mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
1343 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Yu Zhao
|
fed6bd41a1 |
mm/mglru: fix PTE-mapped large folios
Count the accessed bits from PTEs mapping the same large folio as one access rather than multiple accesses. The last patch changed how folios accessed through page tables are promoted: rather than getting promoted after the accessed bit is cleared for the first time, a folio only gets promoted thereafter. Counting the accessed bits from the same large folio as multiple accesses can cause that folio to be promoted prematurely, which in turn can cause overprotection of single-use large folios. This patch reduced the sys time of the kernel compilation by 95% CI [2, 5]% on Altra M128-30 with 3GB DRAM, 12GB zram, 16KB THPs and -j32. Link: https://lkml.kernel.org/r/20241231043538.4075764-8-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: Barry Song <v-songbaohua@oppo.com> Tested-by: Kalesh Singh <kaleshsingh@google.com> Cc: Bharata B Rao <bharata@amd.com> Cc: David Stevens <stevensd@chromium.org> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
cadffd8aab |
mm/mglru: rework workingset protection
With the aging feedback no longer considering the distribution of folios in each generation, rework workingset protection to better distribute folios across MAX_NR_GENS. This is achieved by reusing PG_workingset and PG_referenced/LRU_REFS_FLAGS in a slightly different way. For folios accessed multiple times through file descriptors, make lru_gen_inc_refs() set additional bits of LRU_REFS_WIDTH in folio->flags after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily promoted into the second oldest generation in the eviction path. And when folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that lru_gen_inc_refs() can start over. For this case, LRU_REFS_MASK is only valid when PG_referenced is set. For folios accessed multiple times through page tables, folio_update_gen() from a page table walk or lru_gen_set_refs() from a rmap walk sets PG_referenced after the accessed bit is cleared for the first time. Thereafter, those two paths set PG_workingset and promote folios to the youngest generation. Like folio_inc_gen(), when folio_update_gen() does that, it also clears PG_referenced. For this case, LRU_REFS_MASK is not used. For both of the cases, after PG_workingset is set on a folio, it remains until this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It can be set again if lru_gen_test_recent() returns true upon a refault. When adding folios to the LRU lists, lru_gen_folio_seq() distributes them as follows: +---------------------------------+---------------------------------+ | Accessed thru page tables | Accessed thru file descriptors | +---------------------------------+---------------------------------+ | PG_active (set while isolated) | | +----------------+----------------+----------------+----------------+ | PG_workingset | PG_referenced | PG_workingset | LRU_REFS_FLAGS | +---------------------------------+---------------------------------+ |<--------- MIN_NR_GENS --------->| | |<-------------------------- MAX_NR_GENS -------------------------->| After this patch, some typical client and server workloads showed improvements under heavy memory pressure. For example, Python TPC-C, which was used to benchmark a different approach [1] to better detect refault distances, showed a significant decrease in total refaults: Before After Change Time (seconds) 10801 10801 0% Executed (transactions) 41472 43663 +5% workingset_nodes 109070 120244 +10% workingset_refault_anon 5019627 7281831 +45% workingset_refault_file 1294678786 554855564 -57% workingset_refault_total 1299698413 562137395 -57% [1] https://lore.kernel.org/20230920190244.16839-1-ryncsn@gmail.com/ Link: https://lkml.kernel.org/r/20241231043538.4075764-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: Kairui Song <kasong@tencent.com> Closes: https://lore.kernel.org/CAOUHufahuWcKf5f1Sg3emnqX+cODuR=2TQo7T4Gr-QYLujn4RA@mail.gmail.com/ Tested-by: Kalesh Singh <kaleshsingh@google.com> Cc: Barry Song <v-songbaohua@oppo.com> Cc: Bharata B Rao <bharata@amd.com> Cc: David Stevens <stevensd@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
e73348bd16 |
mm/mglru: rework type selection
With anon and file min_seq being able to move independently, rework type selection so that it is based on the total refaults from all tiers of each type. Also allow a type to be selected until that type reaches MIN_NR_GENS, regardless of whether that type has a larger min_seq or not, to accommodate extreme swappiness. Since some tiers of a selected type can have higher refaults than the first tier of the other type, use a less larger gain factor 2:3 instead of 1:2, in order for those tiers in the selected type to be better protected. As an intermediate step to the final optimization, this change by itself should not have userspace-visiable effects beyond performance. Link: https://lkml.kernel.org/r/20241231043538.4075764-5-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: David Stevens <stevensd@chromium.org> Tested-by: Kalesh Singh <kaleshsingh@google.com> Cc: Barry Song <v-songbaohua@oppo.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
d91ee134eb |
mm/mglru: rework aging feedback
The aging feedback is based on both the number of generations and the distribution of folios in each generation. The number of generations is currently the distance between max_seq and anon min_seq. This is because anon min_seq is not allowed to move past file min_seq. The rationale for that is that file is always evictable whereas anon is not. However, for use cases where anon is a lot cheaper than file: 1. Anon in the second oldest generation can be a better choice than file in the oldest generation. 2. A large amount of file in the oldest generation can skew the distribution, making should_run_aging() return false negative. Allow anon and file min_seq to move independently, and use solely the number of generations as the feedback for aging. Specifically, when both anon and file are evictable, anon min_seq can now be greater than file min_seq, and therefore the number of generations becomes the distance between max_seq and min(min_seq[0],min_seq[1]). And should_run_aging() returns true if and only if the number of generations is less than MAX_NR_GENS. As the first step to the final optimization, this change by itself should not have userspace-visiable effects beyond performance. The next twos patch will take advantage of this change; the last patch in this series will better distribute folios across MAX_NR_GENS. Link: https://lkml.kernel.org/r/20241231043538.4075764-4-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: David Stevens <stevensd@chromium.org> Tested-by: Kalesh Singh <kaleshsingh@google.com> Cc: Barry Song <v-songbaohua@oppo.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Joanne Koong
|
fbfab936ca |
mm: skip reclaiming folios in legacy memcg writeback indeterminate contexts
Currently in shrink_folio_list(), reclaim for folios under writeback falls into 3 different cases: 1) Reclaim is encountering an excessive number of folios under writeback and this folio has both the writeback and reclaim flags set 2) Dirty throttling is enabled (this happens if reclaim through cgroup is not enabled, if reclaim through cgroupv2 memcg is enabled, or if reclaim is on the root cgroup), or if the folio is not marked for immediate reclaim, or if the caller does not have __GFP_FS (or __GFP_IO if it's going to swap) set 3) Legacy cgroupv1 encounters a folio that already has the reclaim flag set and the caller did not have __GFP_FS (or __GFP_IO if swap) set In cases 1) and 2), we activate the folio and skip reclaiming it while in case 3), we wait for writeback to finish on the folio and then try to reclaim the folio again. In case 3, we wait on writeback because cgroupv1 does not have dirty folio throttling, as such this is a mitigation against the case where there are too many folios in writeback with nothing else to reclaim. For filesystems where writeback may take an indeterminate amount of time to write to disk, this has the possibility of stalling reclaim. In this commit, if legacy memcg encounters a folio with the reclaim flag set (eg case 3) and the folio belongs to a mapping that has the AS_WRITEBACK_INDETERMINATE flag set, the folio will be activated and skip reclaim (eg default to behavior in case 2) instead. Link: https://lkml.kernel.org/r/20241122232359.429647-3-joannelkoong@gmail.com Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Miklos Szeredi <mszeredi@redhat.com> Cc: Bernd Schubert <bernd.schubert@fastmail.fm> Cc: Jingbo Xu <jefflexu@linux.alibaba.com> Cc: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Li Zhijian
|
640f36c947 |
mm/vmscan: fix pgdemote_* accounting with lru_gen_enabled
Commit f77f0c751478 ("mm,memcg: provide per-cgroup counters for NUMA balancing operations") moved the accounting of PGDEMOTE_* statistics to shrink_inactive_list(). However, shrink_inactive_list() is not called when lrugen_enabled is true, leading to incorrect demotion statistics despite actual demotion events occurring. Add the PGDEMOTE_* accounting in evict_folios(), ensuring that demotion statistics are correctly updated regardless of the lru_gen_enabled state. This fix is crucial for systems that rely on accurate NUMA balancing metrics for performance tuning and resource management. Link: https://lkml.kernel.org/r/20250110122133.423481-2-lizhijian@fujitsu.com Fixes: f77f0c751478 ("mm,memcg: provide per-cgroup counters for NUMA balancing operations") Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Cc: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Li Zhijian
|
25af7a8727 |
mm-vmscan-accumulate-nr_demoted-for-accurate-demotion-statistics-v2
introduce local nr_demoted to fix nr_reclaimed double counting Link: https://lkml.kernel.org/r/20250111015253.425693-1-lizhijian@fujitsu.com Fixes: f77f0c751478 ("mm,memcg: provide per-cgroup counters for NUMA balancing operations") Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Cc: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Li Zhijian
|
6f330f4f2e |
mm/vmscan: accumulate nr_demoted for accurate demotion statistics
In shrink_folio_list(), demote_folio_list() can be called 2 times. Currently stat->nr_demoted will only store the last nr_demoted( the later nr_demoted is always zero, the former nr_demoted will get lost), as a result number of demoted pages is not accurate. Accumulate the nr_demoted count across multiple calls to demote_folio_list(), ensuring accurate reporting of demotion statistics. Link: https://lkml.kernel.org/r/20250110122133.423481-1-lizhijian@fujitsu.com Fixes: f77f0c751478 ("mm,memcg: provide per-cgroup counters for NUMA balancing operations") Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Acked-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Tested-by: Donet Tom <donettom@linux.ibm.com> Reviewed-by: Donet Tom <donettom@linux.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Donet Tom
|
8d423383db |
mm: vmscan : pgdemote vmstat is not getting updated when MGLRU is enabled.
