214 Commits

Author SHA1 Message Date
David Sterba
7841cb2898 btrfs: add helper for fs_info->closing
wrap checking of filesystem 'closing' flag and fix a few missing memory
barriers.

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-06-04 08:11:22 -04:00
Chris Mason
4b9465cb9e Btrfs: add mount -o inode_cache
This makes the inode map cache default to off until we
fix the overflow problem when the free space crcs don't fit
inside a single page.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-06-04 08:03:47 -04:00
Chris Mason
211f96c24f Btrfs: make sure we don't overflow the free space cache crc page
The free space cache uses only one page for crcs right now,
which means we can't have a cache file bigger than the
crcs we can fit in the first page.  This adds a check to
enforce that restriction.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-06-04 08:03:43 -04:00
Chris Mason
ff5714cca9 Merge branch 'for-chris' of
git://git.kernel.org/pub/scm/linux/kernel/git/josef/btrfs-work into for-linus

Conflicts:
	fs/btrfs/disk-io.c
	fs/btrfs/extent-tree.c
	fs/btrfs/free-space-cache.c
	fs/btrfs/inode.c
	fs/btrfs/transaction.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-28 07:00:39 -04:00
Josef Bacik
207dde8289 Btrfs: check for duplicate entries in the free space cache
If there are duplicate entries in the free space cache, discard the entire cache
and load it the old fashioned way.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-05-23 13:03:16 -04:00
Chris Mason
945d8962ce Merge branch 'cleanups' of git://repo.or.cz/linux-2.6/btrfs-unstable into inode_numbers
Conflicts:
	fs/btrfs/extent-tree.c
	fs/btrfs/free-space-cache.c
	fs/btrfs/inode.c
	fs/btrfs/tree-log.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-22 12:33:42 -04:00
Chris Mason
0965537308 Merge branch 'ino-alloc' of git://repo.or.cz/linux-btrfs-devel into inode_numbers
Conflicts:
	fs/btrfs/free-space-cache.c

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-05-21 09:27:38 -04:00
David Sterba
f2a97a9dbd btrfs: remove all unused functions
Remove static and global declarations and/or definitions. Reduces size
of btrfs.ko by ~3.4kB.

  text    data     bss     dec     hex filename
402081    7464     200  409745   64091 btrfs.ko.base
398620    7144     200  405964   631cc btrfs.ko.remove-all

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-06 12:34:03 +02:00
David Sterba
b3b4aa74b5 btrfs: drop unused parameter from btrfs_release_path
parameter tree root it's not used since commit
5f39d397dfbe140a14edecd4e73c34ce23c4f9ee ("Btrfs: Create extent_buffer
interface for large blocksizes")

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:22 +02:00
David Sterba
62a45b6092 btrfs: make functions static when possible
Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:20 +02:00
David Sterba
edc95aec57 btrfs: remove nested duplicate variable declarations
Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:19 +02:00
Josef Bacik
a4f0162fd4 Btrfs: free bitmaps properly when evicting the cache
If our space cache is wrong, we do the right thing and free up everything that
we loaded, however we don't reset the total_bitmaps counter or the thresholds or
anything.  So in btrfs_remove_free_space_cache make sure to call free_bitmap()
if it's a bitmap, this will keep us from panicing when we check to make sure we
don't have too many bitmaps.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-25 19:43:52 -04:00
Li Zefan
f789b684bd Btrfs: Free free_space item properly in btrfs_trim_block_group()
Since commit dc89e9824464e91fa0b06267864ceabe3186fd8b, we've changed
to use a specific slab for alocation of free_space items.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-25 19:43:52 -04:00
Li Zefan
82d5902d9c Btrfs: Support reading/writing on disk free ino cache
This is similar to block group caching.

We dedicate a special inode in fs tree to save free ino cache.

At the very first time we create/delete a file after mount, the free ino
cache will be loaded from disk into memory. When the fs tree is commited,
the cache will be written back to disk.

To keep compatibility, we check the root generation against the generation
of the special inode when loading the cache, so the loading will fail
if the btrfs filesystem was mounted in an older kernel before.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:11 +08:00
Li Zefan
0414efae79 Btrfs: Make the code for reading/writing free space cache generic
Extract out block group specific code from lookup_free_space_inode(),
create_free_space_inode(), load_free_space_cache() and
btrfs_write_out_cache(), so the code can be used to read/write
free ino cache.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:07 +08:00
Li Zefan
581bb05094 Btrfs: Cache free inode numbers in memory
Currently btrfs stores the highest objectid of the fs tree, and it always
returns (highest+1) inode number when we create a file, so inode numbers
won't be reclaimed when we delete files, so we'll run out of inode numbers
as we keep create/delete files in 32bits machines.

