Kill real_parent_is_ptracer() and update the callers to use
ptrace_reparented(), after the previous patch they do the same.
Remove the unnecessary ->ptrace != 0 check in get_signal_to_deliver(),
if ptrace_reparented() == T then the task must be ptraced.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
__ptrace_detach() and do_notify_parent() set task->exit_signal = -1
to mark the task dead. This is no longer needed, nobody checks
exit_signal to detect the EXIT_DEAD task.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Upadate the last user of task_detached(), wait_task_zombie(), to
use thread_group_leader() and kill task_detached().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change reparent_leader() to check ->exit_state instead of ->exit_signal,
this matches the similar EXIT_DEAD check in wait_consider_task() and
allows us to cleanup the do_notify_parent/task_detached logic.
task_detached() was really needed during reparenting before 9cd80bbb
"do_wait() optimization: do not place sub-threads on ->children list"
to filter out the sub-threads. After this change task_detached(p) can
only be true if p is the dead group_leader and its parent ignores
SIGCHLD, in this case the caller of do_notify_parent() is going to
reap this task and it should set EXIT_DEAD.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change other callers of do_notify_parent() to check the value it
returns, this makes the subsequent task_detached() unnecessary.
Mark do_notify_parent() as __must_check.
Use thread_group_leader() instead of !task_detached() to check
if we need to notify the real parent in wait_task_zombie().
Remove the stale comment in release_task(). "just for sanity" is
no longer true, we have to set EXIT_DEAD to avoid the races with
do_wait().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
__ptrace_detach() relies on the current obscure behaviour of
do_notify_parent(tsk) which changes tsk->exit_signal if this child
should be silently reaped. That is why we check task_detached(), it
is true if the task is sub-thread, or it is the group_leader but
its exit_signal was changed by do_notify_parent().
This is confusing, change the code to rely on !thread_group_leader()
or the value returned by do_notify_parent().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Kill tracehook_notify_death(), reimplement the logic in its caller,
exit_notify().
Also, change the exec_id's check to use thread_group_leader() instead
of task_detached(), this is more clear. This logic only applies to
the exiting leader, a sub-thread must never change its exit_signal.
Note: when the traced group leader exits the exit_signal-or-SIGCHLD
logic looks really strange:
- we notify the tracer even if !thread_group_empty() but
do_wait(WEXITED) can't work until all threads exit
- if the tracer is real_parent, it is not clear why can't
we use ->exit_signal event if !thread_group_empty()
-v2: do not try to fix the 2nd oddity to avoid the subtle behavior
change mixed with reorganization, suggested by Tejun.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
- change do_notify_parent() to return a boolean, true if the task should
be reaped because its parent ignores SIGCHLD.
- update the only caller which checks the returned value, exit_notify().
This temporary uglifies exit_notify() even more, will be cleanuped by
the next change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
The sleeping inside spinlock detection is actually used
for more general sleeping inside atomic sections
debugging: preemption disabled, rcu read side critical
sections, interrupts, interrupt disabled, etc...
Change the name of the config and its help section to
reflect its more general role.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
At this point, tracehooks aren't useful to mainline kernel and mostly
just add an extra layer of obfuscation. Although they have comments,
without actual in-kernel users, it is difficult to tell what are their
assumptions and they're actually trying to achieve. To mainline
kernel, they just aren't worth keeping around.
This patch kills the following clone and exec related tracehooks.
tracehook_prepare_clone()
tracehook_finish_clone()
tracehook_report_clone()
tracehook_report_clone_complete()
tracehook_unsafe_exec()
The changes are mostly trivial - logic is moved to the caller and
comments are merged and adjusted appropriately.
The only exception is in check_unsafe_exec() where LSM_UNSAFE_PTRACE*
are OR'd to bprm->unsafe instead of setting it, which produces the
same result as the field is always zero on entry. It also tests
p->ptrace instead of (p->ptrace & PT_PTRACED) for consistency, which
also gives the same result.
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
At this point, tracehooks aren't useful to mainline kernel and mostly
just add an extra layer of obfuscation. Although they have comments,
without actual in-kernel users, it is difficult to tell what are their
assumptions and they're actually trying to achieve. To mainline
kernel, they just aren't worth keeping around.
This patch kills the following trivial tracehooks.