When MGLRU is enabled, the pgdemote_kswapd, pgdemote_direct, and pgdemote_khugepaged stats in vmstat are not being updated. Commit f77f0c751478 ("mm,memcg: provide per-cgroup counters for NUMA balancing operations") moved the pgdemote vmstat update from demote_folio_list() to shrink_inactive_list(), which is in the normal LRU path. As a result, the pgdemote stats are updated correctly for the normal LRU but not for MGLRU. To address this, we have added the pgdemote stat update in the evict_folios() function, which is in the MGLRU path. With this patch, the pgdemote stats will now be updated correctly when MGLRU is enabled. Without this patch vmstat output when MGLRU is enabled ====================================================== pgdemote_kswapd 0 pgdemote_direct 0 pgdemote_khugepaged 0 With this patch vmstat output when MGLRU is enabled =================================================== pgdemote_kswapd 43234 pgdemote_direct 4691 pgdemote_khugepaged 0 Link: https://lkml.kernel.org/r/20250109060540.451261-1-donettom@linux.ibm.com Fixes: f77f0c751478 ("mm,memcg: provide per-cgroup counters for NUMA balancing operations") Signed-off-by: Donet Tom <donettom@linux.ibm.com> Acked-by: Yu Zhao <yuzhao@google.com> Tested-by: Li Zhijian <lizhijian@fujitsu.com> Reviewed-by: Li Zhijian <lizhijian@fujitsu.com> Cc: Aneesh Kumar K.V (Arm) <aneesh.kumar@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Ritesh Harjani (IBM) <ritesh.list@gmail.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Wei Xu <weixugc@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
liuye
|
665ad6bbac |
mm/vmscan: fix hard LOCKUP in function isolate_lru_folios
This fixes the following hard lockup in isolate_lru_folios() during memory reclaim. If the LRU mostly contains ineligible folios this may trigger watchdog. watchdog: Watchdog detected hard LOCKUP on cpu 173 RIP: 0010:native_queued_spin_lock_slowpath+0x255/0x2a0 Call Trace: _raw_spin_lock_irqsave+0x31/0x40 folio_lruvec_lock_irqsave+0x5f/0x90 folio_batch_move_lru+0x91/0x150 lru_add_drain_per_cpu+0x1c/0x40 process_one_work+0x17d/0x350 worker_thread+0x27b/0x3a0 kthread+0xe8/0x120 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1b/0x30 lruvec->lru_lock owner: PID: 2865 TASK: ffff888139214d40 CPU: 40 COMMAND: "kswapd0" #0 [fffffe0000945e60] crash_nmi_callback at ffffffffa567a555 #1 [fffffe0000945e68] nmi_handle at ffffffffa563b171 #2 [fffffe0000945eb0] default_do_nmi at ffffffffa6575920 #3 [fffffe0000945ed0] exc_nmi at ffffffffa6575af4 #4 [fffffe0000945ef0] end_repeat_nmi at ffffffffa6601dde [exception RIP: isolate_lru_folios+403] RIP: ffffffffa597df53 RSP: ffffc90006fb7c28 RFLAGS: 00000002 RAX: 0000000000000001 RBX: ffffc90006fb7c60 RCX: ffffea04a2196f88 RDX: ffffc90006fb7c60 RSI: ffffc90006fb7c60 RDI: ffffea04a2197048 RBP: ffff88812cbd3010 R8: ffffea04a2197008 R9: 0000000000000001 R10: 0000000000000000 R11: 0000000000000001 R12: ffffea04a2197008 R13: ffffea04a2197048 R14: ffffc90006fb7de8 R15: 0000000003e3e937 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 <NMI exception stack> #5 [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53 #6 [ffffc90006fb7cf8] shrink_active_list at ffffffffa597f788 #7 [ffffc90006fb7da8] balance_pgdat at ffffffffa5986db0 #8 [ffffc90006fb7ec0] kswapd at ffffffffa5987354 #9 [ffffc90006fb7ef8] kthread at ffffffffa5748238 crash> Scenario: User processe are requesting a large amount of memory and keep page active. Then a module continuously requests memory from ZONE_DMA32 area. Memory reclaim will be triggered due to ZONE_DMA32 watermark alarm reached. However pages in the LRU(active_anon) list are mostly from the ZONE_NORMAL area. Reproduce: Terminal 1: Construct to continuously increase pages active(anon). mkdir /tmp/memory mount -t tmpfs -o size=1024000M tmpfs /tmp/memory dd if=/dev/zero of=/tmp/memory/block bs=4M tail /tmp/memory/block Terminal 2: vmstat -a 1 active will increase. procs ---memory--- ---swap-- ---io---- -system-- ---cpu--- ... r b swpd free inact active si so bi bo 1 0 0 1445623076 45898836 83646008 0 0 0 1 0 0 1445623076 43450228 86094616 0 0 0 1 0 0 1445623076 41003480 88541364 0 0 0 1 0 0 1445623076 38557088 90987756 0 0 0 1 0 0 1445623076 36109688 93435156 0 0 0 1 0 0 1445619552 33663256 95881632 0 0 0 1 0 0 1445619804 31217140 98327792 0 0 0 1 0 0 1445619804 28769988 100774944 0 0 0 1 0 0 1445619804 26322348 103222584 0 0 0 1 0 0 1445619804 23875592 105669340 0 0 0 cat /proc/meminfo | head Active(anon) increase. MemTotal: 1579941036 kB MemFree: 1445618500 kB MemAvailable: 1453013224 kB Buffers: 6516 kB Cached: 128653956 kB SwapCached: 0 kB Active: 118110812 kB Inactive: 11436620 kB Active(anon): 115345744 kB Inactive(anon): 945292 kB When the Active(anon) is 115345744 kB, insmod module triggers the ZONE_DMA32 watermark. perf record -e vmscan:mm_vmscan_lru_isolate -aR perf script isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=2 nr_skipped=2 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=0 nr_skipped=0 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=28835844 nr_skipped=28835844 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=28835844 nr_skipped=28835844 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=29 nr_skipped=29 nr_taken=0 lru=active_anon isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=0 nr_skipped=0 nr_taken=0 lru=active_anon See nr_scanned=28835844. 28835844 * 4k = 115343376KB approximately equal to 115345744 kB. If increase Active(anon) to 1000G then insmod module triggers the ZONE_DMA32 watermark. hard lockup will occur. In my device nr_scanned = 0000000003e3e937 when hard lockup. Convert to memory size 0x0000000003e3e937 * 4KB = 261072092 KB. [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53 ffffc90006fb7c30: 0000000000000020 0000000000000000 ffffc90006fb7c40: ffffc90006fb7d40 ffff88812cbd3000 ffffc90006fb7c50: ffffc90006fb7d30 0000000106fb7de8 ffffc90006fb7c60: ffffea04a2197008 ffffea0006ed4a48 ffffc90006fb7c70: 0000000000000000 0000000000000000 ffffc90006fb7c80: 0000000000000000 0000000000000000 ffffc90006fb7c90: 0000000000000000 0000000000000000 ffffc90006fb7ca0: 0000000000000000 0000000003e3e937 ffffc90006fb7cb0: 0000000000000000 0000000000000000 ffffc90006fb7cc0: 8d7c0b56b7874b00 ffff88812cbd3000 About the Fixes: Why did it take eight years to be discovered? The problem requires the following conditions to occur: 1. The device memory should be large enough. 2. Pages in the LRU(active_anon) list are mostly from the ZONE_NORMAL area. 3. The memory in ZONE_DMA32 needs to reach the watermark. If the memory is not large enough, or if the usage design of ZONE_DMA32 area memory is reasonable, this problem is difficult to detect. notes: The problem is most likely to occur in ZONE_DMA32 and ZONE_NORMAL, but other suitable scenarios may also trigger the problem. Link: https://lkml.kernel.org/r/20241119060842.274072-1-liuye@kylinos.cn Fixes: b2e18757f2c9 ("mm, vmscan: begin reclaiming pages on a per-node basis") Signed-off-by: liuye <liuye@kylinos.cn> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yang Shi <yang@os.amperecomputing.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Seiji Nishikawa
|
6aaced5abd |
mm: vmscan: account for free pages to prevent infinite Loop in throttle_direct_reclaim()
The task sometimes continues looping in throttle_direct_reclaim() because allow_direct_reclaim(pgdat) keeps returning false. #0 [ffff80002cb6f8d0] __switch_to at ffff8000080095ac #1 [ffff80002cb6f900] __schedule at ffff800008abbd1c #2 [ffff80002cb6f990] schedule at ffff800008abc50c #3 [ffff80002cb6f9b0] throttle_direct_reclaim at ffff800008273550 #4 [ffff80002cb6fa20] try_to_free_pages at ffff800008277b68 #5 [ffff80002cb6fae0] __alloc_pages_nodemask at ffff8000082c4660 #6 [ffff80002cb6fc50] alloc_pages_vma at ffff8000082e4a98 #7 [ffff80002cb6fca0] do_anonymous_page at ffff80000829f5a8 #8 [ffff80002cb6fce0] __handle_mm_fault at ffff8000082a5974 #9 [ffff80002cb6fd90] handle_mm_fault at ffff8000082a5bd4 At this point, the pgdat contains the following two zones: NODE: 4 ZONE: 0 ADDR: ffff00817fffe540 NAME: "DMA32" SIZE: 20480 MIN/LOW/HIGH: 11/28/45 VM_STAT: NR_FREE_PAGES: 359 NR_ZONE_INACTIVE_ANON: 18813 NR_ZONE_ACTIVE_ANON: 0 NR_ZONE_INACTIVE_FILE: 50 NR_ZONE_ACTIVE_FILE: 0 NR_ZONE_UNEVICTABLE: 0 NR_ZONE_WRITE_PENDING: 0 NR_MLOCK: 0 NR_BOUNCE: 0 NR_ZSPAGES: 0 NR_FREE_CMA_PAGES: 0 NODE: 4 ZONE: 1 ADDR: ffff00817fffec00 NAME: "Normal" SIZE: 8454144 PRESENT: 98304 MIN/LOW/HIGH: 68/166/264 VM_STAT: NR_FREE_PAGES: 146 NR_ZONE_INACTIVE_ANON: 94668 NR_ZONE_ACTIVE_ANON: 3 NR_ZONE_INACTIVE_FILE: 735 NR_ZONE_ACTIVE_FILE: 78 NR_ZONE_UNEVICTABLE: 0 NR_ZONE_WRITE_PENDING: 0 NR_MLOCK: 0 NR_BOUNCE: 0 NR_ZSPAGES: 0 NR_FREE_CMA_PAGES: 0 In allow_direct_reclaim(), while processing ZONE_DMA32, the sum of inactive/active file-backed pages calculated in zone_reclaimable_pages() based on the result of zone_page_state_snapshot() is zero. Additionally, since