13439 Commits

Author SHA1 Message Date
Josef Bacik
4cf7e0562f btrfs: convert cow_file_range() to take a folio
Convert this to take a folio and pass it into all of the various cleanup
functions.  Update the callers to pass in a folio instead.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:15 +02:00
Josef Bacik
9f5db28074 btrfs: convert cow_file_range_inline() to take a folio
Now that we want the folio in this function, convert it to take a folio
directly and use that.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:15 +02:00
Josef Bacik
2cdc1fbb1b btrfs: convert run_delalloc_cow() to take a folio
We pass the folio into extent_write_locked_range, go ahead and take a
folio to pass along, and update the callers to pass in a folio.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:15 +02:00
Josef Bacik
01e11841f0 btrfs: convert extent_write_locked_range() to take a folio
This mostly uses folios, convert it to take a folio instead and update
the callers to pass in the folio.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:15 +02:00
Josef Bacik
a67f540582 btrfs: convert extent_clear_unlock_delalloc() to take a folio
Instead of taking the locked page, take the locked folio so we can pass
that into __process_folios_contig.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
c9ce51d67f btrfs: convert process_one_page() to operate only on folios
Now that this mostly uses folios, update it to take folios, use the
folios that are passed in, and rename from process_one_page =>
process_one_folio.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
a59ff7201a btrfs: convert __process_pages_contig() to take a folio
This operates mostly on folios, update it to take a folio for the locked
folio instead of the page, rename from __process_pages_contig =>
__process_folios_contig.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
79be4a28d8 btrfs: convert __unlock_for_delalloc() to take a folio
All of the callers have a folio at this point, update
__unlock_for_delalloc to take a folio so that it's consistent with its
callers.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
e4d80ebe50 btrfs: convert lock_delalloc_pages() to take a folio
Also rename lock_delalloc_pages => lock_delalloc_folios in the process,
now that it exclusively works on folios.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
c987f1e6d4 btrfs: convert find_lock_delalloc_range() to use a folio
Instead of passing in a page for locked_page, pass in the folio instead.
We only use the folio itself to validate some range assumptions, and
then pass it into other functions.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
dc6c745447 btrfs: convert writepage_delalloc() to take a folio
We already use a folio heavily in this function, pass the folio in
directly and use it everywhere, only passing the page down to functions
that do not take a folio yet.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
a79228011c btrfs: convert btrfs_mark_ordered_io_finished() to take a folio
We only need a folio now, make it take a folio as an argument and update
all of the callers.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
aef665d69a btrfs: convert btrfs_finish_ordered_extent() to take a folio
The callers and callee's of this now all use folios, update it to take a
folio as well.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
0a577636a9 btrfs: convert can_finish_ordered_extent() to use a folio
Pass in a folio instead, and use a folio instead of a page.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
7e755aa731 btrfs: utilize folio more in btrfs_page_mkwrite()
We already have a folio that we're using in btrfs_page_mkwrite, update
the rest of the function to use folio everywhere else.  This will make
it easier on Willy when he drops page->index.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:14 +02:00
Josef Bacik
c808c1dcb1 btrfs: convert add_ra_bio_pages() to use only folios
Willy is going to get rid of page->index, and add_ra_bio_pages uses
page->index.  Make his life easier by converting add_ra_bio_pages to use
folios so that we are no longer using page->index.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
9b320229c0 btrfs: convert __extent_writepage() to be completely folio based
Now that we've gotten most of the helpers updated to only take a folio,
update __extent_writepage to only deal in folios.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
c1deaa1438 btrfs: convert extent_write_locked_range() to use folios
Instead of using pages for everything, find a folio and use that.  This
makes things a bit cleaner as a lot of the functions calls here all take
folios.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
b8a6263eae btrfs: convert __extent_writepage_io() to take a folio
__extent_writepage_io uses page everywhere, but a lot of these functions
take a folio.  Convert it to use the folio based helpers, and then
change it to take a folio as an argument and update its callers.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
9e97e8b277 btrfs: update the writepage tracepoint to take a folio
Willy is wanting to get rid of page->index, convert the writepage
tracepoint to take a folio so we can do folio->index instead of
page->index.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
56a24a30a4 btrfs: convert btrfs_do_readpage() to only use a folio
Now that the callers and helpers mostly use folio, convert
btrfs_do_readpage to take a folio, and rename it to btrfs_do_read_folio.
Update all of the page stuff to use the folio based helpers instead.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
b35397d1d3 btrfs: convert submit_extent_page() to use a folio
The callers of this helper are going to be converted to using a folio,
so adjust submit_extent_page to become submit_extent_folio and update it
to use all the relevant folio helpers.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
fcf50d161c btrfs: convert begin_page_folio() to take a folio instead
This already uses a folio internally, change it to take a folio as an
argument instead.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
645006d87c btrfs: convert end_page_read() to take a folio
We have this helper function to set the page range uptodate once we're
done reading it, as well as run fsverity against it.  Half of these
functions already take a folio, just rename this to end_folio_read and
then rework it to take a folio instead, and update everything
accordingly.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
e19317ed9e btrfs: convert btrfs_read_folio() to only use a folio
Currently we're using the page for everything here.  Convert this to use
the folio helpers instead.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:13 +02:00
Josef Bacik
03d6612648 btrfs: convert btrfs_readahead() to only use folio
We're the only user of readahead_page_batch().  Convert
btrfs_readahead() to use the folio based helpers to do readahead.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00
Li Zhang
45714ff75c btrfs: print message on device opening error during mount
[ENHANCEMENT]
When mounting a btrfs filesystem, the filesystem opens the block device,
and if this fails, there is no message about it. Print a message about
it to help debugging.

[TEST]
I have a btrfs filesystem on three block devices, one of which is
write-protected, so regular mounts fail, but there is no message in
dmesg.

  /dev/vdb normal
  /dev/vdc write protected
  /dev/vdd normal

  Before patch:
  $ sudo mount /dev/vdb /mnt/
  mount: mount(2) failed: no such file or directory
  $ sudo dmesg # Show only messages about missing block devices
  ....
  [ 352.947196] BTRFS error (device vdb): devid 2 uuid 4ee2c625-a3b2-4fe0-b411-756b23e08533 missing
  ....