* Ones testing whether task is ptraced. Replace with ->ptrace test.
tracehook_expect_breakpoints()
tracehook_consider_ignored_signal()
tracehook_consider_fatal_signal()
* ptrace_event() wrappers. Call directly.
tracehook_report_exec()
tracehook_report_exit()
tracehook_report_vfork_done()
* ptrace_release_task() wrapper. Call directly.
tracehook_finish_release_task()
* noop
tracehook_prepare_release_task()
tracehook_report_death()
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
task_ptrace(task) simply dereferences task->ptrace and isn't even used
consistently only adding confusion. Kill it and directly access
->ptrace instead.
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Commit:
1efc5da3cf56: [PATCH] order of lockdep off/on in vprintk() should be changed
explains the reason for having raw_local_irq_*() and lockdep_off()
in printk(). Instead of working around the broken recursion detection
of interrupt state tracking, fix it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: efault@gmx.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110621153806.185242734@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix up the fallout from commit 0b5e1c5255 ("printk: Release
console_sem after logbuf_lock").
The reason for unlocking the console_sem under the logbuf_lock
is that a concurrent printk() might fill up the buffer but fail
to acquire the console sem, resulting in a missed write to the
console until a subsequent console_sem acquire/release cycle.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: efault@gmx.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1308734409.1022.14.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Because the read_persistent_clock interface is usually backed by
only a second granular interface, each time we read from the persistent
clock for suspend/resume, we introduce a half second (on average) of error.
In order to avoid this error accumulating as the system is suspended
over and over, this patch measures the time delta between the persistent
clock and the system CLOCK_REALTIME.
If the delta is less then 2 seconds from the last suspend, we compensate
by using the previous time delta (keeping it close). If it is larger
then 2 seconds, we assume the clock was set or has been changed, so we
do no correction and update the delta.
Note: If NTP is running, ths could seem to "fight" with the NTP corrected
time, where as if the system time was off by 1 second, and NTP slewed the
value in, a suspend/resume cycle could undo this correction, by trying to
restore the previous offset from the persistent clock. However, without
this patch, since each read could cause almost a full second worth of
error, its possible to get almost 2 seconds of error just from the
suspend/resume cycle alone, so this about equal to any offset added by
the compensation.
Further on systems that suspend/resume frequently, this should keep time
closer then NTP could compensate for if the errors were allowed to
accumulate.
Credits to Arve Hjønnevåg for suggesting this solution.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Arve suggested making sure we catch possible negative sleep time
intervals that could be passed into timekeeping_inject_sleeptime.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Toralf Förster and Richard Weinberger noted that if there is
no RTC device, the alarm timers core prints out an annoying
"ALARM timers will not wake from suspend" message.
This warning has been removed in a previous patch, however
the issue still remains: The original idea was to support
alarm timers even if there was no rtc device, as long as the
system didn't go into suspend.
However, after further consideration, communicating to the application
that alarmtimers are not fully functional seems like the better
solution.
So this patch makes it so we return -ENOTSUPP to any posix _ALARM
clockid calls if there is no backing RTC device on the system.
Further this changes the behavior where when there is no rtc device
we will check for one on clock_getres, clock_gettime, timer_create,
and timer_nsleep instead of on suspend.
CC: Toralf Förster <toralf.foerster@gmx.de>
CC: Richard Weinberger <richard@nod.at
CC: Peter Zijlstra <peterz@infradead.org>
CC: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Reported by: Richard Weinberger <richard@nod.at>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The alarmtimers code currently picks a rtc device to use at
late init time. However, if your rtc driver is loaded as a module,
it may be registered after the alarmtimers late init code, leaving
the alarmtimers nonfunctional.
This patch moves the the rtcdevice selection to when we actually try
to use it, allowing us to make use of rtc modules that may have been
loaded at any point since bootup.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Meelis Roos <mroos@ut.ee>
Reported-by: Meelis Roos <mroos@ut.ee>
Signed-off-by: John Stultz <john.stultz@linaro.org>
When opening /dev/snapshot device, snapshot_open() creates memory
bitmaps which are freed in snapshot_release(). But if any of the
callbacks called by pm_notifier_call_chain() returns NOTIFY_BAD, open()
fails, snapshot_release() is never called and bitmaps are not freed.
Next attempt to open /dev/snapshot then triggers BUG_ON() check in
create_basic_memory_bitmaps(). This happens e.g. when vmwatchdog module
is active on s390x.