this system lacks swap, the calculation of inactive/ active anonymous pages is skipped. crash> p nr_swap_pages nr_swap_pages = $1937 = { counter = 0 } As a result, ZONE_DMA32 is deemed unreclaimable and skipped, moving on to the processing of the next zone, ZONE_NORMAL, despite ZONE_DMA32 having free pages significantly exceeding the high watermark. The problem is that the pgdat->kswapd_failures hasn't been incremented. crash> px ((struct pglist_data *) 0xffff00817fffe540)->kswapd_failures $1935 = 0x0 This is because the node deemed balanced. The node balancing logic in balance_pgdat() evaluates all zones collectively. If one or more zones (e.g., ZONE_DMA32) have enough free pages to meet their watermarks, the entire node is deemed balanced. This causes balance_pgdat() to exit early before incrementing the kswapd_failures, as it considers the overall memory state acceptable, even though some zones (like ZONE_NORMAL) remain under significant pressure. The patch ensures that zone_reclaimable_pages() includes free pages (NR_FREE_PAGES) in its calculation when no other reclaimable pages are available (e.g., file-backed or anonymous pages). This change prevents zones like ZONE_DMA32, which have sufficient free pages, from being mistakenly deemed unreclaimable. By doing so, the patch ensures proper node balancing, avoids masking pressure on other zones like ZONE_NORMAL, and prevents infinite loops in throttle_direct_reclaim() caused by allow_direct_reclaim(pgdat) repeatedly returning false. The kernel hangs due to a task stuck in throttle_direct_reclaim(), caused by a node being incorrectly deemed balanced despite pressure in certain zones, such as ZONE_NORMAL. This issue arises from zone_reclaimable_pages() returning 0 for zones without reclaimable file- backed or anonymous pages, causing zones like ZONE_DMA32 with sufficient free pages to be skipped. The lack of swap or reclaimable pages results in ZONE_DMA32 being ignored during reclaim, masking pressure in other zones. Consequently, pgdat->kswapd_failures remains 0 in balance_pgdat(), preventing fallback mechanisms in allow_direct_reclaim() from being triggered, leading to an infinite loop in throttle_direct_reclaim(). This patch modifies zone_reclaimable_pages() to account for free pages (NR_FREE_PAGES) when no other reclaimable pages exist. This ensures zones with sufficient free pages are not skipped, enabling proper balancing and reclaim behavior. [akpm@linux-foundation.org: coding-style cleanups] Link: https://lkml.kernel.org/r/20241130164346.436469-1-snishika@redhat.com Link: https://lkml.kernel.org/r/20241130161236.433747-2-snishika@redhat.com Fixes: 5a1c84b404a7 ("mm: remove reclaim and compaction retry approximations") Signed-off-by: Seiji Nishikawa <snishika@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zeng Jingxiang
|
1bc542c6a0 |
mm/vmscan: wake up flushers conditionally to avoid cgroup OOM
Commit 14aa8b2d5c2e ("mm/mglru: don't sync disk for each aging cycle") removed the opportunity to wake up flushers during the MGLRU page reclamation process can lead to an increased likelihood of triggering OOM when encountering many dirty pages during reclamation on MGLRU. This leads to premature OOM if there are too many dirty pages in cgroup: Killed dd invoked oom-killer: gfp_mask=0x101cca(GFP_HIGHUSER_MOVABLE|__GFP_WRITE), order=0, oom_score_adj=0 Call Trace: <TASK> dump_stack_lvl+0x5f/0x80 dump_stack+0x14/0x20 dump_header+0x46/0x1b0 oom_kill_process+0x104/0x220 out_of_memory+0x112/0x5a0 mem_cgroup_out_of_memory+0x13b/0x150 try_charge_memcg+0x44f/0x5c0 charge_memcg+0x34/0x50 __mem_cgroup_charge+0x31/0x90 filemap_add_folio+0x4b/0xf0 __filemap_get_folio+0x1a4/0x5b0 ? srso_return_thunk+0x5/0x5f ? __block_commit_write+0x82/0xb0 ext4_da_write_begin+0xe5/0x270 generic_perform_write+0x134/0x2b0 ext4_buffered_write_iter+0x57/0xd0 ext4_file_write_iter+0x76/0x7d0 ? selinux_file_permission+0x119/0x150 ? srso_return_thunk+0x5/0x5f ? srso_return_thunk+0x5/0x5f vfs_write+0x30c/0x440 ksys_write+0x65/0xe0 __x64_sys_write+0x1e/0x30 x64_sys_call+0x11c2/0x1d50 do_syscall_64+0x47/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e memory: usage 308224kB, limit 308224kB, failcnt 2589 swap: usage 0kB, limit 9007199254740988kB, failcnt 0 ... file_dirty 303247360 file_writeback 0 ... oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=test, mems_allowed=0,oom_memcg=/test,task_memcg=/test,task=dd,pid=4404,uid=0 Memory cgroup out of memory: Killed process 4404 (dd) total-vm:10512kB, anon-rss:1152kB, file-rss:1824kB, shmem-rss:0kB, UID:0 pgtables:76kB oom_score_adj:0 The flusher wake up was removed to decrease SSD wearing, but if we are seeing all dirty folios at the tail of an LRU, not waking up the flusher could lead to thrashing easily. So wake it up when a memcg is about to OOM due to dirty caches. I did run the build kernel test[1] on V6, with -j16 1G memcg on my local branch: Without the patch(10 times): user 1449.394 system 368.78 372.58 363.03 362.31 360.84 372.70 368.72 364.94 373.51 366.58 (avg 367.399) real 164.883 With the V6 patch(10 times): user 1447.525 system 360.87 360.63 372.39 364.09 368.49 365.15 359.93 362.04 359.72 354.60 (avg 362.79) real 164.514 Test results show that this patch has about 1% performance improvement, which should be caused by noise. Link: https://lkml.kernel.org/r/20241026115714.1437435-1-jingxiangzeng.cas@gmail.com Link: https://lore.kernel.org/all/CACePvbV4L-gRN9UKKuUnksfVJjOTq_5Sti2-e=pb_w51kucLKQ@mail.gmail.com/ [1] Fixes: 14aa8b2d5c2e ("mm/mglru: don't sync disk for each aging cycle") Suggested-by: Wei Xu <weixugc@google.com> Signed-off-by: Zeng Jingxiang <linuszeng@tencent.com> Signed-off-by: Kairui Song <kasong@tencent.com> Reviewed-by: Wei Xu <weixugc@google.com> Tested-by: Chris Li <chrisl@kernel.org> Cc: T.J. Mercier <tjmercier@google.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
cf4a65539c |
memcg-v1: no need for memcg locking for MGLRU
While updating the generation of the folios, MGLRU requires that the folio's memcg association remains stable. With the charge migration deprecated, there is no need for MGLRU to acquire locks to keep the folio and memcg association stable. [yuzhao@google.com: remove !rcu_read_lock_held() assertion] Link: https://lkml.kernel.org/r/ZykEtcHrQRq-KrBC@google.com Link: https://syzkaller.appspot.com/bug?extid=24f45b8beab9788e467e Link: https://lore.kernel.org/lkml/67294349.050a0220.701a.0010.GAE@google.com/ [akpm@linux-foundation.org: remove now-unused local] [shakeel.butt@linux.dev: folio_rcu() fixup, per Yu Zhao] Link: https://lkml.kernel.org/r/iwmabnye3nl4merealrawt3bdvfii2pwavwrddrqpraoveet7h@ezrsdhjwwej7 Link: https://lkml.kernel.org/r/20241025012304.2473312-6-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wei Xu
|
f1001f3d3b |
mm/mglru: reset page lru tier bits when activating
When a folio is activated, lru_gen_add_folio() moves the folio to the youngest generation. But unlike folio_update_gen()/folio_inc_gen(), lru_gen_add_folio() doesn't reset the folio lru tier bits (LRU_REFS_MASK | LRU_REFS_FLAGS). This inconsistency can affect how pages are aged via folio_mark_accessed() (e.g. fd accesses), though no user visible impact related to this has been detected yet. Note that lru_gen_add_folio() cannot clear PG_workingset if the activation is due to workingset refault, otherwise PSI accounting will be skipped. So fix lru_gen_add_folio() to clear the lru tier bits other than PG_workingset when activating a folio, and also clear all the lru tier bits when a folio is activated via folio_activate() in lru_gen_look_around(). Link: https://lkml.kernel.org/r/20241017181528.3358821-1-weixugc@google.com Fixes: 018ee47f1489 ("mm: multi-gen LRU: exploit locality in rmap") Signed-off-by: Wei Xu <weixugc@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Jan Alexander Steffens <heftig@archlinux.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Jaewon Kim
|
1f2d03cc53 |
vmscan: add a vmscan event for reclaim_pages
reclaim_folio_list uses a dummy reclaim_stat and is not being used. To know the memory stat, add a new trace event. This is useful how how many pages are not reclaimed or why. This is an example: mm_vmscan_reclaim_pages: nid=0 nr_scanned=112 nr_reclaimed=112 nr_dirty=0 nr_writeback=0 nr_congested=0 nr_immediate=0 nr_activate_anon=0 nr_activate_file=0 nr_ref_keep=0 nr_unmap_fail=0 Currently reclaim_folio_list is only called by reclaim_pages, and reclaim_pages is used by damon and madvise. In the latest Android, reclaim_pages is also used by shmem to reclaim all pages in a address_space. [jaewon31.kim@samsung.com: use sc.nr_scanned rather than new counting] Link: https://lkml.kernel.org/r/20241016143227.961162-1-jaewon31.kim@samsung.com Link: https://lkml.kernel.org/r/20241011124928.1224813-1-jaewon31.kim@samsung.com Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jaewon Kim <jaewon31.kim@samsung.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kanchana P Sridhar