  After patch:
  $ sudo mount /dev/vdb /mnt/
  mount: mount(2) failed: no such file or directory
  $ sudo dmesg # Show bdev_file_open_by_path failed.
  ....
  [ 352.944328] BTRFS error: failed to open device for path /dev/vdc with flags 0x3: -13
  [ 352.947196] BTRFS error (device vdb): missing devid 2 uuid 4ee2c625-a3b2-4fe0-b411-756b23e08533
  ....

Signed-off-by: Li Zhang <zhanglikernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00
Qu Wenruo
c92bf5df8a btrfs: move uuid tree related code to uuid-tree.[ch]
Functions btrfs_uuid_scan_kthread() and btrfs_create_uuid_tree() are for
UUID tree rescan and creation, it's not suitable for volumes.[ch].

Move them to uuid-tree.[ch] instead.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00
Filipe Manana
ab094670fa btrfs: reduce size and overhead of extent_map_block_end()
At extent_map_block_end() we are calling the inline functions
extent_map_block_start() and extent_map_block_len() multiple times, which
results in expanding their code multiple times, increasing the compiled
code size and repeating the computations those functions do.

Improve this by caching their results in local variables.

The size of the module before this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1755770	 163800	  16920	1936490	 1d8c6a	fs/btrfs/btrfs.ko

And after this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1755656	 163800	  16920	1936376	 1d8bf8	fs/btrfs/btrfs.ko

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00
Johannes Thumshirn
7fa5230b46 btrfs: update stripe_extent delete loop assumptions
btrfs_delete_raid_extent() was written under the assumption, that it's
call-chain always passes a start, length tuple that matches a single
extent. But btrfs_delete_raid_extent() is called by
do_free_extent_accounting() which in turn is called by
__btrfs_free_extent().

But this call-chain passes in a start address and a length that can
possibly match multiple on-disk extents.

To make this possible, we have to adjust the start and length of each
btree node lookup, to not delete beyond the requested range.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00
Johannes Thumshirn
8c4cba2adb btrfs: update stripe extents for existing logical addresses
Update a stripe extent in case of an already existing logical address,
but with different physical addresses and/or device id instead of
bailing out with EEXIST.

This can happen i.e. in case of a device replace operation, where data
extents get rewritten to a new disk.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00
Filipe Manana
cd9253c23a btrfs: fix race between direct IO write and fsync when using same fd
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:

1) Attempt a fsync without holding the inode's lock, triggering an
   assertion failures when assertions are enabled;

2) Do an invalid memory access from the fsync task because the file private
   points to memory allocated on stack by the direct IO task and it may be
   used by the fsync task after the stack was destroyed.

The race happens like this:

1) A user space program opens a file descriptor with O_DIRECT;

2) The program spawns 2 threads using libpthread for example;

3) One of the threads uses the file descriptor to do direct IO writes,
   while the other calls fsync using the same file descriptor.

4) Call task A the thread doing direct IO writes and task B the thread
   doing fsyncs;

5) Task A does a direct IO write, and at btrfs_direct_write() sets the
   file's private to an on stack allocated private with the member
   'fsync_skip_inode_lock' set to true;

6) Task B enters btrfs_sync_file() and sees that there's a private
   structure associated to the file which has 'fsync_skip_inode_lock' set
   to true, so it skips locking the inode's VFS lock;

7) Task A completes the direct IO write, and resets the file's private to
   NULL since it had no prior private and our private was stack allocated.
   Then it unlocks the inode's VFS lock;

8) Task B enters btrfs_get_ordered_extents_for_logging(), then the
   assertion that checks the inode's VFS lock is held fails, since task B
   never locked it and task A has already unlocked it.

The stack trace produced is the following:

   assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
   ------------[ cut here ]------------
   kernel BUG at fs/btrfs/ordered-data.c:983!
   Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
   CPU: 9 PID: 5072 Comm: worker Tainted: G     U     OE      6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
   Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
   RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
   Code: 50 d6 86 c0 e8 (...)
   RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
   RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
   RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
   RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
   R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
   R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
   FS:  00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
   CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
   Call Trace:
    <TASK>
    ? __die_body.cold+0x14/0x24
    ? die+0x2e/0x50
    ? do_trap+0xca/0x110
    ? do_error_trap+0x6a/0x90
    ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
    ? exc_invalid_op+0x50/0x70
    ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
    ? asm_exc_invalid_op+0x1a/0x20
    ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
    ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
    btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
    ? __seccomp_filter+0x31d/0x4f0
    __x64_sys_fdatasync+0x4f/0x90
    do_syscall_64+0x82/0x160
    ? do_futex+0xcb/0x190
    ? __x64_sys_futex+0x10e/0x1d0
    ? switch_fpu_return+0x4f/0xd0
    ? syscall_exit_to_user_mode+0x72/0x220
    ? do_syscall_64+0x8e/0x160
    ? syscall_exit_to_user_mode+0x72/0x220
    ? do_syscall_64+0x8e/0x160
    ? syscall_exit_to_user_mode+0x72/0x220
    ? do_syscall_64+0x8e/0x160
    ? syscall_exit_to_user_mode+0x72/0x220
    ? do_syscall_64+0x8e/0x160
    entry_SYSCALL_64_after_hwframe+0x76/0x7e

Another problem here is if task B grabs the private pointer and then uses
it after task A has finished, since the private was allocated in the stack
of task A, it results in some invalid memory access with a hard to predict
result.

This issue, triggering the assertion, was observed with QEMU workloads by
two users in the Link tags below.

Fix this by not relying on a file's private to pass information to fsync
that it should skip locking the inode and instead pass this information
through a special value stored in current->journal_info. This is safe
because in the relevant section of the direct IO write path we are not
holding a transaction handle, so current->journal_info is NULL.