This fixes it, and it works similarly to how we cache free space in block
cgroups.

We start a kernel thread to read the file tree. By scanning inode items,
we know which chunks of inode numbers are free, and we cache them in
an rb-tree.

Because we are searching the commit root, we have to carefully handle the
cross-transaction case.

The rb-tree is a hybrid extent+bitmap tree, so if we have too many small
chunks of inode numbers, we'll use bitmaps. Initially we allow 16K ram
of extents, and a bitmap will be used if we exceed this threshold. The
extents threshold is adjusted in runtime.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:04 +08:00
Li Zefan
34d52cb6c5 Btrfs: Make free space cache code generic
So we can re-use the code to cache free inode numbers.

The change is quite straightforward. Two new structures are introduced.

- struct btrfs_free_space_ctl

  We move those variables that are used for caching free space from
  struct btrfs_block_group_cache to this new struct.

- struct btrfs_free_space_op

  We do block group specific work (e.g. calculation of extents threshold)
  through functions registered in this struct.

And then we can remove references to struct btrfs_block_group_cache.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:03 +08:00
Li Zefan
f38b6e754d Btrfs: Use bitmap_set/clear()
No functional change.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:46:01 +08:00
Li Zefan
92c4231181 Btrfs: Remove unused btrfs_block_group_free_space()
We've already recorded the value in block_group->frees_space.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-04-25 16:45:59 +08:00
Chris Mason
f65647c29b Btrfs: fix free space cache leak
The free space caching code was recently reworked to
cache all the pages it needed instead of using find_get_page everywhere.

One loop was missed though, so it ended up leaking pages.  This fixes
it to use our page array instead of find_get_page.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-18 08:55:34 -04:00
Josef Bacik
be1a12a0df Btrfs: deal with the case that we run out of space in the cache
Currently we don't handle running out of space in the cache, so to fix this we
keep track of how far in the cache we are.  Then we only dirty the pages if we
successfully modify all of them, otherwise if we have an error or run out of
space we can just drop them and not worry about the vm writing them out.
Thanks,

Tested-by Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de>
Signed-off-by: Josef Bacik <josef@redhat.com>
2011-04-08 13:00:27 -04:00
Josef Bacik
43be21462d Btrfs: fix free space cache when there are pinned extents and clusters V2
I noticed a huge problem with the free space cache that was presenting
as an early ENOSPC.  Turns out when writing the free space cache out I
forgot to take into account pinned extents and more importantly
clusters.  This would result in us leaking free space everytime we
unmounted the filesystem and remounted it.

I fix this by making sure to check and see if the current block group
has a cluster and writing out any entries that are in the cluster to the
cache, as well as writing any pinned extents we currently have to the
cache since those will be available for us to use the next time the fs
mounts.

This patch also adds a check to the end of load_free_space_cache to make
sure we got the right amount of free space cache, and if not make sure
to clear the cache and re-cache the old fashioned way.

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-05 01:20:24 -04:00
Miao Xie
adae52b94e btrfs: clear __GFP_FS flag in the space cache inode
the object id of the space cache inode's key is allocated from the relative
root, just like the regular file. So we can't identify space cache inode by
checking the object id of the inode's key, and we have to clear __GFP_FS flag
at the time we look up the space cache inode.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-05 01:19:43 -04:00
Li Dongyang
f7039b1d5c Btrfs: add btrfs_trim_fs() to handle FITRIM
We take an free extent out from allocator, trim it, then put it back,
but before we trim the block group, we should make sure the block group is
cached, so plus a little change to make cache_block_group() run without a
transaction.

Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-28 05:37:47 -04:00
Josef Bacik
4e69b598f6 Btrfs: cleanup how we setup free space clusters
This patch makes the free space cluster refilling code a little easier to
understand, and fixes some things with the bitmap part of it.  Currently we
either want to refill a cluster with

1) All normal extent entries (those without bitmaps)
2) A bitmap entry with enough space

The current code has this ugly jump around logic that will first try and fill up
the cluster with extent entries and then if it can't do that it will try and
find a bitmap to use.  So instead split this out into two functions, one that
tries to find only normal entries, and one that tries to find bitmaps.

This also fixes a suboptimal thing we would do with bitmaps.  If we used a
bitmap we would just tell the cluster that we were pointing at a bitmap and it
would do the tree search in the block group for that entry every time we tried
to make an allocation.  Instead of doing that now we just add it to the clusters
group.

I tested this with my ENOSPC tests and xfstests and it survived.