Signed-off-by: Michal Kubecek <mkubecek@suse.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@kernel.org
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tools/perf: Fix static build of perf tool
tracing: Fix regression in printk_formats file
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
generic-ipi: Fix kexec boot crash by initializing call_single_queue before enabling interrupts
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource: Make watchdog robust vs. interruption
timerfd: Fix wakeup of processes when timer is cancelled on clock change
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, MAINTAINERS: Add x86 MCE people
x86, efi: Do not reserve boot services regions within reserved areas
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: Move RCU_BOOST #ifdefs to header file
rcu: use softirq instead of kthreads except when RCU_BOOST=y
rcu: Use softirq to address performance regression
rcu: Simplify curing of load woes
____call_usermodehelper() now erases any credentials set by the
subprocess_inf::init() function. The problem is that commit
17f60a7da150 ("capabilites: allow the application of capability limits
to usermode helpers") creates and commits new credentials with
prepare_kernel_cred() after the call to the init() function. This wipes
all keyrings after umh_keys_init() is called.
The best way to deal with this is to put the init() call just prior to
the commit_creds() call, and pass the cred pointer to init(). That
means that umh_keys_init() and suchlike can modify the credentials
_before_ they are published and potentially in use by the rest of the
system.
This prevents request_key() from working as it is prevented from passing
the session keyring it set up with the authorisation token to
/sbin/request-key, and so the latter can't assume the authority to
instantiate the key. This causes the in-kernel DNS resolver to fail
with ENOKEY unconditionally.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Tested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a problem that kdump(2nd kernel) sometimes hangs up due
to a pending IPI from 1st kernel. Kernel panic occurs because IPI
comes before call_single_queue is initialized.
To fix the crash, rename init_call_single_data() to call_function_init()
and call it in start_kernel() so that call_single_queue can be
initialized before enabling interrupts.
The details of the crash are:
(1) 2nd kernel boots up
(2) A pending IPI from 1st kernel comes when irqs are first enabled
in start_kernel().
(3) Kernel tries to handle the interrupt, but call_single_queue
is not initialized yet at this point. As a result, in the
generic_smp_call_function_single_interrupt(), NULL pointer
dereference occurs when list_replace_init() tries to access
&q->list.next.
Therefore this patch changes the name of init_call_single_data()
to call_function_init() and calls it before local_irq_enable()
in start_kernel().
Signed-off-by: Takao Indoh <indou.takao@jp.fujitsu.com>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Milton Miller <miltonm@bga.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: kexec@lists.infradead.org
Link: http://lkml.kernel.org/r/D6CBEE2F420741indou.takao@jp.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The commit "use softirq instead of kthreads except when RCU_BOOST=y"
just applied #ifdef in place. This commit is a cleanup that moves
the newly #ifdef'ed code to the header file kernel/rcutree_plugin.h.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The previous patch implemented async notification for ptrace but it
only worked while trace is running. This patch introduces
PTRACE_LISTEN which is suggested by Oleg Nestrov.
It's allowed iff tracee is in STOP trap and puts tracee into
quasi-running state - tracee never really runs but wait(2) and
ptrace(2) consider it to be running. While ptracer is listening,
tracee is allowed to re-enter STOP to notify an async event.
Listening state is cleared on the first notification. Ptracer can
also clear it by issuing INTERRUPT - tracee will re-trap into STOP
with listening state cleared.
This allows ptracer to monitor group stop state without running tracee
- use INTERRUPT to put tracee into STOP trap, issue LISTEN and then
wait(2) to wait for the next group stop event. When it happens,
PTRACE_GETSIGINFO provides information to determine the current state.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_LISTEN 0x4208
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
if (si.si_signo != SIGTRAP)
ptrace(PTRACE_LISTEN, tracee, NULL, NULL);
else
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
This is identical to the program to test TRAP_NOTIFY except that
tracee is PTRACE_LISTEN'd instead of PTRACE_CONT'd when group stopped.
This allows ptracer to monitor when group stop ends without running
tracee.
# ./test-listen
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
-v2: Moved JOBCTL_LISTENING check in wait_task_stopped() into
task_stopped_code() as suggested by Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently there's no way for ptracer to find out whether group stop
finished other than polling with INTERRUPT - GETSIGINFO - CONT
sequence. This patch implements group stop notification for ptracer
using STOP traps.