|
e26060d1fb |
mm: swap: make some count_mthp_stat() call-sites be THP-agnostic.
In commit 246d3aa3e531 ("mm: cleanup count_mthp_stat() definition"), Ryan Roberts has pointed out the merits of mm code that does not require THP, to be compile-able without requiring THP ifdefs. As a step in that direction, he has moved count_mthp_stat() to be always defined, resolving to a no-op if THP is not defined. Barry Song referred me to Ryan's commit when I was working on the "mm: zswap swap-out of large folios" patch-series [1]. This patch propagates the benefits of the above change to page_io.c and vmscan.c. As a result, there is one less reason to have the ifdef THP in these code sections. [1]: https://patchwork.kernel.org/project/linux-mm/list/?series=894347 Link: https://lkml.kernel.org/r/20241002225822.9006-1-kanchana.p.sridhar@intel.com Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Cc: Chengming Zhou <chengming.zhou@linux.dev> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Wajdi Feghali <wajdi.k.feghali@intel.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Barry Song <21cnbao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Qi Zheng
|
2441774f2d |
mm: multi-gen LRU: walk_pte_range() use pte_offset_map_rw_nolock()
In walk_pte_range(), we may modify the pte entry after holding the ptl, so convert it to using pte_offset_map_rw_nolock(). At this time, the pte_same() check is not performed after the ptl held, so we should get pmdval and do pmd_same() check to ensure the stability of pmd entry. Link: https://lkml.kernel.org/r/7e9c194a5efacc9609cfd31abb9c7df88b53b530.1727332572.git.zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Acked-by: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zhiguo Jiang
|
bbc251f30e |
mm: fix shrink nr.unqueued_dirty counter issue
It is needed to ensure sc->nr.unqueued_dirty > 0, which can avoid setting PGDAT_DIRTY flag when sc->nr.unqueued_dirty and sc->nr.file_taken are both zero. Link: https://lkml.kernel.org/r/20240112012353.1387-1-justinjiang@vivo.com Signed-off-by: Zhiguo Jiang <justinjiang@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Hugh Dickins
|
f8f931bba0 |
mm/thp: fix deferred split unqueue naming and locking
Recent changes are putting more pressure on THP deferred split queues: under load revealing long-standing races, causing list_del corruptions, "Bad page state"s and worse (I keep BUGs in both of those, so usually don't get to see how badly they end up without). The relevant recent changes being 6.8's mTHP, 6.10's mTHP swapout, and 6.12's mTHP swapin, improved swap allocation, and underused THP splitting. Before fixing locking: rename misleading folio_undo_large_rmappable(), which does not undo large_rmappable, to folio_unqueue_deferred_split(), which is what it does. But that and its out-of-line __callee are mm internals of very limited usability: add comment and WARN_ON_ONCEs to check usage; and return a bool to say if a deferred split was unqueued, which can then be used in WARN_ON_ONCEs around safety checks (sparing callers the arcane conditionals in __folio_unqueue_deferred_split()). Just omit the folio_unqueue_deferred_split() from free_unref_folios(), all of whose callers now call it beforehand (and if any forget then bad_page() will tell) - except for its caller put_pages_list(), which itself no longer has any callers (and will be deleted separately). Swapout: mem_cgroup_swapout() has been resetting folio->memcg_data 0 without checking and unqueueing a THP folio from deferred split list; which is unfortunate, since the split_queue_lock depends on the memcg (when memcg is enabled); so swapout has been unqueueing such THPs later, when freeing the folio, using the pgdat's lock instead: potentially corrupting the memcg's list. __remove_mapping() has frozen refcount to 0 here, so no problem with calling folio_unqueue_deferred_split() before resetting memcg_data. That goes back to 5.4 commit 87eaceb3faa5 ("mm: thp: make deferred split shrinker memcg aware"): which included a check on swapcache before adding to deferred queue, but no check on deferred queue before adding THP to swapcache. That worked fine with the usual sequence of events in reclaim (though there were a couple of rare ways in which a THP on deferred queue could have been swapped out), but 6.12 commit dafff3f4c850 ("mm: split underused THPs") avoids splitting underused THPs in reclaim, which makes swapcache THPs on deferred queue commonplace. Keep the check on swapcache before adding to deferred queue? Yes: it is no longer essential, but preserves the existing behaviour, and is likely to be a worthwhile optimization (vmstat showed much more traffic on the queue under swapping load if the check was removed); update its comment. Memcg-v1 move (deprecated): mem_cgroup_move_account() has been changing folio->memcg_data without checking and unqueueing a THP folio from the deferred list, sometimes corrupting "from" memcg's list, like swapout. Refcount is non-zero here, so folio_unqueue_deferred_split() can only be used in a WARN_ON_ONCE to validate the fix, which must be done earlier: mem_cgroup_move_charge_pte_range() first try to split the THP (splitting of course unqueues), or skip it if that fails. Not ideal, but moving charge has been requested, and khugepaged should repair the THP later: nobody wants new custom unqueueing code just for this deprecated case. The 87eaceb3faa5 commit did have the code to move from one deferred list to another (but was not conscious of its unsafety while refcount non-0); but that was removed by 5.6 commit fac0516b5534 ("mm: thp: don't need care deferred split queue in memcg charge move path"), which argued that the existence of a PMD mapping guarantees that the THP cannot be on a deferred list. As above, false in rare cases, and now commonly false. Backport to 6.11 should be straightforward. Earlier backports must take care that other _deferred_list fixes and dependencies are included. There is not a strong case for backports, but they can fix cornercases. Link: https://lkml.kernel.org/r/8dc111ae-f6db-2da7-b25c-7a20b1effe3b@google.com Fixes: 87eaceb3faa5 ("mm: thp: make deferred split shrinker memcg aware") Fixes: dafff3f4c850 ("mm: split underused THPs") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <baohua@kernel.org> Cc: Chris Li <chrisl@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
1d4832becd |
mm: multi-gen LRU: use {ptep,pmdp}_clear_young_notify()
When the MM_WALK capability is enabled, memory that is mostly accessed by a VM appears younger than it really is, therefore this memory will be less likely to be evicted. Therefore, the presence of a running VM can significantly increase swap-outs for non-VM memory, regressing the performance for the rest of the system. Fix this regression by always calling {ptep,pmdp}_clear_young_notify() whenever we clear the young bits on PMDs/PTEs. [jthoughton@google.com: fix link-time error] Link: https://lkml.kernel.org/r/20241019012940.3656292-3-jthoughton@google.com Fixes: bd74fdaea146 ("mm: multi-gen LRU: support page table walks") Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: James Houghton <jthoughton@google.com> Reported-by: David Stevens <stevensd@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Matlack <dmatlack@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Wei Xu <weixugc@google.com> Cc: <stable@vger.kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
ddd6d8e975 |
mm: multi-gen LRU: remove MM_LEAF_OLD and MM_NONLEAF_TOTAL stats
Patch series "mm: multi-gen LRU: Have secondary MMUs participate in MM_WALK". Today, the MM_WALK capability causes MGLRU to clear the young bit from PMDs and PTEs during the page table walk before eviction, but MGLRU does not call the clear_young() MMU notifier in this case. By not calling this notifier, the MM walk takes less time/CPU, but it causes pages that are accessed mostly through KVM / secondary MMUs to appear younger than they should be. We do call the clear_young() notifier today, but only when attempting to evict the page, so we end up clearing young/accessed information less frequently for secondary MMUs than for mm PTEs, and therefore they appear younger and are less likely to be evicted. Therefore, memory that is *not* being accessed mostly by KVM will be evicted *more* frequently, worsening performance. ChromeOS observed a tab-open latency regression when enabling MGLRU with a setup that involved running a VM: Tab-open latency histogram (ms) Version p50 mean p95 p99 max base 1315 1198 2347 3454 10319 mglru 2559 1311 7399 12060 43758 fix 1119 926 2470 4211 6947 This series replaces the final non-selftest patchs from this series[1], which introduced a similar change (and a new MMU notifier) with KVM optimizations. I'll send a separate series (to Sean and Paolo) for the KVM optimizations. This series also makes proactive reclaim with MGLRU possible for KVM memory. I have verified that this functions correctly with the selftest from [1], but given that that test is a KVM selftest, I'll send it with the rest of the KVM optimizations later. Andrew, let me know if you'd like to take the test now anyway. [1]: https://lore.kernel.org/linux-mm/20240926013506.860253-18-jthoughton@google.com/ This patch (of 2): The removed stats, MM_LEAF_OLD and MM_NONLEAF_TOTAL, are not very helpful and become more complicated to properly compute when adding test/clear_young() notifiers in MGLRU's mm walk. Link: https://lkml.kernel.org/r/20241019012940.3656292-1-jthoughton@google.com Link: https://lkml.kernel.org/r/20241019012940.3656292-2-jthoughton@google.com Fixes: bd74fdaea146 ("mm: multi-gen LRU: support page table walks") Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: James Houghton <jthoughton@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Matlack <dmatlack@google.com> Cc: David Rientjes <rientjes@google.com> Cc: David Stevens <stevensd@google.com> Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Wei Xu <weixugc@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Wei Xu