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-25 19:08:08 -04:00
Josef Bacik
32cb0840ce Btrfs: don't be as aggressive about using bitmaps
We have been creating bitmaps for small extents unconditionally forever.  This
was great when testing to make sure the bitmap stuff was working, but is
overkill normally.  So instead of always adding small chunks of free space to
bitmaps, only start doing it if we go past half of our extent threshold.  This
will keeps us from creating a bitmap for just one small free extent at the front
of the block group, and will make the allocator a little faster as a result.
Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-21 10:26:03 -04:00
Josef Bacik
d0a365e84a Btrfs: deal with min_bytes appropriately when looking for a cluster
We do all this fun stuff with min_bytes, but either don't use it in the case of
just normal extents, or use it completely wrong in the case of bitmaps.  So fix
this for both cases

1) In the extent case, stop looking for space with window_free >= min_bytes
instead of bytes + empty_size.

2) In the bitmap case, we were looking for streches of free space that was at
least min_bytes in size, which was not right at all.  So instead search for
stretches of free space that are at least bytes in size (this will make a
difference when we have > page size blocks) and then only search for min_bytes
amount of free space.

Thanks,

Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-21 10:25:56 -04:00
Josef Bacik
7d0d2e8e6b Btrfs: check free space in block group before searching for a cluster
The free space cluster stuff is heavy duty, so there is no sense in going
through the entire song and dance if there isn't enough space in the block group
to begin with.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-21 10:25:48 -04:00
Josef Bacik
dc89e98244 Btrfs: use a slab for the free space entries
Since we alloc/free free space entries a whole lot, lets use a slab to keep
track of them.  This makes some of my tests slightly faster.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-03-17 14:21:20 -04:00
Josef Bacik
13dbc08987 Btrfs: make sure search_bitmap finds something in remove_from_bitmap
When we're cleaning up the tree log we need to be able to remove free space from
the block group.  The problem is if that free space spans bitmaps we would not
find the space since we're looking for too many bytes.  So make sure the amount
of bytes we search for is limited to either the number of bytes we want, or the
number of bytes left in the bitmap.  This was tested by a user who was hitting
the BUG() after search_bitmap.  With this patch he can now mount his fs.
Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-02-06 07:13:12 -05:00
Li Zefan
f333adb5d6 btrfs: Check mergeable free space when removing a cluster
After returing extents from a cluster to the block group, some
extents in the block group may be mergeable.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:57 +08:00
Li Zefan
120d66eec0 btrfs: Add a helper try_merge_free_space()
When adding a new extent, we'll firstly see if we can merge
this extent to the left or/and right extent. Extract this as
a helper try_merge_free_space().

As a side effect, we fix a small bug that if the new extent
has non-bitmap left entry but is unmergeble, we'll directly
link the extent without trying to drop it into bitmap.

This also prepares for the next patch.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:50 +08:00
Li Zefan
5e71b5d5ec btrfs: Update stats when allocating from a cluster
When allocating extent entry from a cluster, we should update
the free_space and free_extents fields of the block group.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:46 +08:00
Li Zefan
70b7da304f btrfs: Free fully occupied bitmap in cluster
If there's no more free space in a bitmap, we should free it.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:41 +08:00
Li Zefan
edf6e2d1dd btrfs: Add helper function free_bitmap()
Remove some duplicated code.

This prepares for the next patch.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:37 +08:00
Li Zefan
8eb2d829ff btrfs: Fix threshold calculation for block groups smaller than 1GB
If a block group is smaller than 1GB, the extent entry threadhold
calculation will always set the threshold to 0.

So as free space gets fragmented, btrfs will switch to use bitmap
to manage free space, but then will never switch back to extents
due to this bug.

Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2011-01-27 01:04:31 +08:00
Josef Bacik
2b20982e31 Btrfs: deal with space cache errors better
Currently if the space cache inode generation number doesn't match the
generation number in the space cache header we will just fail to load the space
cache, but we won't mark the space cache as an error, so we'll keep getting that
error each time somebody tries to cache that block group until we actually clear
the thing.  Fix this by marking the space cache as having an error so we only
get the message once.  This patch also makes it so that we don't try and setup
space cache for a block group that isn't cached, since we won't be able to write
it out anyway.  None of these problems are actual problems, they are just
annoying and sub-optimal.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-12-09 13:57:12 -05:00
Josef Bacik
88c2ba3b06 Btrfs: Add a clear_cache mount option
If something goes wrong with the free space cache we need a way to make sure
it's not loaded on mount and that it's cleared for everybody.  When you pass the
clear_cache option it will make it so all block groups are setup to be cleared,
which keeps them from being loaded and then they will be truncated when the
transaction is committed.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-29 09:26:36 -04:00
Josef Bacik
9d66e233c7 Btrfs: load free space cache if it exists
This patch actually loads the free space cache if it exists.  The only thing
that really changes here is that we need to cache the block group if we're going
to remove an extent from it.  Previously we did not do this since the caching
kthread would pick it up.  With the on disk cache we don't have this luxury so
we need to make sure we read the on disk cache in first, and then remove the
extent, that way when the extent is unpinned the free space is added to the
block group.  This has been tested with all sorts of things.