When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY
is set, which schedules a STOP trap which is sticky - it isn't cleared
by other traps and at least one STOP trap will happen eventually.
STOP trap is synchronization point for event notification and the
tracer can determine the current group stop state by looking at the
signal number portion of exit code (si_status from waitid(2) or
si_code from PTRACE_GETSIGINFO).
Notifications are generated both on start and end of group stops but,
because group stop participation always happens before STOP trap, this
doesn't cause an extra trap while tracee is participating in group
stop. The symmetry will be useful later.
Note that this notification works iff tracee is not trapped.
Currently there is no way to be notified of group stop state changes
while tracee is trapped. This will be addressed by a later patch.
An example program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
In the above program, tracer keeps tracee running and gets
notification of each group stop state changes.
# ./test-notify
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently, there's no way to trap a running ptracee short of sending a
signal which has various side effects. This patch implements
PTRACE_INTERRUPT which traps ptracee without any signal or job control
related side effect.
The implementation is almost trivial. It uses the group stop trap -
SIGTRAP | PTRACE_EVENT_STOP << 8. A new trap flag
JOBCTL_TRAP_INTERRUPT is added, which is set on PTRACE_INTERRUPT and
cleared when any trap happens. As INTERRUPT should be useable
regardless of the current state of tracee, task_is_traced() test in
ptrace_check_attach() is skipped for INTERRUPT.
PTRACE_INTERRUPT is available iff tracee is attached with
PTRACE_SEIZE.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts100ms = { .tv_nsec = 100000000 };
static const struct timespec ts1s = { .tv_sec = 1 };
static const struct timespec ts3s = { .tv_sec = 3 };
int main(int argc, char **argv)
{
pid_t tracee;
tracee = fork();
if (tracee == 0) {
nanosleep(&ts100ms, NULL);
while (1) {
printf("tracee: alive pid=%d\n", getpid());
nanosleep(&ts1s, NULL);
}
}
if (argc > 1)
kill(tracee, SIGSTOP);
nanosleep(&ts100ms, NULL);
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
if (argc > 1) {
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
}
nanosleep(&ts3s, NULL);
printf("tracer: INTERRUPT and DETACH\n");
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_DETACH, tracee, NULL, NULL);
nanosleep(&ts3s, NULL);
printf("tracer: exiting\n");
kill(tracee, SIGKILL);
return 0;
}
When called without argument, tracee is seized from running state,
interrupted and then detached back to running state.
# ./test-interrupt
tracee: alive pid=4546
tracee: alive pid=4546
tracee: alive pid=4546
tracer: INTERRUPT and DETACH
tracee: alive pid=4546
tracee: alive pid=4546
tracee: alive pid=4546
tracer: exiting
When called with argument, tracee is seized from stopped state,
continued, interrupted and then detached back to stopped state.
# ./test-interrupt 1
tracee: alive pid=4548
tracee: alive pid=4548
tracee: alive pid=4548
tracer: INTERRUPT and DETACH
tracer: exiting
Before PTRACE_INTERRUPT, once the tracee was running, there was no way
to trap tracee and do PTRACE_DETACH without causing side effect.
-v2: Updated to use task_set_jobctl_pending() so that it doesn't end
up scheduling TRAP_STOP if child is dying which may make the
child unkillable. Spotted by Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side
effects on tracee signal and job control states. This patch
implements a new ptrace request PTRACE_SEIZE which attaches a tracee
without trapping it or affecting its signal and job control states.
The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_*
flags in @data. Currently, the only defined flag is
PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE.
PTRACE_SEIZE will change ptrace behaviors outside of attach itself.
The changes will be implemented gradually and the DEVEL flag is to
prevent programs which expect full SEIZE behavior from using it before
all the behavior modifications are complete while allowing unit
testing. The flag will be removed once SEIZE behaviors are completely
implemented.
* PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After
attaching tracee continues to run unless a trap condition occurs.
* PTRACE_SEIZE doesn't affect signal or group stop state.
* If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses
exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of
the stopping signals if group stop is in effect or SIGTRAP
otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO
instead of NULL.
Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be
used to determine whether new SEIZE behaviors should be enabled.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts100ms = { .tv_nsec = 100000000 };
static const struct timespec ts1s = { .tv_sec = 1 };
static const struct timespec ts3s = { .tv_sec = 3 };
int main(int argc, char **argv)
{
pid_t tracee;
tracee = fork();
if (tracee == 0) {
nanosleep(&ts100ms, NULL);
while (1) {
printf("tracee: alive\n");
nanosleep(&ts1s, NULL);
}
}
if (argc > 1)
kill(tracee, SIGSTOP);
nanosleep(&ts100ms, NULL);
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
if (argc > 1) {
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
}
nanosleep(&ts3s, NULL);
printf("tracer: exiting\n");
return 0;
}
When the above program is called w/o argument, tracee is seized while
running and remains running. When tracer exits, tracee continues to
run and print out messages.
# ./test-seize-simple
tracee: alive
tracee: alive
tracee: alive
tracer: exiting
tracee: alive
tracee: alive
When called with an argument, tracee is seized from stopped state and
continued, and returns to stopped state when tracer exits.
# ./test-seize
tracee: alive
tracee: alive
tracee: alive
tracer: exiting
# ps -el|grep test-seize
1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize
-v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan
suggested.
-v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If
group stop is in effect the stop signal number is returned as
part of exit_code; otherwise, SIGTRAP. This was suggested by
Denys and Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Cc: Denys Vlasenko <vda.linux@googlemail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
do_signal_stop() implemented both normal group stop and trap for group
stop while ptraced. This approach has been enough but scheduled
changes require trap mechanism which can be used in more generic
manner and using group stop trap for generic trap site simplifies both
userland visible interface and implementation.
This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it
triggers a trap site, which behaves like group stop trap, in
get_signal_to_deliver() after checking for pending signals. While
ptraced, do_signal_stop() doesn't stop itself. It initiates group
stop if requested and schedules JOBCTL_TRAP_STOP and returns. The
caller - get_signal_to_deliver() - is responsible for checking whether
TRAP_STOP is pending afterwards and handling it.
ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of
JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap
bits and TRAPPING so that TRAP_STOP and future trap bits don't linger
after detach.
While at it, add proper function comment to do_signal_stop() and make
it return bool.
-v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING
instead of JOBCTL_PENDING_MASK. This avoids accidentally
clearing JOBCTL_STOP_CONSUME. Spotted by Oleg.
-v3: do_signal_stop() updated to return %false without dropping
siglock while ptraced and TRAP_STOP check moved inside for(;;)
loop after group stop participation. This avoids unnecessary
relocking and also will help avoiding unnecessary traps by
consuming group stop before handling pending traps.
-v4: Jobctl trap handling moved into a separate function -
do_jobctl_trap().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
The clocksource watchdog code is interruptible and it has been
observed that this can trigger false positives which disable the TSC.
The reason is that an interrupt storm or a long running interrupt
handler between the read of the watchdog source and the read of the
TSC brings the two far enough apart that the delta is larger than the
unstable treshold. Move both reads into a short interrupt disabled
region to avoid that.
Reported-and-tested-by: Vernon Mauery <vernux@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
This patch #ifdefs RCU kthreads out of the kernel unless RCU_BOOST=y,
thus eliminating context-switch overhead if RCU priority boosting has
not been configured.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Check if lowest_mask is initialized in find_lowest_rq()
sched: Fix need_resched() when checking peempt
CONFIG_CONSTRUCTORS controls support for running constructor functions at
kernel init time. According to commit b99b87f70c7785ab ("kernel:
constructor support"), gcov (CONFIG_GCOV_KERNEL) needs this. However,
CONFIG_CONSTRUCTORS currently defaults to y, with no option to disable it,
and CONFIG_GCOV_KERNEL depends on it. Instead, default it to n and have
CONFIG_GCOV_KERNEL select it, so that the normal case of
CONFIG_GCOV_KERNEL=n will result in CONFIG_CONSTRUCTORS=n.