The following C program triggers the issue:

   $ cat repro.c
   /* Get the O_DIRECT definition. */
   #ifndef _GNU_SOURCE
   #define _GNU_SOURCE
   #endif

   #include <stdio.h>
   #include <stdlib.h>
   #include <unistd.h>
   #include <stdint.h>
   #include <fcntl.h>
   #include <errno.h>
   #include <string.h>
   #include <pthread.h>

   static int fd;

   static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset)
   {
       while (count > 0) {
           ssize_t ret;

           ret = pwrite(fd, buf, count, offset);
           if (ret < 0) {
               if (errno == EINTR)
                   continue;
               return ret;
           }
           count -= ret;
           buf += ret;
       }
       return 0;
   }

   static void *fsync_loop(void *arg)
   {
       while (1) {
           int ret;

           ret = fsync(fd);
           if (ret != 0) {
               perror("Fsync failed");
               exit(6);
           }
       }
   }

   int main(int argc, char *argv[])
   {
       long pagesize;
       void *write_buf;
       pthread_t fsyncer;
       int ret;

       if (argc != 2) {
           fprintf(stderr, "Use: %s <file path>\n", argv[0]);
           return 1;
       }

       fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666);
       if (fd == -1) {
           perror("Failed to open/create file");
           return 1;
       }

       pagesize = sysconf(_SC_PAGE_SIZE);
       if (pagesize == -1) {
           perror("Failed to get page size");
           return 2;
       }

       ret = posix_memalign(&write_buf, pagesize, pagesize);
       if (ret) {
           perror("Failed to allocate buffer");
           return 3;
       }

       ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL);
       if (ret != 0) {
           fprintf(stderr, "Failed to create writer thread: %d\n", ret);
           return 4;
       }

       while (1) {
           ret = do_write(fd, write_buf, pagesize, 0);
           if (ret != 0) {
               perror("Write failed");
               exit(5);
           }
       }

       return 0;
   }

   $ mkfs.btrfs -f /dev/sdi
   $ mount /dev/sdi /mnt/sdi
   $ timeout 10 ./repro /mnt/sdi/foo

Usually the race is triggered within less than 1 second. A test case for
fstests will follow soon.

Reported-by: Paulo Dias <paulo.miguel.dias@gmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219187
Reported-by: Andreas Jahn <jahn-andi@web.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219199
Reported-by: syzbot+4704b3cc972bd76024f1@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000044ff540620d7dee2@google.com/
Fixes: 939b656bc8ab ("btrfs: fix corruption after buffer fault in during direct IO append write")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-03 20:29:55 +02:00
Naohiro Aota
b1934cd606 btrfs: zoned: handle broken write pointer on zones
Btrfs rejects to mount a FS if it finds a block group with a broken write
pointer (e.g, unequal write pointers on two zones of RAID1 block group).
Since such case can happen easily with a power-loss or crash of a system,
we need to handle the case more gently.

Handle such block group by making it unallocatable, so that there will be
no writes into it. That can be done by setting the allocation pointer at
the end of allocating region (= block_group->zone_capacity). Then, existing
code handle zone_unusable properly.

Having proper zone_capacity is necessary for the change. So, set it as fast
as possible.

We cannot handle RAID0 and RAID10 case like this. But, they are anyway
unable to read because of a missing stripe.

Fixes: 265f7237dd25 ("btrfs: zoned: allow DUP on meta-data block groups")
Fixes: 568220fa9657 ("btrfs: zoned: support RAID0/1/10 on top of raid stripe tree")
CC: stable@vger.kernel.org # 6.1+
Reported-by: HAN Yuwei <hrx@bupt.moe>
Cc: Xuefer <xuefer@gmail.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-02 23:39:34 +02:00
Fedor Pchelkin
c346c62976 btrfs: qgroup: don't use extent changeset when not needed
The local extent changeset is passed to clear_record_extent_bits() where
it may have some additional memory dynamically allocated for ulist. When
qgroup is disabled, the memory is leaked because in this case the
changeset is not released upon __btrfs_qgroup_release_data() return.

Since the recorded contents of the changeset are not used thereafter, just
don't pass it.

Found by Linux Verification Center (linuxtesting.org) with Syzkaller.

Reported-by: syzbot+81670362c283f3dd889c@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/lkml/000000000000aa8c0c060ade165e@google.com
Fixes: af0e2aab3b70 ("btrfs: qgroup: flush reservations during quota disable")
CC: stable@vger.kernel.org # 6.10+
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-02 20:18:08 +02:00
Christoph Hellwig
b35243a447 block: rework bio splitting
The current setup with bio_may_exceed_limit and __bio_split_to_limits
is a bit of a mess.

Change it so that __bio_split_to_limits does all the work and is just
a variant of bio_split_to_limits that returns nr_segs.  This is done
by inlining it and instead have the various bio_split_* helpers directly
submit the potentially split bios.

To support btrfs, the rw version has a lower level helper split out
that just returns the offset to split.  This turns out to nicely clean
up the btrfs flow as well.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Tested-by: Hans Holmberg <hans.holmberg@wdc.com>
Reviewed-by: Hans Holmberg <hans.holmberg@wdc.com>
Link: https://lore.kernel.org/r/20240826173820.1690925-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-08-29 04:32:32 -06:00
Filipe Manana
ecb54277cb btrfs: fix uninitialized return value from btrfs_reclaim_sweep()
The return variable 'ret' at btrfs_reclaim_sweep() is never assigned if
none of the space infos is reclaimable (for example if periodic reclaim
is disabled, which is the default), so we return an undefined value.

This can be fixed my making btrfs_reclaim_sweep() not return any value
as well as do_reclaim_sweep() because:

1) do_reclaim_sweep() always returns 0, so we can make it return void;

2) The only caller of btrfs_reclaim_sweep() (btrfs_reclaim_bgs()) doesn't
   care about its return value, and in its context there's nothing to do
   about any errors anyway.

Therefore remove the return value from btrfs_reclaim_sweep() and
do_reclaim_sweep().

Fixes: e4ca3932ae90 ("btrfs: periodic block_group reclaim")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-27 16:42:09 +02:00
Qu Wenruo
10d9d8c351 btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk()
[BUG]
There is an internal report that KASAN is reporting use-after-free, with
the following backtrace:

  BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs]
  Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45
  CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
  Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
  Call Trace:
   dump_stack_lvl+0x61/0x80
   print_address_description.constprop.0+0x5e/0x2f0
   print_report+0x118/0x216
   kasan_report+0x11d/0x1f0
   btrfs_check_read_bio+0xa68/0xb70 [btrfs]
   process_one_work+0xce0/0x12a0
   worker_thread+0x717/0x1250
   kthread+0x2e3/0x3c0
   ret_from_fork+0x2d/0x70
   ret_from_fork_asm+0x11/0x20

  Allocated by task 20917:
   kasan_save_stack+0x37/0x60
   kasan_save_track+0x10/0x30
   __kasan_slab_alloc+0x7d/0x80
   kmem_cache_alloc_noprof+0x16e/0x3e0
   mempool_alloc_noprof+0x12e/0x310
   bio_alloc_bioset+0x3f0/0x7a0
   btrfs_bio_alloc+0x2e/0x50 [btrfs]
   submit_extent_page+0x4d1/0xdb0 [btrfs]
   btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
   btrfs_readahead+0x29a/0x430 [btrfs]
   read_pages+0x1a7/0xc60
   page_cache_ra_unbounded+0x2ad/0x560
   filemap_get_pages+0x629/0xa20
   filemap_read+0x335/0xbf0
   vfs_read+0x790/0xcb0
   ksys_read+0xfd/0x1d0
   do_syscall_64+0x6d/0x140
   entry_SYSCALL_64_after_hwframe+0x4b/0x53