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-29 09:26:35 -04:00
Josef Bacik
0cb59c9953 Btrfs: write out free space cache
This is a simple bit, just dump the free space cache out to our preallocated
inode when we're writing out dirty block groups.  There are a bunch of changes
in inode.c in order to account for special cases.  Mostly when we're doing the
writeout we're holding trans_mutex, so we need to use the nolock transacation
functions.  Also we can't do asynchronous completions since the async thread
could be blocked on already completed IO waiting for the transaction lock.  This
has been tested with xfstests and btrfs filesystem balance, as well as my ENOSPC
tests.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-29 09:26:29 -04:00
Josef Bacik
0af3d00bad Btrfs: create special free space cache inode
In order to save free space cache, we need an inode to hold the data, and we
need a special item to point at the right inode for the right block group.  So
first, create a special item that will point to the right inode, and the number
of extent entries we will have and the number of bitmaps we will have.  We
truncate and pre-allocate space everytime to make sure it's uptodate.

This feature will be turned on as soon as you mount with -o space_cache, however
it is safe to boot into old kernels, they will just generate the cache the old
fashion way.  When you boot back into a newer kernel we will notice that we
modified and not the cache and automatically discard the cache.

Signed-off-by: Josef Bacik <josef@redhat.com>
2010-10-28 15:59:09 -04:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Eric Paris
6bef4d3171 Btrfs: use RB_ROOT to intialize rb_trees instead of setting rb_node to NULL
btrfs inialize rb trees in quite a number of places by settin rb_node =
NULL;  The problem with this is that 17d9ddc72fb8bba0d4f678 in the
linux-next tree adds a new field to that struct which needs to be NULL for
the new rbtree library code to work properly.  This patch uses RB_ROOT as
the intializer so all of the relevant fields will be NULL'd.  Without the
patch I get a panic.

Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-03-08 16:26:50 -05:00
Josef Bacik
01dea1efc2 Btrfs: fix how we set max_size for free space clusters
This patch fixes a problem where max_size can be set to 0 even though we
filled the cluster properly.  We set max_size to 0 if we restart the cluster
window, but if the new start entry is big enough to be our new cluster then we
could return with a max_size set to 0, which will mean the next time we try to
allocate from this cluster it will fail.  So set max_extent to the entry's
size.  Tested this on my box and now we actually allocate from the cluster
after we fill it.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-11-11 14:20:17 -05:00
Josef Bacik
25891f796d Btrfs: fix extent entry threshold calculation
There is a slight problem with the extent entry threshold calculation for the
free space cache.  We only adjust the threshold down as we add bitmaps, but
never actually adjust the threshold up as we add bitmaps.  This means we could
fragment the free space so badly that we end up using all bitmaps to describe
the free space, use all the free space which would result in the bitmaps being
freed, but then go to add free space again as we delete things and immediately
add bitmaps since the extent threshold would still be 0.  Now as we free
bitmaps the extent threshold will be ratcheted up to allow more extent entries
to be added.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 19:23:50 -04:00
Josef Bacik
f019f4264a Btrfs: fix bitmap size tracking
When we first go to add free space, we allocate a new info and set the offset
and bytes to the space we are adding.  This is fine, except we actually set the
size of a bitmap as we set the bits in it, so if we add space to a bitmap, we'd
end up counting the same space twice.  This isn't a huge deal, it just makes
the allocator behave weirdly since it will think that a bitmap entry has more
space than it ends up actually having.  I used a BUG_ON() to catch when this
problem happened, and with this patch I no longer get the BUG_ON().

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-21 19:23:49 -04:00
Josef Bacik
6606bb97e1 Btrfs: fix btrfs_remove_from_free_space corner case
Yan Zheng hit a problem where we tried to remove some free space but failed
because we couldn't find the free space entry.  This is because the free space
was held within a bitmap that had a starting offset well before the actual
offset of the free space, and there were free space extents that were in the
same range as that offset, so tree_search_offset returned with NULL because we
couldn't find a free space extent that had that offset.  This is fixed by
making sure that if we fail to find the entry, we re-search again with
bitmap_only set to 1 and do an offset_to_bitmap so we can get the appropriate
bitmap.  A similar problem happens in btrfs_alloc_from_bitmap for the
clustering code, but that is not as bad since we will just go and redo our
cluster allocation.