Observed in the short list of =y values in a minimal kernel configuration.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following crash was reported:
> Call Trace:
> [<ffffffff81139792>] mem_cgroup_from_task+0x15/0x17
> [<ffffffff8113a75a>] __mem_cgroup_try_charge+0x148/0x4b4
> [<ffffffff810493f3>] ? need_resched+0x23/0x2d
> [<ffffffff814cbf43>] ? preempt_schedule+0x46/0x4f
> [<ffffffff8113afe8>] mem_cgroup_charge_common+0x9a/0xce
> [<ffffffff8113b6d1>] mem_cgroup_newpage_charge+0x5d/0x5f
> [<ffffffff81134024>] khugepaged+0x5da/0xfaf
> [<ffffffff81078ea0>] ? __init_waitqueue_head+0x4b/0x4b
> [<ffffffff81133a4a>] ? add_mm_counter.constprop.5+0x13/0x13
> [<ffffffff81078625>] kthread+0xa8/0xb0
> [<ffffffff814d13e8>] ? sub_preempt_count+0xa1/0xb4
> [<ffffffff814d5664>] kernel_thread_helper+0x4/0x10
> [<ffffffff814ce858>] ? retint_restore_args+0x13/0x13
> [<ffffffff8107857d>] ? __init_kthread_worker+0x5a/0x5a
What happens is that khugepaged tries to charge a huge page against an mm
whose last possible owner has already exited, and the memory controller
crashes when the stale mm->owner is used to look up the cgroup to charge.
mm->owner has never been set to NULL with the last owner going away, but
nobody cared until khugepaged came along.
Even then it wasn't a problem because the final mmput() on an mm was
forced to acquire and release mmap_sem in write-mode, preventing an
exiting owner to go away while the mmap_sem was held, and until "692e0b3
mm: thp: optimize memcg charge in khugepaged", the memory cgroup charge
was protected by mmap_sem in read-mode.
Instead of going back to relying on the mmap_sem to enforce lifetime of a
task, this patch ensures that mm->owner is properly set to NULL when the
last possible owner is exiting, which the memory controller can handle
just fine.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Dave Jones <davej@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On system boot up, the lowest_mask is initialized with an
early_initcall(). But RT tasks may wake up on other
early_initcall() callers before the lowest_mask is initialized,
causing a system crash.
Commit "d72bce0e67 rcu: Cure load woes" was the first commit
to wake up RT tasks in early init. Before this commit this bug
should not happen.
Reported-by: Andrew Theurer <habanero@linux.vnet.ibm.com>
Tested-by: Andrew Theurer <habanero@linux.vnet.ibm.com>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20110614223657.824872966@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The RT preempt check tests the wrong task if NEED_RESCHED is
set. It currently checks the local CPU task. It is supposed to
check the task that is running on the runqueue we are about to
wake another task on.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20110614223657.450239027@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix to support kernel stack trace correctly on kprobe-tracer.
Since the execution path of kprobe-based dynamic events is different
from other tracepoint-based events, normal ftrace_trace_stack() doesn't
work correctly. To fix that, this introduces ftrace_trace_stack_regs()
which traces stack via pt_regs instead of current stack register.
e.g.
# echo p schedule+4 > /sys/kernel/debug/tracing/kprobe_events
# echo 1 > /sys/kernel/debug/tracing/options/stacktrace
# echo 1 > /sys/kernel/debug/tracing/events/kprobes/enable
# head -n 20 /sys/kernel/debug/tracing/trace
bash-2968 [000] 10297.050245: p_schedule_4: (schedule+0x4/0x4ca)
bash-2968 [000] 10297.050247: <stack trace>
=> schedule_timeout
=> n_tty_read
=> tty_read
=> vfs_read
=> sys_read
=> system_call_fastpath
kworker/0:1-2940 [000] 10297.050265: p_schedule_4: (schedule+0x4/0x4ca)
kworker/0:1-2940 [000] 10297.050266: <stack trace>
=> worker_thread
=> kthread
=> kernel_thread_helper
sshd-1132 [000] 10297.050365: p_schedule_4: (schedule+0x4/0x4ca)
sshd-1132 [000] 10297.050365: <stack trace>
=> sysret_careful
Note: Even with this fix, the first entry will be skipped
if the probe is put on the function entry area before
the frame pointer is set up (usually, that is 4 bytes
(push %bp; mov %sp %bp) on x86), because stack unwinder
depends on the frame pointer.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: yrl.pp-manager.tt@hitachi.com
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Namhyung Kim <namhyung@gmail.com>
Link: http://lkml.kernel.org/r/20110608070934.17777.17116.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add weak symbol of save_stack_trace_regs() as same as
save_stack_trace_tsk() since that is not implemented
except x86 yet.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: yrl.pp-manager.tt@hitachi.com
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Namhyung Kim <namhyung@gmail.com>
Link: http://lkml.kernel.org/r/20110608070927.17777.37895.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The tracing ring buffer is allocated from kernel memory. While
allocating a large chunk of memory, OOM might happen which destabilizes
the system. Thus random processes might get killed during the
allocation.
This patch adds __GFP_NORETRY flag to the ring buffer allocation calls
to make it fail more gracefully if the system will not be able to
complete the allocation request.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: David Sharp <dhsharp@google.com>
Link: http://lkml.kernel.org/r/1307491302-9236-1-git-send-email-vnagarnaik@google.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch replaces the code for getting an unsigned long from a
userspace buffer by a simple call to kstroul_from_user.
This makes it easier to read and less error prone.
Signed-off-by: Peter Huewe <peterhuewe@gmx.de>
Link: http://lkml.kernel.org/r/1307476707-14762-1-git-send-email-peterhuewe@gmx.de
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function_graph tracer does not follow global context-info option.
Adding TRACE_ITER_CONTEXT_INFO trace_flags check to enable it.
With following commands:
# echo function_graph > ./current_tracer
# echo 0 > options/context-info
# cat trace
This is what it looked like before:
# tracer: function_graph
#
# TIME CPU DURATION FUNCTION CALLS
# | | | | | | | |
1) 0.079 us | } /* __vma_link_rb */
1) 0.056 us | copy_page_range();
1) | security_vm_enough_memory() {
...
This is what it looks like now:
# tracer: function_graph
#
} /* update_ts_time_stats */
timekeeping_max_deferment();
...
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-6-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The header display of function tracer does not follow
the context-info option, so field names are displayed even
if this option is off.
Added check for TRACE_ITER_CONTEXT_INFO trace_flags.
With following commands:
# echo function > ./current_tracer
# echo 0 > options/context-info
# cat trace
This is what it looked like before:
# tracer: function
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
add_preempt_count <-schedule
rcu_note_context_switch <-schedule
...
This is what it looks like now:
# tracer: function
#
_raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
...
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-4-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Functions print_graph_overhead() and print_graph_duration() displays
data for one field - DURATION.
I merged them into single function print_graph_duration(),
and added a way to display the empty parts of the field.
This way the print_graph_irq() function can use this column to display
the IRQ signs if needed and the DURATION field details stays inside
the print_graph_duration() function.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-3-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The display of absolute time and duration fields is based on the
latency field. This was added during the irqsoff/wakeup tracers
graph support changes.
It's causing confusion in what fields will be displayed for the
function_graph tracer itself. So I'm removing this depency, and
adding absolute time and duration fields to the preemptirqsoff
preemptoff irqsoff wakeup tracers.
With following commands:
# echo function_graph > ./current_tracer
# cat trace
This is what it looked like before:
# tracer: function_graph
#
# TIME CPU DURATION FUNCTION CALLS
# | | | | | | | |
0) 0.068 us | } /* page_add_file_rmap */
0) | _raw_spin_unlock() {
...
This is what it looks like now:
# tracer: function_graph
#
# CPU DURATION FUNCTION CALLS
# | | | | | | |
0) 0.068 us | } /* add_preempt_count */
0) 0.993 us | } /* vfsmount_lock_local_lock */
...
For preemptirqsoff preemptoff irqsoff wakeup tracers,
this is what it looked like before:
SNIP
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / _-=> lock-depth
# |||| /
# CPU TASK/PID ||||| DURATION FUNCTION CALLS
# | | | ||||| | | | | | |
1) <idle>-0 | d..1 0.000 us | acpi_idle_enter_simple();
...
This is what it looks like now:
SNIP
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| /
# TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
# | | | | |||| | | | | | |
19.847735 | 1) <idle>-0 | d..1 0.000 us | acpi_idle_enter_simple();
...
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-2-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Added <linux/atomic.h>,<linux/ktime.h> and Removed <asm/atomic.h>.
Added KERN_DEBUG to printk() functions.
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Paul McQuade <tungstentide@gmail.com>
Link: http://lkml.kernel.org/r/4DE596B4.7030904@gmail.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add a trace option to disable tracing on free. When this option is
set, a write into the free_buffer file will not only shrink the
ring buffer down to zero, but it will also disable tracing.
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>