  Freed by task 20917:
   kasan_save_stack+0x37/0x60
   kasan_save_track+0x10/0x30
   kasan_save_free_info+0x37/0x50
   __kasan_slab_free+0x4b/0x60
   kmem_cache_free+0x214/0x5d0
   bio_free+0xed/0x180
   end_bbio_data_read+0x1cc/0x580 [btrfs]
   btrfs_submit_chunk+0x98d/0x1880 [btrfs]
   btrfs_submit_bio+0x33/0x70 [btrfs]
   submit_one_bio+0xd4/0x130 [btrfs]
   submit_extent_page+0x3ea/0xdb0 [btrfs]
   btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
   btrfs_readahead+0x29a/0x430 [btrfs]
   read_pages+0x1a7/0xc60
   page_cache_ra_unbounded+0x2ad/0x560
   filemap_get_pages+0x629/0xa20
   filemap_read+0x335/0xbf0
   vfs_read+0x790/0xcb0
   ksys_read+0xfd/0x1d0
   do_syscall_64+0x6d/0x140
   entry_SYSCALL_64_after_hwframe+0x4b/0x53

[CAUSE]
Although I cannot reproduce the error, the report itself is good enough
to pin down the cause.

The call trace is the regular endio workqueue context, but the
free-by-task trace is showing that during btrfs_submit_chunk() we
already hit a critical error, and is calling btrfs_bio_end_io() to error
out.  And the original endio function called bio_put() to free the whole
bio.

This means a double freeing thus causing use-after-free, e.g.:

1. Enter btrfs_submit_bio() with a read bio
   The read bio length is 128K, crossing two 64K stripes.

2. The first run of btrfs_submit_chunk()

2.1 Call btrfs_map_block(), which returns 64K
2.2 Call btrfs_split_bio()
    Now there are two bios, one referring to the first 64K, the other
    referring to the second 64K.
2.3 The first half is submitted.

3. The second run of btrfs_submit_chunk()

3.1 Call btrfs_map_block(), which by somehow failed
    Now we call btrfs_bio_end_io() to handle the error

3.2 btrfs_bio_end_io() calls the original endio function
    Which is end_bbio_data_read(), and it calls bio_put() for the
    original bio.

    Now the original bio is freed.

4. The submitted first 64K bio finished
   Now we call into btrfs_check_read_bio() and tries to advance the bio
   iter.
   But since the original bio (thus its iter) is already freed, we
   trigger the above use-after free.

   And even if the memory is not poisoned/corrupted, we will later call
   the original endio function, causing a double freeing.

[FIX]
Instead of calling btrfs_bio_end_io(), call btrfs_orig_bbio_end_io(),
which has the extra check on split bios and do the proper refcounting
for cloned bios.

Furthermore there is already one extra btrfs_cleanup_bio() call, but
that is duplicated to btrfs_orig_bbio_end_io() call, so remove that
label completely.

Reported-by: David Sterba <dsterba@suse.com>
Fixes: 852eee62d31a ("btrfs: allow btrfs_submit_bio to split bios")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-27 01:34:08 +02:00
David Sterba
33f58a0480 btrfs: initialize last_extent_end to fix -Wmaybe-uninitialized warning in extent_fiemap()
There's a warning (probably on some older compiler version):

fs/btrfs/fiemap.c: warning: 'last_extent_end' may be used uninitialized in this function [-Wmaybe-uninitialized]:  => 822:19

Initialize the variable to 0 although it's not necessary as it's either
properly set or not used after an error. The called function is in the
same file so this is a false alert but we want to fix all
-Wmaybe-uninitialized reports.

Link: https://lore.kernel.org/all/20240819070639.2558629-1-geert@linux-m68k.org/
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-26 16:58:13 +02:00
Josef Bacik
2d34472610 btrfs: run delayed iputs when flushing delalloc
We have transient failures with btrfs/301, specifically in the part
where we do

  for i in $(seq 0 10); do
	  write 50m to file
	  rm -f file
  done

Sometimes this will result in a transient quota error, and it's because
sometimes we start writeback on the file which results in a delayed
iput, and thus the rm doesn't actually clean the file up.  When we're
flushing the quota space we need to run the delayed iputs to make sure
all the unlinks that we think have completed have actually completed.
This removes the small window where we could fail to find enough space
in our quota.

CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-25 19:15:34 +02:00
Qu Wenruo
534f7eff92 btrfs: only enable extent map shrinker for DEBUG builds
Although there are several patches improving the extent map shrinker,
there are still reports of too frequent shrinker behavior, taking too
much CPU for the kswapd process.

So let's only enable extent shrinker for now, until we got more
comprehensive understanding and a better solution.

Link: https://lore.kernel.org/linux-btrfs/3df4acd616a07ef4d2dc6bad668701504b412ffc.camel@intelfx.name/
Link: https://lore.kernel.org/linux-btrfs/c30fd6b3-ca7a-4759-8a53-d42878bf84f7@gmail.com/
Fixes: 956a17d9d050 ("btrfs: add a shrinker for extent maps")
CC: stable@vger.kernel.org # 6.10+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-16 21:22:39 +02:00
Naohiro Aota
e30729d4bd btrfs: zoned: properly take lock to read/update block group's zoned variables
__btrfs_add_free_space_zoned() references and modifies bg's alloc_offset,
ro, and zone_unusable, but without taking the lock. It is mostly safe
because they monotonically increase (at least for now) and this function is
mostly called by a transaction commit, which is serialized by itself.

Still, taking the lock is a safer and correct option and I'm going to add a
change to reset zone_unusable while a block group is still alive. So, add
locking around the operations.

Fixes: 169e0da91a21 ("btrfs: zoned: track unusable bytes for zones")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-15 20:35:56 +02:00
Qu Wenruo
008e2512dc btrfs: tree-checker: add dev extent item checks
[REPORT]
There is a corruption report that btrfs refused to mount a fs that has
overlapping dev extents:

  BTRFS error (device sdc): dev extent devid 4 physical offset 14263979671552 overlap with previous dev extent end 14263980982272
  BTRFS error (device sdc): failed to verify dev extents against chunks: -117
  BTRFS error (device sdc): open_ctree failed

[CAUSE]
The direct cause is very obvious, there is a bad dev extent item with
incorrect length.

With btrfs check reporting two overlapping extents, the second one shows
some clue on the cause:

  ERROR: dev extent devid 4 offset 14263979671552 len 6488064 overlap with previous dev extent end 14263980982272
  ERROR: dev extent devid 13 offset 2257707008000 len 6488064 overlap with previous dev extent end 2257707270144
  ERROR: errors found in extent allocation tree or chunk allocation

The second one looks like a bitflip happened during new chunk
allocation:
hex(2257707008000) = 0x20da9d30000
hex(2257707270144) = 0x20da9d70000
diff               = 0x00000040000

So it looks like a bitflip happened during new dev extent allocation,
resulting the second overlap.

Currently we only do the dev-extent verification at mount time, but if the
corruption is caused by memory bitflip, we really want to catch it before
writing the corruption to the storage.

Furthermore the dev extent items has the following key definition:

	(<device id> DEV_EXTENT <physical offset>)

Thus we can not just rely on the generic key order check to make sure
there is no overlapping.

[ENHANCEMENT]
Introduce dedicated dev extent checks, including:

- Fixed member checks
  * chunk_tree should always be BTRFS_CHUNK_TREE_OBJECTID (3)
  * chunk_objectid should always be
    BTRFS_FIRST_CHUNK_CHUNK_TREE_OBJECTID (256)

- Alignment checks
  * chunk_offset should be aligned to sectorsize
  * length should be aligned to sectorsize
  * key.offset should be aligned to sectorsize

- Overlap checks
  If the previous key is also a dev-extent item, with the same
  device id, make sure we do not overlap with the previous dev extent.

Reported: Stefan N <stefannnau@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+W5K0rSO3koYTo=nzxxTm1-Pdu1HYgVxEpgJ=aGc7d=E8mGEg@mail.gmail.com/
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-15 20:35:52 +02:00
Jeff Layton
3bc2ac2f8f btrfs: update target inode's ctime on unlink
Unlink changes the link count on the target inode. POSIX mandates that
the ctime must also change when this occurs.

According to https://pubs.opengroup.org/onlinepubs/9699919799/functions/unlink.html:

"Upon successful completion, unlink() shall mark for update the last data
 modification and last file status change timestamps of the parent
 directory. Also, if the file's link count is not 0, the last file status
 change timestamp of the file shall be marked for update."

Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add link to the opengroup docs ]
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-15 20:35:44 +02:00
Thorsten Blum
c0247d289e btrfs: send: annotate struct name_cache_entry with __counted_by()
Add the __counted_by compiler attribute to the flexible array member
name to improve access bounds-checking via CONFIG_UBSAN_BOUNDS and
CONFIG_FORTIFY_SOURCE.

Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-15 20:35:32 +02:00
Naohiro Aota
6252690f7e btrfs: fix invalid mapping of extent xarray state
In __extent_writepage_io(), we call btrfs_set_range_writeback() ->
folio_start_writeback(), which clears PAGECACHE_TAG_DIRTY mark from the
mapping xarray if the folio is not dirty. This worked fine before commit
97713b1a2ced ("btrfs: do not clear page dirty inside
extent_write_locked_range()").

After the commit, however, the folio is still dirty at this point, so the
mapping DIRTY tag is not cleared anymore. Then, __extent_writepage_io()
calls btrfs_folio_clear_dirty() to clear the folio's dirty flag. That
results in the page being unlocked with a "strange" state. The page is not
PageDirty, but the mapping tag is set as PAGECACHE_TAG_DIRTY.

This strange state looks like causing a hang with a call trace below when
running fstests generic/091 on a null_blk device. It is waiting for a folio
lock.

While I don't have an exact relation between this hang and the strange
state, fixing the state also fixes the hang. And, that state is worth
fixing anyway.

This commit reorders btrfs_folio_clear_dirty() and
btrfs_set_range_writeback() in __extent_writepage_io(), so that the
PAGECACHE_TAG_DIRTY tag is properly removed from the xarray.

