CAAC1@keescook Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vasily Gorbik
|
d5372c3913 |
kexec: restore arch_kexec_kernel_image_probe declaration
arch_kexec_kernel_image_probe function declaration has been removed by commit 9ec4ecef0af7 ("kexec_file,x86,powerpc: factor out kexec_file_ops functions"). Still this function is overridden by couple of architectures and proper prototype declaration is therefore important, so bring it back. This fixes the following sparse warning on s390: arch/s390/kernel/machine_kexec_file.c:333:5: warning: symbol 'arch_kexec_kernel_image_probe' was not declared. Should it be static? Link: http://lkml.kernel.org/r/patch.git-ff1c9045ebdc.your-ad-here.call-01564402297-ext-5690@work.hours Signed-off-by: Vasily Gorbik <gor@linux.ibm.com> Acked-by: Dave Young <dyoung@redhat.com> Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |