Scott reports an occasional scatterlist BUG that is triggered by the
RFC 8009 Kunit test, then says:
> Looking through the git history of the auth_gss code, there are various
> places where static buffers were replaced by dynamically allocated ones
> because they're being used with scatterlists.
Reported-by: Scott Mayhew <smayhew@redhat.com>
Fixes: 561141dd49 ("SUNRPC: Use a static buffer for the checksum initialization vector")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Allocating and zeroing a buffer during every call to
krb5_etm_checksum() is inefficient. Instead, set aside a static
buffer that is the maximum crypto block size, and use a portion
(or all) of that.
Reported-by: Markus Elfring <Markus.Elfring@web.de>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The header file crypto/algapi.h is for internal use only. Use the
header file crypto/utils.h instead.
Acked-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Scott reports SUNRPC self-test failures regarding the output IV on arm64
when using the SIMD accelerated implementation of AES in CBC mode with
ciphertext stealing ("cts(cbc(aes))" in crypto API speak).
These failures are the result of the fact that, while RFC 3962 does
specify what the output IV should be and includes test vectors for it,
the general concept of an output IV is poorly defined, and generally,
not specified by the various algorithms implemented by the crypto API.
Only algorithms that support transparent chaining (e.g., CBC mode on a
block boundary) have requirements on the output IV, but ciphertext
stealing (CTS) is fundamentally about how to encapsulate CBC in a way
where the length of the entire message may not be an integral multiple
of the cipher block size, and the concept of an output IV does not exist
here because it has no defined purpose past the end of the message.
The generic CTS template takes advantage of this chaining capability of
the CBC implementations, and as a result, happens to return an output
IV, simply because it passes its IV buffer directly to the encapsulated
CBC implementation, which operates on full blocks only, and always
returns an IV. This output IV happens to match how RFC 3962 defines it,
even though the CTS template itself does not contain any output IV logic
whatsoever, and, for this reason, lacks any test vectors that exercise
this accidental output IV generation.
The arm64 SIMD implementation of cts(cbc(aes)) does not use the generic
CTS template at all, but instead, implements the CBC mode and ciphertext
stealing directly, and therefore does not encapsule a CBC implementation
that returns an output IV in the same way. The arm64 SIMD implementation
complies with the specification and passes all internal tests, but when
invoked by the SUNRPC code, fails to produce the expected output IV and
causes its selftests to fail.
Given that the output IV is defined as the penultimate block (where the
final block may smaller than the block size), we can quite easily derive
it in the caller by copying the appropriate slice of ciphertext after
encryption.
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jeff Layton <jlayton@kernel.org>
Reported-by: Scott Mayhew <smayhew@redhat.com>
Tested-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Anna says:
> KASAN reports [...] a slab-out-of-bounds in gss_krb5_checksum(),
> and it can cause my client to panic when running cthon basic
> tests with krb5p.
> Running faddr2line gives me:
>
> gss_krb5_checksum+0x4b6/0x630:
> ahash_request_free at
> /home/anna/Programs/linux-nfs.git/./include/crypto/hash.h:619
> (inlined by) gss_krb5_checksum at
> /home/anna/Programs/linux-nfs.git/net/sunrpc/auth_gss/gss_krb5_crypto.c:358
My diagnosis is that the memcpy() at the end of gss_krb5_checksum()
reads past the end of the buffer containing the checksum data
because the callers have ignored gss_krb5_checksum()'s API contract:
* Caller provides the truncation length of the output token (h) in
* cksumout.len.
Instead they provide the fixed length of the hmac buffer. This
length happens to be larger than the value returned by
crypto_ahash_digestsize().
Change these errant callers to work like krb5_etm_{en,de}crypt().
As a defensive measure, bound the length of the byte copy at the
end of gss_krb5_checksum().
Kunit sez:
Testing complete. Ran 68 tests: passed: 68
Elapsed time: 81.680s total, 5.875s configuring, 75.610s building, 0.103s running
Reported-by: Anna Schumaker <schumaker.anna@gmail.com>
Fixes: 8270dbfceb ("SUNRPC: Obscure Kerberos integrity keys")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
With the KUnit infrastructure recently added, we are free to define
other unit tests particular to our implementation. As an example,
I've added a self-test that encrypts then decrypts a string, and
checks the result.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
RFC 8009 provides sample encryption results. Add KUnit tests to
ensure our implementation derives the expected results for the
provided sample input.
I hate how large this test is, but using non-standard key usage
values means rfc8009_encrypt_case() can't simply reuse ->import_ctx
to allocate and key its ciphers; and the test provides its own
confounders, which means krb5_etm_encrypt() can't be used directly.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Add Kunit tests for ENCTYPE_AES128_CTS_HMAC_SHA1_96. The test
vectors come from RFC 3962 Appendix B.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The goal is to leave only protocol-defined items in gss_krb5.h so
that it can be easily replaced by a generic header. Implementation
specific items are moved to the new internal header.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
RFC 8009 enctypes use different crypt formulae than previous
Kerberos 5 encryption types. Section 1 of RFC 8009 explains the
reason for this change:
> The new types conform to the framework specified in [RFC3961],
> but do not use the simplified profile, as the simplified profile
> is not compliant with modern cryptographic best practices such as
> calculating Message Authentication Codes (MACs) over ciphertext
> rather than plaintext.
Add new .encrypt and .decrypt functions to handle this variation.
The new approach described above is referred to as Encrypt-then-MAC
(or EtM). Hence the names of the new functions added here are
prefixed with "krb5_etm_".
A critical second difference with previous crypt formulae is that
the cipher state is included in the computed HMAC. Note however that
for RPCSEC, the initial cipher state is easy to compute on both
initiator and acceptor because it is always all zeroes.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cryptosystem profile enctypes all use cipher block chaining
with ciphertext steal (CBC-with-CTS). However enctypes that are
currently supported in the Linux kernel SunRPC implementation
use only the encrypt-&-MAC approach. The RFC 8009 enctypes use
encrypt-then-MAC, which performs encryption and checksumming in
a different order.
Refactor to make it possible to share the CBC with CTS encryption
and decryption mechanisms between e&M and etM enctypes.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Clean up: ->encrypt is set to only one value. Replace the two
remaining call sites with direct calls to krb5_encrypt().
There have never been any call sites for the ->decrypt() method.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
There's no need to keep the integrity keys around if we instead
allocate and key a pair of ahashes and keep those. This not only
enables the subkeys to be destroyed immediately after deriving
them, but it makes the Kerberos integrity code path more efficient.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
There's no need to keep the signing keys around if we instead allocate
and key an ahash and keep that. This not only enables the subkeys to
be destroyed immediately after deriving them, but it makes the
Kerberos signing code path more efficient.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Other common Kerberos implementations use a fully random confounder
for encryption. The reason for this is explained in the new comment
added by this patch. The current get_random_bytes() implementation
does not exhaust system entropy.
Since confounder generation is part of Kerberos itself rather than
the GSS-API Kerberos mechanism, the function is renamed and moved.
Note that light top-down analysis shows that the SHA-1 transform
is by far the most CPU-intensive part of encryption. Thus we do not
expect this change to result in a significant performance impact.
However, eventually it might be necessary to generate an independent
stream of confounders for each Kerberos context to help improve I/O
parallelism.
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Now that arcfour-hmac is gone, the confounder length is again the
same as the cipher blocksize for every implemented enctype. The
gss_krb5_enctype::conflen field is no longer necessary.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The RC4-HMAC-MD5 KerberosV algorithm is based on RFC 4757 [0], which
was specifically issued for interoperability with Windows 2000, but was
never intended to receive the same level of support. The RFC says
The IETF Kerberos community supports publishing this specification as
an informational document in order to describe this widely
implemented technology. However, while these encryption types
provide the operations necessary to implement the base Kerberos
specification [RFC4120], they do not provide all the required
operations in the Kerberos cryptography framework [RFC3961]. As a
result, it is not generally possible to implement potential
extensions to Kerberos using these encryption types. The Kerberos
encryption type negotiation mechanism [RFC4537] provides one approach
for using such extensions even when a Kerberos infrastructure uses
long-term RC4 keys. Because this specification does not implement
operations required by RFC 3961 and because of security concerns with
the use of RC4 and MD4 discussed in Section 8, this specification is
not appropriate for publication on the standards track.
The RC4-HMAC encryption types are used to ease upgrade of existing
Windows NT environments, provide strong cryptography (128-bit key
lengths), and provide exportable (meet United States government
export restriction requirements) encryption. This document describes
the implementation of those encryption types.
Furthermore, this RFC was re-classified as 'historic' by RFC 8429 [1] in
2018, stating that 'none of the encryption types it specifies should be
used'
Note that other outdated algorithms are left in place (some of which are
guarded by CONFIG_SUNRPC_DISABLE_INSECURE_ENCTYPES), so this should only
adversely affect interoperability with Windows NT/2000 systems that have
not received any updates since 2008 (but are connected to a network
nonetheless)
[0] https://tools.ietf.org/html/rfc4757
[1] https://tools.ietf.org/html/rfc8429
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As said by Linus:
A symmetric naming is only helpful if it implies symmetries in use.
Otherwise it's actively misleading.
In "kzalloc()", the z is meaningful and an important part of what the
caller wants.
In "kzfree()", the z is actively detrimental, because maybe in the
future we really _might_ want to use that "memfill(0xdeadbeef)" or
something. The "zero" part of the interface isn't even _relevant_.
The main reason that kzfree() exists is to clear sensitive information
that should not be leaked to other future users of the same memory
objects.
Rename kzfree() to kfree_sensitive() to follow the example of the recently
added kvfree_sensitive() and make the intention of the API more explicit.
In addition, memzero_explicit() is used to clear the memory to make sure
that it won't get optimized away by the compiler.
The renaming is done by using the command sequence:
git grep -w --name-only kzfree |\
xargs sed -i 's/kzfree/kfree_sensitive/'
followed by some editing of the kfree_sensitive() kerneldoc and adding
a kzfree backward compatibility macro in slab.h.
[akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h]
[akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more]
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Refactor: This is a pre-requisite to fixing the client-side ralign
computation in gss_unwrap_resp_priv().
The length value is passed in explicitly rather that as the value
of buf->len. This will subsequently allow gss_unwrap_kerberos_v1()
to compute a slack and align value, instead of computing it in
gss_unwrap_resp_priv().
Fixes: 35e77d21ba ("SUNRPC: Add rpc_auth::au_ralign field")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.
With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP. These would all need to be fixed if any shash algorithm
actually started sleeping. For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API. However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.
Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk. It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.
Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In the quest to remove all stack VLA usage from the kernel[1], this
replaces struct crypto_skcipher and SKCIPHER_REQUEST_ON_STACK() usage
with struct crypto_sync_skcipher and SYNC_SKCIPHER_REQUEST_ON_STACK(),
which uses a fixed stack size.
[1] https://lkml.kernel.org/r/CA+55aFzCG-zNmZwX4A2FQpadafLfEzK6CC=qPXydAacU1RqZWA@mail.gmail.com
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Anna Schumaker <anna.schumaker@netapp.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: YueHaibing <yuehaibing@huawei.com>
Cc: linux-nfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Stable bufixes:
- v3.17+: Fix an off-by-one in bl_map_stripe()
- v4.9+: NFSv4 client live hangs after live data migration recovery
- v4.18+: xprtrdma: Fix disconnect regression
- v4.14+: Fix locking in pnfs_generic_recover_commit_reqs
- v4.9+: Fix a sleep in atomic context in nfs4_callback_sequence()
Features:
- Add support for asynchronous server-side COPY operations
Other bugfixes and cleanups:
- Optitmizations and fixes involving NFS v4.1 / pNFS layout handling
- Optimize lseek(fd, SEEK_CUR, 0) on directories to avoid locking
- Immediately reschedule writeback when the server replies with an error
- Fix excessive attribute revalidation in nfs_execute_ok()
- Add error checking to nfs_idmap_prepare_message()
- Use new vm_fault_t return type
- Return a delegation when reclaiming one that the server has recalled
- Referrals should inherit proto setting from parents
- Make rpc_auth_create_args a const
- Improvements to rpc_iostats tracking
- Fix a potential reference leak when there is an error processing a callback
- Fix rmdir / mkdir / rename nlink accounting
- Fix updating inode change attribute
- Fix error handling in nfsn4_sp4_select_mode()
- Use an appropriate work queue for direct-write completion
- Don't busy wait if NFSv4 session draining is interrupted
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEnZ5MQTpR7cLU7KEp18tUv7ClQOsFAlt/CYIACgkQ18tUv7Cl
QOu8gBAA0xQWmgRoG6oIdYUxvgYqhuJmMqC4SU1E6mCJ93xEuUSvEFw51X+84KCt
r6UPkp/bKiVe3EIinKTplIzuxgggXNG0EQmO46FYNTl7nqpN85ffLsQoWsiD23fp
j8afqKPFR2zfhHXLKQC7k1oiOpwGqJ+EJWgIW4llE80pSNaErEoEaDqSPds5thMN
dHEjjLr8ef6cbBux6sSPjwWGNbE82uoSu3MDuV2+e62hpGkgvuEYo1vyE6ujeZW5
MUsmw+AHZkwro0msTtNBOHcPZAS0q/2UMPzl1tsDeCWNl2mugqZ6szQLSS2AThKq
Zr6iK9Q5dWjJfrQHcjRMnYJB+SCX1SfPA7ASuU34opwcWPjecbS9Q92BNTByQYwN
o9ngs2K0mZfqpYESMAmf7Il134cCBrtEp3skGko2KopJcYcE5YUFhdKihi1yQQjU
UbOOubMpQk8vY9DpDCAwGbICKwUZwGvq27uuUWL20kFVDb1+jvfHwcV4KjRAJo/E
J9aFtU+qOh4rMPMnYlEVZcAZBGfenlv/DmBl1upRpjzBkteUpUJsAbCmGyAk4616
3RECasehgsjNCQpFIhv3FpUkWzP5jt0T3gRr1NeY6WKJZwYnHEJr9PtapS+EIsCT
tB5DvvaJqFtuHFOxzn+KlGaxdSodHF7klOq7NM3AC0cX8AkWqaU=
=8+9t
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.19-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
Pull NFS client updates from Anna Schumaker:
"These patches include adding async support for the v4.2 COPY
operation. I think Bruce is planning to send the server patches for
the next release, but I figured we could get the client side out of
the way now since it's been in my tree for a while. This shouldn't
cause any problems, since the server will still respond with
synchronous copies even if the client requests async.
Features:
- Add support for asynchronous server-side COPY operations
Stable bufixes:
- Fix an off-by-one in bl_map_stripe() (v3.17+)
- NFSv4 client live hangs after live data migration recovery (v4.9+)
- xprtrdma: Fix disconnect regression (v4.18+)
- Fix locking in pnfs_generic_recover_commit_reqs (v4.14+)
- Fix a sleep in atomic context in nfs4_callback_sequence() (v4.9+)
Other bugfixes and cleanups:
- Optimizations and fixes involving NFS v4.1 / pNFS layout handling
- Optimize lseek(fd, SEEK_CUR, 0) on directories to avoid locking
- Immediately reschedule writeback when the server replies with an
error
- Fix excessive attribute revalidation in nfs_execute_ok()
- Add error checking to nfs_idmap_prepare_message()
- Use new vm_fault_t return type
- Return a delegation when reclaiming one that the server has
recalled
- Referrals should inherit proto setting from parents
- Make rpc_auth_create_args a const
- Improvements to rpc_iostats tracking
- Fix a potential reference leak when there is an error processing a
callback
- Fix rmdir / mkdir / rename nlink accounting
- Fix updating inode change attribute
- Fix error handling in nfsn4_sp4_select_mode()
- Use an appropriate work queue for direct-write completion
- Don't busy wait if NFSv4 session draining is interrupted"
* tag 'nfs-for-4.19-1' of git://git.linux-nfs.org/projects/anna/linux-nfs: (54 commits)
pNFS: Remove unwanted optimisation of layoutget
pNFS/flexfiles: ff_layout_pg_init_read should exit on error
pNFS: Treat RECALLCONFLICT like DELAY...
pNFS: When updating the stateid in layoutreturn, also update the recall range
NFSv4: Fix a sleep in atomic context in nfs4_callback_sequence()
NFSv4: Fix locking in pnfs_generic_recover_commit_reqs
NFSv4: Fix a typo in nfs4_init_channel_attrs()
NFSv4: Don't busy wait if NFSv4 session draining is interrupted
NFS recover from destination server reboot for copies
NFS add a simple sync nfs4_proc_commit after async COPY
NFS handle COPY ERR_OFFLOAD_NO_REQS
NFS send OFFLOAD_CANCEL when COPY killed
NFS export nfs4_async_handle_error
NFS handle COPY reply CB_OFFLOAD call race
NFS add support for asynchronous COPY
NFS COPY xdr handle async reply
NFS OFFLOAD_CANCEL xdr
NFS CB_OFFLOAD xdr
NFS: Use an appropriate work queue for direct-write completion
NFSv4: Fix error handling in nfs4_sp4_select_mode()
...
Variables 'checksumlen','blocksize' and 'data' are being assigned,
but are never used, hence they are redundant and can be removed.
Fix the following warning:
net/sunrpc/auth_gss/gss_krb5_wrap.c:443:7: warning: variable ‘blocksize’ set but not used [-Wunused-but-set-variable]
net/sunrpc/auth_gss/gss_krb5_crypto.c:376:15: warning: variable ‘checksumlen’ set but not used [-Wunused-but-set-variable]
net/sunrpc/xprtrdma/svc_rdma.c:97:9: warning: variable ‘data’ set but not used [-Wunused-but-set-variable]
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Remove trailing whitespace and blank line at EOF
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
make_checksum_hmac_md5() is allocating an HMAC transform and doing
crypto API calls in the following order:
crypto_ahash_init()
crypto_ahash_setkey()
crypto_ahash_digest()
This is wrong because it makes no sense to init() the request before a
key has been set, given that the initial state depends on the key. And
digest() is short for init() + update() + final(), so in this case
there's no need to explicitly call init() at all.
Before commit 9fa68f6200 ("crypto: hash - prevent using keyed hashes
without setting key") the extra init() had no real effect, at least for
the software HMAC implementation. (There are also hardware drivers that
implement HMAC-MD5, and it's not immediately obvious how gracefully they
handle init() before setkey().) But now the crypto API detects this
incorrect initialization and returns -ENOKEY. This is breaking NFS
mounts in some cases.
Fix it by removing the incorrect call to crypto_ahash_init().
Reported-by: Michael Young <m.a.young@durham.ac.uk>
Fixes: 9fa68f6200 ("crypto: hash - prevent using keyed hashes without setting key")
Fixes: fffdaef2eb ("gss_krb5: Add support for rc4-hmac encryption")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Otherwise, we enable a MAC forgery via timing attack.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: Anna Schumaker <anna.schumaker@netapp.com>
Cc: linux-nfs@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Writes may depend on the auth_gss crypto code, so we shouldn't be
allocating with GFP_KERNEL there.
This still leaves some crypto_alloc_* calls which end up doing
GFP_KERNEL allocations in the crypto code. Those could probably done at
crypto import time.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
As of ac4e97abce "scatterlist: sg_set_buf() argument must be in linear
mapping", sg_set_buf hits a BUG when make_checksum_v2->xdr_process_buf,
among other callers, passes it memory on the stack.
We only need a scatterlist to pass this to the crypto code, and it seems
like overkill to require kmalloc'd memory just to encrypt a few bytes,
but for now this seems the best fix.
Many of these callers are in the NFS write paths, so we allocate with
GFP_NOFS. It might be possible to do without allocations here entirely,
but that would probably be a bigger project.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Pull crypto fixes from Herbert Xu:
"This fixes an NFS regression caused by the skcipher/hash conversion in
sunrpc. It also fixes a build problem in certain configurations with
bcm63xx"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
hwrng: bcm63xx - fix device tree compilation
sunrpc: Fix skcipher/shash conversion
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The skcpiher/shash conversion introduced a number of bugs in the
sunrpc code:
1) Missing calls to skcipher_request_set_tfm lead to crashes.
2) The allocation size of shash_desc is too small which leads to
memory corruption.
Fixes: 3b5cf20cf4 ("sunrpc: Use skcipher and ahash/shash")
Reported-by: J. Bruce Fields <bfields@fieldses.org>
Tested-by: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch replaces uses of blkcipher with skcipher and the long
obsolete hash interface with either shash (for non-SG users) and
ahash.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
It's always set to whatever CONFIG_SUNRPC_DEBUG is, so just use that.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Replace the variable length array in the RPCSEC_GSS crypto code with
a fixed length one. The size should be bounded by the variable
GSS_KRB5_MAX_BLOCKSIZE, so use that.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
And remove unnecessary double semicolon too.
No effect to code, as test is != 0.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Add necessary changes to add kernel support for the rc4-hmac Kerberos
encryption type used by Microsoft and described in rfc4757.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
All encryption types use a confounder at the beginning of the
wrap token. In all encryption types except arcfour-hmac, the
confounder is the same as the blocksize. arcfour-hmac has a
blocksize of one, but uses an eight byte confounder.
Add an entry to the crypto framework definitions for the
confounder length and change the wrap/unwrap code to use
the confounder length rather than assuming it is always
the blocksize.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
For arcfour-hmac support, the make_checksum function needs a usage
field to correctly calculate the checksum differently for MIC and
WRAP tokens.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Add the remaining pieces to enable support for Kerberos AES
encryption types.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
This is a step toward support for AES encryption types which are
required to use the new token formats defined in rfc4121.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
[SteveD: Fixed a typo in gss_verify_mic_v2()]
Signed-off-by: Steve Dickson <steved@redhat.com>
[Trond: Got rid of the TEST_ROTATE/TEST_EXTRA_COUNT crap]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Add the final pieces to support the triple-des encryption type.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Encryption types besides DES may use a keyed checksum (hmac).
Modify the make_checksum() function to allow for a key
and take care of enctype-specific processing such as truncating
the resulting hash.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Add enctype framework and change functions to use the generic
values from it rather than the values hard-coded for des.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Make the client and server code consistent regarding the extra buffer
space made available for the auth code when wrapping data.
Add some comments/documentation about the available buffer space
in the xdr_buf head and tail when gss_wrap is called.
Add a compile-time check to make sure we are not exceeding the available
buffer space.
Add a central function to shift head data.
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>