  [464.274] task:fsx             state:D stack:0     pid:3034  tgid:3034  ppid:2853   flags:0x00004002
  [464.286] Call Trace:
  [464.291]  <TASK>
  [464.295]  __schedule+0x10ed/0x6260
  [464.301]  ? __pfx___blk_flush_plug+0x10/0x10
  [464.308]  ? __submit_bio+0x37c/0x450
  [464.314]  ? __pfx___schedule+0x10/0x10
  [464.321]  ? lock_release+0x567/0x790
  [464.327]  ? __pfx_lock_acquire+0x10/0x10
  [464.334]  ? __pfx_lock_release+0x10/0x10
  [464.340]  ? __pfx_lock_acquire+0x10/0x10
  [464.347]  ? __pfx_lock_release+0x10/0x10
  [464.353]  ? do_raw_spin_lock+0x12e/0x270
  [464.360]  schedule+0xdf/0x3b0
  [464.365]  io_schedule+0x8f/0xf0
  [464.371]  folio_wait_bit_common+0x2ca/0x6d0
  [464.378]  ? folio_wait_bit_common+0x1cc/0x6d0
  [464.385]  ? __pfx_folio_wait_bit_common+0x10/0x10
  [464.392]  ? __pfx_filemap_get_folios_tag+0x10/0x10
  [464.400]  ? __pfx_wake_page_function+0x10/0x10
  [464.407]  ? __pfx___might_resched+0x10/0x10
  [464.414]  ? do_raw_spin_unlock+0x58/0x1f0
  [464.420]  extent_write_cache_pages+0xe49/0x1620 [btrfs]
  [464.428]  ? lock_acquire+0x435/0x500
  [464.435]  ? __pfx_extent_write_cache_pages+0x10/0x10 [btrfs]
  [464.443]  ? btrfs_do_write_iter+0x493/0x640 [btrfs]
  [464.451]  ? orc_find.part.0+0x1d4/0x380
  [464.457]  ? __pfx_lock_release+0x10/0x10
  [464.464]  ? __pfx_lock_release+0x10/0x10
  [464.471]  ? btrfs_do_write_iter+0x493/0x640 [btrfs]
  [464.478]  btrfs_writepages+0x1cc/0x460 [btrfs]
  [464.485]  ? __pfx_btrfs_writepages+0x10/0x10 [btrfs]
  [464.493]  ? is_bpf_text_address+0x6e/0x100
  [464.500]  ? kernel_text_address+0x145/0x160
  [464.507]  ? unwind_get_return_address+0x5e/0xa0
  [464.514]  ? arch_stack_walk+0xac/0x100
  [464.521]  do_writepages+0x176/0x780
  [464.527]  ? lock_release+0x567/0x790
  [464.533]  ? __pfx_do_writepages+0x10/0x10
  [464.540]  ? __pfx_lock_acquire+0x10/0x10
  [464.546]  ? __pfx_stack_trace_save+0x10/0x10
  [464.553]  ? do_raw_spin_lock+0x12e/0x270
  [464.560]  ? do_raw_spin_unlock+0x58/0x1f0
  [464.566]  ? _raw_spin_unlock+0x23/0x40
  [464.573]  ? wbc_attach_and_unlock_inode+0x3da/0x7d0
  [464.580]  filemap_fdatawrite_wbc+0x113/0x180
  [464.587]  ? prepare_pages.constprop.0+0x13c/0x5c0 [btrfs]
  [464.596]  __filemap_fdatawrite_range+0xaf/0xf0
  [464.603]  ? __pfx___filemap_fdatawrite_range+0x10/0x10
  [464.611]  ? trace_irq_enable.constprop.0+0xce/0x110
  [464.618]  ? kasan_quarantine_put+0xd7/0x1e0
  [464.625]  btrfs_start_ordered_extent+0x46f/0x570 [btrfs]
  [464.633]  ? __pfx_btrfs_start_ordered_extent+0x10/0x10 [btrfs]
  [464.642]  ? __clear_extent_bit+0x2c0/0x9d0 [btrfs]
  [464.650]  btrfs_lock_and_flush_ordered_range+0xc6/0x180 [btrfs]
  [464.659]  ? __pfx_btrfs_lock_and_flush_ordered_range+0x10/0x10 [btrfs]
  [464.669]  btrfs_read_folio+0x12a/0x1d0 [btrfs]
  [464.676]  ? __pfx_btrfs_read_folio+0x10/0x10 [btrfs]
  [464.684]  ? __pfx_filemap_add_folio+0x10/0x10
  [464.691]  ? __pfx___might_resched+0x10/0x10
  [464.698]  ? __filemap_get_folio+0x1c5/0x450
  [464.705]  prepare_uptodate_page+0x12e/0x4d0 [btrfs]
  [464.713]  prepare_pages.constprop.0+0x13c/0x5c0 [btrfs]
  [464.721]  ? fault_in_iov_iter_readable+0xd2/0x240
  [464.729]  btrfs_buffered_write+0x5bd/0x12f0 [btrfs]
  [464.737]  ? __pfx_btrfs_buffered_write+0x10/0x10 [btrfs]
  [464.745]  ? __pfx_lock_release+0x10/0x10
  [464.752]  ? generic_write_checks+0x275/0x400
  [464.759]  ? down_write+0x118/0x1f0
  [464.765]  ? up_write+0x19b/0x500
  [464.770]  btrfs_direct_write+0x731/0xba0 [btrfs]
  [464.778]  ? __pfx_btrfs_direct_write+0x10/0x10 [btrfs]
  [464.785]  ? __pfx___might_resched+0x10/0x10
  [464.792]  ? lock_acquire+0x435/0x500
  [464.798]  ? lock_acquire+0x435/0x500
  [464.804]  btrfs_do_write_iter+0x494/0x640 [btrfs]
  [464.811]  ? __pfx_btrfs_do_write_iter+0x10/0x10 [btrfs]
  [464.819]  ? __pfx___might_resched+0x10/0x10
  [464.825]  ? rw_verify_area+0x6d/0x590
  [464.831]  vfs_write+0x5d7/0xf50
  [464.837]  ? __might_fault+0x9d/0x120
  [464.843]  ? __pfx_vfs_write+0x10/0x10
  [464.849]  ? btrfs_file_llseek+0xb1/0xfb0 [btrfs]
  [464.856]  ? lock_release+0x567/0x790
  [464.862]  ksys_write+0xfb/0x1d0
  [464.867]  ? __pfx_ksys_write+0x10/0x10
  [464.873]  ? _raw_spin_unlock+0x23/0x40
  [464.879]  ? btrfs_getattr+0x4af/0x670 [btrfs]
  [464.886]  ? vfs_getattr_nosec+0x79/0x340
  [464.892]  do_syscall_64+0x95/0x180
  [464.898]  ? __do_sys_newfstat+0xde/0xf0
  [464.904]  ? __pfx___do_sys_newfstat+0x10/0x10
  [464.911]  ? trace_irq_enable.constprop.0+0xce/0x110
  [464.918]  ? syscall_exit_to_user_mode+0xac/0x2a0
  [464.925]  ? do_syscall_64+0xa1/0x180
  [464.931]  ? trace_irq_enable.constprop.0+0xce/0x110
  [464.939]  ? trace_irq_enable.constprop.0+0xce/0x110
  [464.946]  ? syscall_exit_to_user_mode+0xac/0x2a0
  [464.953]  ? btrfs_file_llseek+0xb1/0xfb0 [btrfs]
  [464.960]  ? do_syscall_64+0xa1/0x180
  [464.966]  ? btrfs_file_llseek+0xb1/0xfb0 [btrfs]
  [464.973]  ? trace_irq_enable.constprop.0+0xce/0x110
  [464.980]  ? syscall_exit_to_user_mode+0xac/0x2a0
  [464.987]  ? __pfx_btrfs_file_llseek+0x10/0x10 [btrfs]
  [464.995]  ? trace_irq_enable.constprop.0+0xce/0x110
  [465.002]  ? __pfx_btrfs_file_llseek+0x10/0x10 [btrfs]
  [465.010]  ? do_syscall_64+0xa1/0x180
  [465.016]  ? lock_release+0x567/0x790
  [465.022]  ? __pfx_lock_acquire+0x10/0x10
  [465.028]  ? __pfx_lock_release+0x10/0x10
  [465.034]  ? trace_irq_enable.constprop.0+0xce/0x110
  [465.042]  ? syscall_exit_to_user_mode+0xac/0x2a0
  [465.049]  ? do_syscall_64+0xa1/0x180
  [465.055]  ? syscall_exit_to_user_mode+0xac/0x2a0
  [465.062]  ? do_syscall_64+0xa1/0x180
  [465.068]  ? syscall_exit_to_user_mode+0xac/0x2a0
  [465.075]  ? do_syscall_64+0xa1/0x180
  [465.081]  ? clear_bhb_loop+0x25/0x80
  [465.087]  ? clear_bhb_loop+0x25/0x80
  [465.093]  ? clear_bhb_loop+0x25/0x80
  [465.099]  entry_SYSCALL_64_after_hwframe+0x76/0x7e
  [465.106] RIP: 0033:0x7f093b8ee784
  [465.111] RSP: 002b:00007ffc29d31b28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
  [465.122] RAX: ffffffffffffffda RBX: 0000000000006000 RCX: 00007f093b8ee784
  [465.131] RDX: 000000000001de00 RSI: 00007f093b6ed200 RDI: 0000000000000003
  [465.141] RBP: 000000000001de00 R08: 0000000000006000 R09: 0000000000000000
  [465.150] R10: 0000000000023e00 R11: 0000000000000202 R12: 0000000000006000
  [465.160] R13: 0000000000023e00 R14: 0000000000023e00 R15: 0000000000000001
  [465.170]  </TASK>
  [465.174] INFO: lockdep is turned off.

Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Fixes: 97713b1a2ced ("btrfs: do not clear page dirty inside extent_write_locked_range()")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-13 15:36:57 +02:00
Filipe Manana
46a6e10a1a btrfs: send: allow cloning non-aligned extent if it ends at i_size
If we a find that an extent is shared but its end offset is not sector
size aligned, then we don't clone it and issue write operations instead.
This is because the reflink (remap_file_range) operation does not allow
to clone unaligned ranges, except if the end offset of the range matches
the i_size of the source and destination files (and the start offset is
sector size aligned).

While this is not incorrect because send can only guarantee that a file
has the same data in the source and destination snapshots, it's not
optimal and generates confusion and surprising behaviour for users.

For example, running this test:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/sdi
  MNT=/mnt/sdi

  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  # Use a file size not aligned to any possible sector size.
  file_size=$((1 * 1024 * 1024 + 5)) # 1MB + 5 bytes
  dd if=/dev/random of=$MNT/foo bs=$file_size count=1
  cp --reflink=always $MNT/foo $MNT/bar

  btrfs subvolume snapshot -r $MNT/ $MNT/snap
  rm -f /tmp/send-test
  btrfs send -f /tmp/send-test $MNT/snap

  umount $MNT
  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  btrfs receive -vv -f /tmp/send-test $MNT

  xfs_io -r -c "fiemap -v" $MNT/snap/bar

  umount $MNT

Gives the following result:

  (...)
  mkfile o258-7-0
  rename o258-7-0 -> bar
  write bar - offset=0 length=49152
  write bar - offset=49152 length=49152
  write bar - offset=98304 length=49152
  write bar - offset=147456 length=49152
  write bar - offset=196608 length=49152
  write bar - offset=245760 length=49152
  write bar - offset=294912 length=49152
  write bar - offset=344064 length=49152
  write bar - offset=393216 length=49152
  write bar - offset=442368 length=49152
  write bar - offset=491520 length=49152
  write bar - offset=540672 length=49152
  write bar - offset=589824 length=49152
  write bar - offset=638976 length=49152
  write bar - offset=688128 length=49152
  write bar - offset=737280 length=49152
  write bar - offset=786432 length=49152
  write bar - offset=835584 length=49152
  write bar - offset=884736 length=49152
  write bar - offset=933888 length=49152
  write bar - offset=983040 length=49152
  write bar - offset=1032192 length=16389
  chown bar - uid=0, gid=0
  chmod bar - mode=0644
  utimes bar
  utimes
  BTRFS_IOC_SET_RECEIVED_SUBVOL uuid=06d640da-9ca1-604c-b87c-3375175a8eb3, stransid=7
  /mnt/sdi/snap/bar:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..2055]:       26624..28679      2056   0x1

There's no clone operation to clone extents from the file foo into file
bar and fiemap confirms there's no shared flag (0x2000).

So update send_write_or_clone() so that it proceeds with cloning if the
source and destination ranges end at the i_size of the respective files.

After this changes the result of the test is:

  (...)
  mkfile o258-7-0
  rename o258-7-0 -> bar
  clone bar - source=foo source offset=0 offset=0 length=1048581
  chown bar - uid=0, gid=0
  chmod bar - mode=0644
  utimes bar
  utimes
  BTRFS_IOC_SET_RECEIVED_SUBVOL uuid=582420f3-ea7d-564e-bbe5-ce440d622190, stransid=7
  /mnt/sdi/snap/bar:
   EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
     0: [0..2055]:       26624..28679      2056 0x2001

A test case for fstests will also follow up soon.

Link: https://github.com/kdave/btrfs-progs/issues/572#issuecomment-2282841416
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-13 13:45:42 +02:00
Filipe Manana
ae1e766f62 btrfs: only run the extent map shrinker from kswapd tasks
Currently the extent map shrinker can be run by any task when attempting
to allocate memory and there's enough memory pressure to trigger it.

To avoid too much latency we stop iterating over extent maps and removing
them once the task needs to reschedule. This logic was introduced in commit
b3ebb9b7e92a ("btrfs: stop extent map shrinker if reschedule is needed").

While that solved high latency problems for some use cases, it's still
not enough because with a too high number of tasks entering the extent map
shrinker code, either due to memory allocations or because they are a
kswapd task, we end up having a very high level of contention on some
spin locks, namely:

1) The fs_info->fs_roots_radix_lock spin lock, which we need to find
   roots to iterate over their inodes;

2) The spin lock of the xarray used to track open inodes for a root
   (struct btrfs_root::inodes) - on 6.10 kernels and below, it used to
   be a red black tree and the spin lock was root->inode_lock;

3) The fs_info->delayed_iput_lock spin lock since the shrinker adds
   delayed iputs (calls btrfs_add_delayed_iput()).

Instead of allowing the extent map shrinker to be run by any task, make
it run only by kswapd tasks. This still solves the problem of running
into OOM situations due to an unbounded extent map creation, which is
simple to trigger by direct IO writes, as described in the changelog
of commit 956a17d9d050 ("btrfs: add a shrinker for extent maps"), and
by a similar case when doing buffered IO on files with a very large
number of holes (keeping the file open and creating many holes, whose
extent maps are only released when the file is closed).