|
b130ba4a62 |
mm/mglru: only clear kswapd_failures if reclaimable
lru_gen_shrink_node() unconditionally clears kswapd_failures, which can prevent kswapd from sleeping and cause 100% kswapd cpu usage even when kswapd repeatedly fails to make progress in reclaim. Only clear kswap_failures in lru_gen_shrink_node() if reclaim makes some progress, similar to shrink_node(). I happened to run into this problem in one of my tests recently. It requires a combination of several conditions: The allocator needs to allocate a right amount of pages such that it can wake up kswapd without itself being OOM killed; there is no memory for kswapd to reclaim (My test disables swap and cleans page cache first); no other process frees enough memory at the same time. Link: https://lkml.kernel.org/r/20241014221211.832591-1-weixugc@google.com Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists") Signed-off-by: Wei Xu <weixugc@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Jan Alexander Steffens <heftig@archlinux.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
617a814f14 |
ALong with the usual shower of singleton patches, notable patch series in
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ... |
||
Usama Arif
|
8422acdc97 |
mm: introduce a pageflag for partially mapped folios
Currently folio->_deferred_list is used to keep track of partially_mapped folios that are going to be split under memory pressure. In the next patch, all THPs that are faulted in and collapsed by khugepaged are also going to be tracked using _deferred_list. This patch introduces a pageflag to be able to distinguish between partially mapped folios and others in the deferred_list at split time in deferred_split_scan. Its needed as __folio_remove_rmap decrements _mapcount, _large_mapcount and _entire_mapcount, hence it won't be possible to distinguish between partially mapped folios and others in deferred_split_scan. Eventhough it introduces an extra flag to track if the folio is partially mapped, there is no functional change intended with this patch and the flag is not useful in this patch itself, it will become useful in the next patch when _deferred_list has non partially mapped folios. Link: https://lkml.kernel.org/r/20240830100438.3623486-5-usamaarif642@gmail.com Signed-off-by: Usama Arif <usamaarif642@gmail.com> Cc: Alexander Zhu <alexlzhu@fb.com> Cc: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kairui Song <ryncsn@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Nico Pache <npache@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Shuang Zhai <zhais@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Shuang Zhai <szhai2@cs.rochester.edu> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Chris Li
|
0885ef4705 |
mm: vmscan.c: fix OOM on swap stress test
I found a regression on mm-unstable during my swap stress test, using tmpfs to compile linux. The test OOM very soon after the make spawns many cc processes. It bisects down to this change: 33dfe9204f29b415bbc0abb1a50642d1ba94f5e9 (mm/gup: clear the LRU flag of a page before adding to LRU batch) Yu Zhao propose the fix: "I think this is one of the potential side effects -- Huge mentioned earlier about isolate_lru_folios():" I test that with it the swap stress test no longer OOM. Link: https://lore.kernel.org/r/CAOUHufYi9h0kz5uW3LHHS3ZrVwEq-kKp8S6N-MZUmErNAXoXmw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20240905-lru-flag-v2-1-8a2d9046c594@kernel.org Fixes: 33dfe9204f29 ("mm/gup: clear the LRU flag of a page before adding to LRU batch") Signed-off-by: Chris Li <chrisl@kernel.org> Suggested-by: Yu Zhao <yuzhao@google.com> Suggested-by: Hugh Dickins <hughd@google.com> Closes: https://lore.kernel.org/all/CAF8kJuNP5iTj2p07QgHSGOJsiUfYpJ2f4R1Q5-3BN9JiD9W_KA@mail.gmail.com/ Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kaiyang Zhao
|
f77f0c7514 |
mm,memcg: provide per-cgroup counters for NUMA balancing operations
The ability to observe the demotion and promotion decisions made by the kernel on a per-cgroup basis is important for monitoring and tuning containerized workloads on machines equipped with tiered memory. Different containers in the system may experience drastically different memory tiering actions that cannot be distinguished from the global counters alone. For example, a container running a workload that has a much hotter memory accesses will likely see more promotions and fewer demotions, potentially depriving a colocated container of top tier memory to such an extent that its performance degrades unacceptably. For another example, some containers may exhibit longer periods between data reuse, causing much more numa_hint_faults than numa_pages_migrated. In this case, tuning hot_threshold_ms may be appropriate, but the signal can easily be lost if only global counters are available. In the long term, we hope to introduce per-cgroup control of promotion and demotion actions to implement memory placement policies in tiering. This patch set adds seven counters to memory.stat in a cgroup: numa_pages_migrated, numa_pte_updates, numa_hint_faults, pgdemote_kswapd, pgdemote_khugepaged, pgdemote_direct and pgpromote_success. pgdemote_* and pgpromote_success are also available in memory.numa_stat. count_memcg_events_mm() is added to count multiple event occurrences at once, and get_mem_cgroup_from_folio() is added because we need to get a reference to the memcg of a folio before it's migrated to track numa_pages_migrated. The accounting of PGDEMOTE_* is moved to shrink_inactive_list() before being changed to per-cgroup. [kaiyang2@cs.cmu.edu: add documentation of the memcg counters in cgroup-v2.rst] Link: https://lkml.kernel.org/r/20240814235122.252309-1-kaiyang2@cs.cmu.edu Link: https://lkml.kernel.org/r/20240814174227.30639-1-kaiyang2@cs.cmu.edu Signed-off-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baolin Wang
|
809bc86517 |
mm: shmem: support large folio swap out
Shmem will support large folio allocation [1] [2] to get a better performance, however, the memory reclaim still splits the precious large folios when trying to swap out shmem, which may lead to the memory fragmentation issue and can not take advantage of the large folio for shmeme. Moreover, the swap code already supports for swapping out large folio without split, hence this patch set supports the large folio swap out for shmem. Note the i915_gem_shmem driver still need to be split when swapping, thus add a new flag 'split_large_folio' for writeback_control to indicate spliting the large folio. [1] https://lore.kernel.org/all/cover.1717495894.git.baolin.wang@linux.alibaba.com/ [2] https://lore.kernel.org/all/20240515055719.32577-1-da.gomez@samsung.com/ [hughd@google.com: shmem_writepage() split folio at EOF before swapout] Link: https://lkml.kernel.org/r/aef55f8d-6040-692d-65e3-16150cce4440@google.com [baolin.wang@linux.alibaba.com: remove the wbc->split_large_folio per Hugh] Link: https://lkml.kernel.org/r/1236a002daa301b3b9ba73d6c0fab348427cf295.1724833399.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/d80c21abd20e1b0f5ca66b330f074060fb2f082d.1723434324.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Barry Song <baohua@kernel.org> Cc: Chris Li <chrisl@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
90a6f2a8f4 |
memcg: use ratelimited stats flush in the reclaim