Also this adds some debugging checks to make sure that the free space we are
trying to remove from the bitmap is in fact there.  This can probably go away
after a while, but since this code is only used by the tree-logging stuff it
would be nice to run with it for a while to make sure there are no problems.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-31 11:03:58 -04:00
Josef Bacik
817d52f8db Btrfs: async block group caching
This patch moves the caching of the block group off to a kthread in order to
allow people to allocate sooner.  Instead of blocking up behind the caching
mutex, we instead kick of the caching kthread, and then attempt to make an
allocation.  If we cannot, we wait on the block groups caching waitqueue, which
the caching kthread will wake the waiting threads up everytime it finds 2 meg
worth of space, and then again when its finished caching.  This is how I tested
the speedup from this

mkfs the disk
mount the disk
fill the disk up with fs_mark
unmount the disk
mount the disk
time touch /mnt/foo

Without my changes this took 11 seconds on my box, with these changes it now
takes 1 second.

Another change thats been put in place is we lock the super mirror's in the
pinned extent map in order to keep us from adding that stuff as free space when
caching the block group.  This doesn't really change anything else as far as the
pinned extent map is concerned, since for actual pinned extents we use
EXTENT_DIRTY, but it does mean that when we unmount we have to go in and unlock
those extents to keep from leaking memory.

I've also added a check where when we are reading block groups from disk, if the
amount of space used == the size of the block group, we go ahead and mark the
block group as cached.  This drastically reduces the amount of time it takes to
cache the block groups.  Using the same test as above, except doing a dd to a
file and then unmounting, it used to take 33 seconds to umount, now it takes 3
seconds.

This version uses the commit_root in the caching kthread, and then keeps track
of how many async caching threads are running at any given time so if one of the
async threads is still running as we cross transactions we can wait until its
finished before handling the pinned extents.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 09:23:39 -04:00
Josef Bacik
9630308170 Btrfs: use hybrid extents+bitmap rb tree for free space
Currently btrfs has a problem where it can use a ridiculous amount of RAM simply
tracking free space.  As free space gets fragmented, we end up with thousands of
entries on an rb-tree per block group, which usually spans 1 gig of area.  Since
we currently don't ever flush free space cache back to disk this gets to be a
bit unweildly on large fs's with lots of fragmentation.

This patch solves this problem by using PAGE_SIZE bitmaps for parts of the free
space cache.  Initially we calculate a threshold of extent entries we can
handle, which is however many extent entries we can cram into 16k of ram.  The
maximum amount of RAM that should ever be used to track 1 gigabyte of diskspace
will be 32k of RAM, which scales much better than we did before.

Once we pass the extent threshold, we start adding bitmaps and using those
instead for tracking the free space.  This patch also makes it so that any free
space thats less than 4 * sectorsize we go ahead and put into a bitmap.  This is
nice since we try and allocate out of the front of a block group, so if the
front of a block group is heavily fragmented and then has a huge chunk of free
space at the end, we go ahead and add the fragmented areas to bitmaps and use a
normal extent entry to track the big chunk at the back of the block group.

I've also taken the opportunity to revamp how we search for free space.
Previously we indexed free space via an offset indexed rb tree and a bytes
indexed rb tree.  I've dropped the bytes indexed rb tree and use only the offset
indexed rb tree.  This cuts the number of tree operations we were doing
previously down by half, and gives us a little bit of a better allocation
pattern since we will always start from a specific offset and search forward
from there, instead of searching for the size we need and try and get it as
close as possible to the offset we want.

I've given this a healthy amount of testing pre-new format stuff, as well as
post-new format stuff.  I've booted up my fedora box which is installed on btrfs
with this patch and ran with it for a few days without issues.  I've not seen
any performance regressions in any of my tests.

Since the last patch Yan Zheng fixed a problem where we could have overlapping
entries, so updating their offset inline would cause problems.  Thanks,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-07-24 09:23:30 -04:00
Chris Mason
451d7585a8 Btrfs: add mount -o ssd_spread to spread allocations out
Some SSDs perform best when reusing block numbers often, while
others perform much better when clustering strictly allocates
big chunks of unused space.

The default mount -o ssd will find rough groupings of blocks
where there are a bunch of free blocks that might have some
allocated blocks mixed in.

mount -o ssd_spread will make sure there are no allocated blocks
mixed in.  It should perform better on lower end SSDs.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 11:29:52 -04:00