Reported-by: kzd <kzd@56709.net>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219121
Reported-by: Octavia Togami <octavia.togami@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAHPNGSSt-a4ZZWrtJdVyYnJFscFjP9S7rMcvEMaNSpR556DdLA@mail.gmail.com/
Fixes: 956a17d9d050 ("btrfs: add a shrinker for extent maps")
CC: stable@vger.kernel.org # 6.10+
Tested-by: kzd <kzd@56709.net>
Tested-by: Octavia Togami <octavia.togami@gmail.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-13 13:43:28 +02:00
Qu Wenruo
31723c9542 btrfs: tree-checker: reject BTRFS_FT_UNKNOWN dir type
[REPORT]
There is a bug report that kernel is rejecting a mismatching inode mode
and its dir item:

  [ 1881.553937] BTRFS critical (device dm-0): inode mode mismatch with
  dir: inode mode=040700 btrfs type=2 dir type=0

[CAUSE]
It looks like the inode mode is correct, while the dir item type
0 is BTRFS_FT_UNKNOWN, which should not be generated by btrfs at all.

This may be caused by a memory bit flip.

[ENHANCEMENT]
Although tree-checker is not able to do any cross-leaf verification, for
this particular case we can at least reject any dir type with
BTRFS_FT_UNKNOWN.

So here we enhance the dir type check from [0, BTRFS_FT_MAX), to
(0, BTRFS_FT_MAX).
Although the existing corruption can not be fixed just by such enhanced
checking, it should prevent the same 0x2->0x0 bitflip for dir type to
reach disk in the future.

Reported-by: Kota <nospam@kota.moe>
Link: https://lore.kernel.org/linux-btrfs/CACsxjPYnQF9ZF-0OhH16dAx50=BXXOcP74MxBc3BG+xae4vTTw@mail.gmail.com/
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-13 13:42:26 +02:00
Josef Bacik
42fac187b5 btrfs: check delayed refs when we're checking if a ref exists
In the patch 78c52d9eb6b7 ("btrfs: check for refs on snapshot delete
resume") I added some code to handle file systems that had been
corrupted by a bug that incorrectly skipped updating the drop progress
key while dropping a snapshot.  This code would check to see if we had
already deleted our reference for a child block, and skip the deletion
if we had already.

Unfortunately there is a bug, as the check would only check the on-disk
references.  I made an incorrect assumption that blocks in an already
deleted snapshot that was having the deletion resume on mount wouldn't
be modified.

If we have 2 pending deleted snapshots that share blocks, we can easily
modify the rules for a block.  Take the following example

subvolume a exists, and subvolume b is a snapshot of subvolume a.  They
share references to block 1.  Block 1 will have 2 full references, one
for subvolume a and one for subvolume b, and it belongs to subvolume a
(btrfs_header_owner(block 1) == subvolume a).

When deleting subvolume a, we will drop our full reference for block 1,
and because we are the owner we will drop our full reference for all of
block 1's children, convert block 1 to FULL BACKREF, and add a shared
reference to all of block 1's children.

Then we will start the snapshot deletion of subvolume b.  We look up the
extent info for block 1, which checks delayed refs and tells us that
FULL BACKREF is set, so sets parent to the bytenr of block 1.  However
because this is a resumed snapshot deletion, we call into
check_ref_exists().  Because check_ref_exists() only looks at the disk,
it doesn't find the shared backref for the child of block 1, and thus
returns 0 and we skip deleting the reference for the child of block 1
and continue.  This orphans the child of block 1.

The fix is to lookup the delayed refs, similar to what we do in
btrfs_lookup_extent_info().  However we only care about whether the
reference exists or not.  If we fail to find our reference on disk, go
look up the bytenr in the delayed refs, and if it exists look for an
existing ref in the delayed ref head.  If that exists then we know we
can delete the reference safely and carry on.  If it doesn't exist we
know we have to skip over this block.

This bug has existed since I introduced this fix, however requires
having multiple deleted snapshots pending when we unmount.  We noticed
this in production because our shutdown path stops the container on the
system, which deletes a bunch of subvolumes, and then reboots the box.
This gives us plenty of opportunities to hit this issue.  Looking at the
history we've seen this occasionally in production, but we had a big
spike recently thanks to faster machines getting jobs with multiple
subvolumes in the job.

Chris Mason wrote a reproducer which does the following

mount /dev/nvme4n1 /btrfs
btrfs subvol create /btrfs/s1
simoop -E -f 4k -n 200000 -z /btrfs/s1
while(true) ; do
	btrfs subvol snap /btrfs/s1 /btrfs/s2
	simoop -f 4k -n 200000 -r 10 -z /btrfs/s2
	btrfs subvol snap /btrfs/s2 /btrfs/s3
	btrfs balance start -dusage=80 /btrfs
	btrfs subvol del /btrfs/s2 /btrfs/s3
	umount /btrfs
	btrfsck /dev/nvme4n1 || exit 1
	mount /dev/nvme4n1 /btrfs
done

On the second loop this would fail consistently, with my patch it has
been running for hours and hasn't failed.

I also used dm-log-writes to capture the state of the failure so I could
debug the problem.  Using the existing failure case to test my patch
validated that it fixes the problem.

Fixes: 78c52d9eb6b7 ("btrfs: check for refs on snapshot delete resume")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-13 13:42:26 +02:00
Al Viro
1da91ea87a introduce fd_file(), convert all accessors to it.
For any changes of struct fd representation we need to
turn existing accesses to fields into calls of wrappers.
Accesses to struct fd::flags are very few (3 in linux/file.h,
1 in net/socket.c, 3 in fs/overlayfs/file.c and 3 more in
explicit initializers).
	Those can be dealt with in the commit converting to
new layout; accesses to struct fd::file are too many for that.
	This commit converts (almost) all of f.file to
fd_file(f).  It's not entirely mechanical ('file' is used as
a member name more than just in struct fd) and it does not
even attempt to distinguish the uses in pointer context from
those in boolean context; the latter will be eventually turned
into a separate helper (fd_empty()).

	NOTE: mass conversion to fd_empty(), tempting as it
might be, is a bad idea; better do that piecewise in commit
that convert from fdget...() to CLASS(...).

[conflicts in fs/fhandle.c, kernel/bpf/syscall.c, mm/memcontrol.c
caught by git; fs/stat.c one got caught by git grep]
[fs/xattr.c conflict]

Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-08-12 22:00:43 -04:00