The Meta prod is seeing large amount of stalls in memcg stats flush from the memcg reclaim code path. At the moment, this specific callsite is doing a synchronous memcg stats flush. The rstat flush is an expensive and time consuming operation, so concurrent relaimers will busywait on the lock potentially for a long time. Actually this issue is not unique to Meta and has been observed by Cloudflare [1] as well. For the Cloudflare case, the stalls were due to contention between kswapd threads running on their 8 numa node machines which does not make sense as rstat flush is global and flush from one kswapd thread should be sufficient for all. Simply replace the synchronous flush with the ratelimited one. One may raise a concern on potentially using 2 sec stale (at worst) stats for heuristics like desirable inactive:active ratio and preferring inactive file pages over anon pages but these specific heuristics do not require very precise stats and also are ignored under severe memory pressure. More specifically for this code path, the stats are needed for two specific heuristics: 1. Deactivate LRUs 2. Cache trim mode The deactivate LRUs heuristic is to maintain a desirable inactive:active ratio of the LRUs. The specific stats needed are WORKINGSET_ACTIVATE* and the hierarchical LRU size. The WORKINGSET_ACTIVATE* is needed to check if there is a refault since last snapshot and the LRU size are needed for the desirable ratio between inactive and active LRUs. See the table below on how the desirable ratio is calculated. /* total target max * memory ratio inactive * ------------------------------------- * 10MB 1 5MB * 100MB 1 50MB * 1GB 3 250MB * 10GB 10 0.9GB * 100GB 31 3GB * 1TB 101 10GB * 10TB 320 32GB */ The desirable ratio only changes at the boundary of 1 GiB, 10 GiB, 100 GiB, 1 TiB and 10 TiB. There is no need for the precise and accurate LRU size information to calculate this ratio. In addition, if deactivation is skipped for some LRU, the kernel will force deactive on the severe memory pressure situation. For the cache trim mode, inactive file LRU size is read and the kernel scales it down based on the reclaim iteration (file >> sc->priority) and only checks if it is zero or not. Again precise information is not needed. This patch has been running on Meta fleet for several months and we have not observed any issues. Please note that MGLRU is not impacted by this issue at all as it avoids rstat flushing completely. Link: https://lore.kernel.org/all/6ee2518b-81dd-4082-bdf5-322883895ffc@kernel.org [1] Link: https://lkml.kernel.org/r/20240813215358.2259750-1-shakeel.butt@linux.dev Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Jesper Dangaard Brouer <hawk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yuanchu Xie
|
bceeeaed48 |
mm: multi-gen LRU: ignore non-leaf pmd_young for force_scan=true
When non-leaf pmd accessed bits are available, MGLRU page table walks can clear the non-leaf pmd accessed bit and ignore the accessed bit on the pte if it's on a different node, skipping a generation update as well. If another scan occurs on the same node as said skipped pte. The non-leaf pmd accessed bit might remain cleared and the pte accessed bits won't be checked. While this is sufficient for reclaim-driven aging, where the goal is to select a reasonably cold page, the access can be missed when aging proactively for workingset estimation of a node/memcg. In more detail, get_pfn_folio returns NULL if the folio's nid != node under scanning, so the page table walk skips processing of said pte. Now the pmd_young flag on this pmd is cleared, and if none of the pte's are accessed before another scan occurs on the folio's node, the pmd_young check fails and the pte accessed bit is skipped. Since force_scan disables various other optimizations, we check force_scan to ignore the non-leaf pmd accessed bit. Link: https://lkml.kernel.org/r/20240813163759.742675-1-yuanchu@google.com Signed-off-by: Yuanchu Xie <yuanchu@google.com> Acked-by: Yu Zhao <yuzhao@google.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Lance Yang <ioworker0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
8710f6ed34 |
mm/huge_memory: convert split_huge_pages_pid() from follow_page() to folio_walk
Let's remove yet another follow_page() user. Note that we have to do the split without holding the PTL, after folio_walk_end(). We don't care about losing the secretmem check in follow_page(). [david@redhat.com: teach can_split_folio() that we are not holding an additional reference] Link: https://lkml.kernel.org/r/c75d1c6c-8ea6-424f-853c-1ccda6c77ba2@redhat.com Link: https://lkml.kernel.org/r/20240802155524.517137-8-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Janosch Frank <frankja@linux.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kaiyang Zhao
|
03790c51a4 |
mm: create promo_wmark_pages and clean up open-coded sites
Patch series "mm: print the promo watermark in zoneinfo", v2. This patch (of 2): Define promo_wmark_pages and convert current call sites of wmark_pages with fixed WMARK_PROMO to using it instead. Link: https://lkml.kernel.org/r/20240801232548.36604-1-kaiyang2@cs.cmu.edu Link: https://lkml.kernel.org/r/20240801232548.36604-2-kaiyang2@cs.cmu.edu Signed-off-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zhiguo Jiang
|
c495b97624 |
mm: shrink skip folio mapped by an exiting process
The releasing process of the non-shared anonymous folio mapped solely by an exiting process may go through two flows: 1) the anonymous folio is firstly is swaped-out into swapspace and transformed into a swp_entry in shrink_folio_list; 2) then the swp_entry is released in the process exiting flow. This will result in the high cpu load of releasing a non-shared anonymous folio mapped solely by an exiting process. When the low system memory and the exiting process exist at the same time, it will be likely to happen, because the non-shared anonymous folio mapped solely by an exiting process may be reclaimed by shrink_folio_list. This patch is that shrink skips the non-shared anonymous folio solely mapped by an exting process and this folio is only released directly in the process exiting flow, which will save swap-out time and alleviate the load of the process exiting. Barry provided some effectiveness testing in [1]. "I observed that this patch effectively skipped 6114 folios (either 4KB or 64KB mTHP), potentially reducing the swap-out by up to 92MB (97,300,480 bytes) during the process exit. The working set size is 256MB." Link: https://lkml.kernel.org/r/20240710083641.546-1-justinjiang@vivo.com Link: https://lore.kernel.org/linux-mm/20240710033212.36497-1-21cnbao@gmail.com/ [1] Signed-off-by: Zhiguo Jiang <justinjiang@vivo.com> Acked-by: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Cassell
|
5fe690a594 |
mm: add node_reclaim successes to VM event counters
/proc/vmstat currently shows the number of node_reclaim() failures when vm.zone_reclaim_mode is set appropriately. It would be convenient to have the number of successes right next to zone_reclaim_failed (similar to compaction and migration). While just a trivially addition to the vmstat file. It was helpful during benchmarking to not have to probe node_reclaim() to observe the success/failure ratio. Link: https://lkml.kernel.org/r/20240722171316.7517-1-mcassell411@gmail.com Signed-off-by: Matthew Cassell <mcassell411@gmail.com> Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Li Zhijian <lizhijian@fujitsu.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Usama Arif
|
bfe0857c20 |
Revert "mm: skip CMA pages when they are not available"
This reverts commit 5da226dbfce3 ("mm: skip CMA pages when they are not available") and b7108d66318a ("Multi-gen LRU: skip CMA pages when they are not eligible"). lruvec->lru_lock is highly contended and is held when calling isolate_lru_folios. If the lru has a large number of CMA folios consecutively, while the allocation type requested is not MIGRATE_MOVABLE, isolate_lru_folios can hold the lock for a very long time while it skips those. For FIO workload, ~150million order=0 folios were skipped to isolate a few ZONE_DMA folios [1]. This can cause lockups [1] and high memory pressure for extended periods of time [2]. Remove skipping CMA for MGLRU as well, as it was introduced in sort_folio for the same resaon as 5da226dbfce3a2f44978c2c7cf88166e69a6788b. [1] https://lore.kernel.org/all/CAOUHufbkhMZYz20aM_3rHZ3OcK4m2puji2FGpUpn_-DevGk3Kg@mail.gmail.com/ [2] https://lore.kernel.org/all/ZrssOrcJIDy8hacI@gmail.com/ [usamaarif642@gmail.com: also revert b7108d66318a, per Johannes] Link: https://lkml.kernel.org/r/9060a32d-b2d7-48c0-8626-1db535653c54@gmail.com Link: https://lkml.kernel.org/r/357ac325-4c61-497a-92a3-bdbd230d5ec9@gmail.com Link: https://lkml.kernel.org/r/9060a32d-b2d7-48c0-8626-1db535653c54@gmail.com Fixes: 5da226dbfce3 ("mm: skip CMA pages when they are not available") Signed-off-by: Usama Arif <usamaarif642@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Bharata B Rao <bharata@amd.com> Cc: Breno Leitao <leitao@debian.org> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Cc: Zhaoyang Huang <huangzhaoyang@gmail.com> Cc: Zhaoyang Huang <zhaoyang.huang@unisoc.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
7a3fad30fd |
Random number generator updates for Linux 6.11-rc1.
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmaarzgACgkQSfxwEqXe A66ZWBAAlhXx8bve0uKlDRK8fffWHgruho/fOY4lZJ137AKwA9JCtmOyqdfL4Dmk VxFe7pEQJlQhcA/6kH54uO7SBXwfKlKZJth6SYnaCRMUIbFifHjjIQ0QqldjEKi0 rP90Hu4FVsbwQC7u9i9lQj9n2P36zb6pn83BzpZQ/2PtoVCSCrdSJUe0Rxa3H3GN 0+nNkDSXQt5otCByLaeE3x7KJgXLWL9+G2eFSFLTZ8rSVfMx1CdOIAG37WlLGdWm BaFYPDKMyBTVvVJBNgAe9YSqtrsZ5nlmLz+Z9wAe/hTL7RlL03kWUu34/Udcpull zzMDH0WMntiGK3eFQ2gOYSWqypvAjwHgn3BzqNmjUb69+89mZsdU1slcvnxWsUwU D3vphrscaqarF629tfsXti3jc5PoXwUTjROZVcCyeFPBhyAZgzK8xUvPpJO+RT+K EuUABob9cpA6FCpW/QeolDmMDhXlNT8QgsZu1juokZac2xP3Ly3REyEvT7HLbU2W ZJjbEqm1ppp3RmGELUOJbyhwsLrnbt+OMDO7iEWoG8aSFK4diBK/ZM6WvLMkr8Oi 7ioXGIsYkCy3c47wpZKTrAapOPJp5keqNAiHSEbXw8mozp6429QAEZxNOcczgHKC Ea2JzRkctqutcIT+Slw/uUe//i1iSsIHXbE81fp5udcQTJcUByo= =P8aI -----END PGP SIGNATURE----- Merge tag 'random-6.11-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: "This adds getrandom() support to the vDSO. First, it adds a new kind of mapping to mmap(2), MAP_DROPPABLE, which lets the kernel zero out pages anytime under memory pressure, which enables allocating memory that never gets swapped to disk but also doesn't count as being mlocked. Then, the vDSO implementation of getrandom() is introduced in a generic manner and hooked into random.c. Next, this is implemented on x86. (Also, though it's not ready for this pull, somebody has begun an arm64 implementation already) Finally, two vDSO selftests are added. There are also two housekeeping cleanup commits" * tag 'random-6.11-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: MAINTAINERS: add random.h headers to RNG subsection random: note that RNDGETPOOL was removed in 2.6.9-rc2 selftests/vDSO: add tests for vgetrandom x86: vdso: Wire up getrandom() vDSO implementation random: introduce generic vDSO getrandom() implementation mm: add MAP_DROPPABLE for designating always lazily freeable mappings |
||
Jason A. Donenfeld
|
9651fcedf7 |
mm: add MAP_DROPPABLE for designating always lazily freeable mappings
The vDSO getrandom() implementation works with a buffer allocated with a new system call that has certain requirements: - It shouldn't be written to core dumps. * Easy: VM_DONTDUMP. - It should be zeroed on fork. * Easy: VM_WIPEONFORK. - It shouldn't be written to swap. * Uh-oh: mlock is rlimited. * Uh-oh: mlock isn't inherited by forks. - It shouldn't reserve actual memory, but it also shouldn't crash when page faulting in memory if none is available * Uh-oh: VM_NORESERVE means segfaults. It turns out that the vDSO getrandom() function has three really nice characteristics that we can exploit to solve this problem: 1) Due to being wiped during fork(), the vDSO code is already robust to having the contents of the pages it reads zeroed out midway through the function's execution. 2) In the absolute worst case of whatever contingency we're coding for, we have the option to fallback to the getrandom() syscall, and everything is fine. 3) The buffers the function uses are only ever useful for a maximum of 60 seconds -- a sort of cache, rather than a long term allocation. These characteristics mean that we can introduce VM_DROPPABLE, which has the following semantics: a) It never is written out to swap. b) Under memory pressure, mm can just drop the pages (so that they're zero when read back again). c) It is inherited by fork. d) It doesn't count against the mlock budget, since nothing is locked. e) If there's not enough memory to service a page fault, it's not fatal, and no signal is sent. This way, allocations used by vDSO getrandom() can use: VM_DROPPABLE | VM_DONTDUMP | VM_WIPEONFORK | VM_NORESERVE And there will be no problem with OOMing, crashing on overcommitment, using memory when not in use, not wiping on fork(), coredumps, or writing out to swap. In order to let vDSO getrandom() use this, expose these via mmap(2) as MAP_DROPPABLE. Note that this involves removing the MADV_FREE special case from sort_folio(), which according to Yu Zhao is unnecessary and will simply result in an extra call to shrink_folio_list() in the worst case. The chunk removed reenables the swapbacked flag, which we don't want for VM_DROPPABLE, and we can't conditionalize it here because there isn't a vma reference available. Finally, the provided self test ensures that this is working as desired. Cc: linux-mm@kvack.org Acked-by: David Hildenbrand <david@redhat.com> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
Yu Zhao
|
30d77b7eef |
mm/mglru: fix ineffective protection calculation
mem_cgroup_calculate_protection() is not stateless and should only be used as part of a top-down tree traversal. shrink_one() traverses the per-node memcg LRU instead of the root_mem_cgroup tree, and therefore it should not call mem_cgroup_calculate_protection(). The existing misuse in shrink_one() can cause ineffective protection of sub-trees that are grandchildren of root_mem_cgroup. Fix it by reusing lru_gen_age_node(), which already traverses the root_mem_cgroup tree, to calculate the protection. Previously lru_gen_age_node() opportunistically skips the first pass, i.e., when scan_control->priority is DEF_PRIORITY. On the second pass, lruvec_is_sizable() uses appropriate scan_control->priority, set by set_initial_priority() from lru_gen_shrink_node(), to decide whether a memcg is too small to reclaim from. Now lru_gen_age_node() unconditionally traverses the root_mem_cgroup tree. So it should call set_initial_priority() upfront, to make sure lruvec_is_sizable() uses appropriate scan_control->priority on the first pass. Otherwise, lruvec_is_reclaimable() can return false negatives and result in premature OOM kills when min_ttl_ms is used. Link: https://lkml.kernel.org/r/20240712232956.1427127-1-yuzhao@google.com Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists") Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: T.J. Mercier <tjmercier@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
3f74e6bd3b |
mm/mglru: fix overshooting shrinker memory
set_initial_priority() tries to jump-start global reclaim by estimating the priority based on cold/hot LRU pages. The estimation does not account for shrinker objects, and it cannot do so because their sizes can be in different units other than page. If shrinker objects are the majority, e.g., on TrueNAS SCALE 24.04.0 where ZFS ARC can use almost all system memory, set_initial_priority() can vastly underestimate how much memory ARC shrinker can evict and assign extreme low values to scan_control->priority, resulting in overshoots of shrinker objects. To reproduce the problem, using TrueNAS SCALE 24.04.0 with 32GB DRAM, a test ZFS pool and the following commands: fio --name=mglru.file --numjobs=36 --ioengine=io_uring \ --directory=/root/test-zfs-pool/ --size=1024m --buffered=1 \ --rw=randread --random_distribution=random \ --time_based --runtime=1h & for ((i = 0; i < 20; i++)) do sleep 120 fio --name=mglru.anon --numjobs=16 --ioengine=mmap \ --filename=/dev/zero --size=1024m --fadvise_hint=0 \ --rw=randrw --random_distribution=random \ --time_based --runtime=1m done To fix the problem: 1. Cap scan_control->priority at or above DEF_PRIORITY/2, to prevent the jump-start from being overly aggressive. 2. Account for the progress from mm_account_reclaimed_pages(), to prevent kswapd_shrink_node() from raising the priority unnecessarily. Link: https://lkml.kernel.org/r/20240711191957.939105-2-yuzhao@google.com Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists") Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: Alexander Motin <mav@ixsystems.com> Cc: Wei Xu <weixugc@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
8b671fe1a8 |
mm/mglru: fix div-by-zero in vmpressure_calc_level()
evict_folios() uses a second pass to reclaim folios that have gone through page writeback and become clean before it finishes the first pass, since folio_rotate_reclaimable() cannot handle those folios due to the isolation. The second pass tries to avoid potential double counting by deducting scan_control->nr_scanned. However, this can result in underflow of nr_scanned, under a condition where shrink_folio_list() does not increment nr_scanned, i.e., when folio_trylock() fails. The underflow can cause the divisor, i.e., scale=scanned+reclaimed in vmpressure_calc_level(), to become zero, resulting in the following crash: [exception RIP: vmpressure_work_fn+101] process_one_work at ffffffffa3313f2b Since scan_control->nr_scanned has no established semantics, the potential double counting has minimal risks. Therefore, fix the problem by not deducting scan_control->nr_scanned in evict_folios(). Link: https://lkml.kernel.org/r/20240711191957.939105-1-yuzhao@google.com Fixes: 359a5e1416ca ("mm: multi-gen LRU: retry folios written back while isolated") Reported-by: Wei Xu <weixugc@google.com> Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alexander Motin <mav@ixsystems.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Barry Song
|
e5a119c4a6 |
mm/vmscan: drop checking if _deferred_list is empty before using TTU_SYNC
The optimization of list_empty(&folio->_deferred_list) aimed to prevent increasing the PTL duration when a large folio is partially unmapped, for example, from subpage 0 to subpage (nr - 2). But Ryan's commit 5ed890ce5147 ("mm: vmscan: avoid split during shrink_folio_list()") actually splits this kind of large folios. This makes the "optimization" useless. Additionally, the list_empty() technically required a data_race() annotation. Link: https://lkml.kernel.org/r/20240629234155.53524-1-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Dan Schatzberg
|
68cd9050d8 |
mm: add swappiness= arg to memory.reclaim
Allow proactive reclaimers to submit an additional swappiness=<val> argument to memory.reclaim. This overrides the global or per-memcg swappiness setting for that reclaim attempt. For example: echo "2M swappiness=0" > /sys/fs/cgroup/memory.reclaim will perform reclaim on the rootcg with a swappiness setting of 0 (no swap) regardless of the vm.swappiness sysctl setting. Userspace proactive reclaimers use the memory.reclaim interface to trigger reclaim. The memory.reclaim interface does not allow for any way to effect the balance of file vs anon during proactive reclaim. The only approach is to adjust the vm.swappiness setting. However, there are a few reasons we look to control the balance of file vs anon during proactive reclaim, separately from reactive reclaim: * Swapout should be limited to manage SSD write endurance. In near-OOM situations we are fine with lots of swap-out to avoid OOMs. As these are typically rare events, they have relatively little impact on write endurance. However, proactive reclaim runs continuously and so its impact on SSD write endurance is more significant. Therefore it is desireable to control swap-out for proactive reclaim separately from reactive reclaim * Some userspace OOM killers like systemd-oomd[1] support OOM killing on swap exhaustion. This makes sense if the swap exhaustion is triggered due to reactive reclaim but less so if it is triggered due to proactive reclaim (e.g. one could see OOMs when free memory is ample but anon is just particularly cold). Therefore, it's desireable to have proactive reclaim reduce or stop swap-out before the threshold at which OOM killing occurs. In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness before writes to memory.reclaim[2]. This has been in production for nearly two years and has addressed our needs to control proactive vs reactive reclaim behavior but is still not ideal for a number of reasons: * vm.swappiness is a global setting, adjusting it can race/interfere with other system administration that wishes to control vm.swappiness. In our case, we need to disable Senpai before adjusting vm.swappiness. * vm.swappiness is stateful - so a crash or restart of Senpai can leave a misconfigured setting. This requires some additional management to record the "desired" setting and ensure Senpai always adjusts to it. With this patch, we avoid these downsides of adjusting vm.swappiness globally. [1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html [2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598 Link: https://lkml.kernel.org/r/20240103164841.2800183-3-schatzberg.dan@gmail.com Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com> Suggested-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Chris Li <chrisl@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Yue Zhao <findns94@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Dan Schatzberg
|
410abb20ac |
mm: add defines for min/max swappiness
Patch series "Add swappiness argument to memory.reclaim", v6. This patch proposes augmenting the memory.reclaim interface with a swappiness=<val> argument that overrides the swappiness value for that instance of proactive reclaim. Userspace proactive reclaimers use the memory.reclaim interface to trigger reclaim. The memory.reclaim interface does not allow for any way to effect the balance of file vs anon during proactive reclaim. The only approach is to adjust the vm.swappiness setting. However, there are a few reasons we look to control the balance of file vs anon during proactive reclaim, separately from reactive reclaim: * Swapout should be limited to manage SSD write endurance. In near-OOM situations we are fine with lots of swap-out to avoid OOMs. As these are typically rare events, they have relatively little impact on write endurance. However, proactive reclaim runs continuously and so its impact on SSD write endurance is more significant. Therefore it is desireable to control swap-out for proactive reclaim separately from reactive reclaim * Some userspace OOM killers like systemd-oomd[1] support OOM killing on swap exhaustion. This makes sense if the swap exhaustion is triggered due to reactive reclaim but less so if it is triggered due to proactive reclaim (e.g. one could see OOMs when free memory is ample but anon is just particularly cold). Therefore, it's desireable to have proactive reclaim reduce or stop swap-out before the threshold at which OOM killing occurs. In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness before writes to memory.reclaim[2]. This has been in production for nearly two years and has addressed our needs to control proactive vs reactive reclaim behavior but is still not ideal for a number of reasons: * vm.swappiness is a global setting, adjusting it can race/interfere with other system administration that wishes to control vm.swappiness. In our case, we need to disable Senpai before adjusting vm.swappiness. * vm.swappiness is stateful - so a crash or restart of Senpai can leave a misconfigured setting. This requires some additional management to record the "desired" setting and ensure Senpai always adjusts to it. With this patch, we avoid these downsides of adjusting vm.swappiness globally. Previously, this exact interface addition was proposed by Yosry[3]. In response, Roman proposed instead an interface to specify precise file/anon/slab reclaim amounts[4]. More recently Huan also proposed this as well[5] and others similarly questioned if this was the proper interface. Previous proposals sought to use this to allow proactive reclaimers to effectively perform a custom reclaim algorithm by issuing proactive reclaim with different settings to control file vs anon reclaim (e.g. to only reclaim anon from some applications). Responses argued that adjusting swappiness is a poor interface for custom reclaim. In contrast, I argue in favor of a swappiness setting not as a way to implement custom reclaim algorithms but rather to bias the balance of anon vs file due to differences of proactive vs reactive reclaim. In this context, swappiness is the existing interface for controlling this balance and this patch simply allows for it to be configured differently for proactive vs reactive reclaim. Specifying explicit amounts of anon vs file pages to reclaim feels inappropriate for this prupose. Proactive reclaimers are un-aware of the relative age of file vs anon for a cgroup which makes it difficult to manage proactive reclaim of different memory pools. A proactive reclaimer would need some amount of anon reclaim attempts separate from the amount of file reclaim attempts which seems brittle given that it's difficult to observe the impact. [1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html [2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598 [3]https://lore.kernel.org/linux-mm/CAJD7tkbDpyoODveCsnaqBBMZEkDvshXJmNdbk51yKSNgD7aGdg@mail.gmail.com/ [4]https://lore.kernel.org/linux-mm/YoPHtHXzpK51F%2F1Z@carbon/ [5]https://lore.kernel.org/lkml/20231108065818.19932-1-link@vivo.com/ This patch (of 2): We use the constants 0 and 200 in a few places in the mm code when referring to the min and max swappiness. This patch adds MIN_SWAPPINESS and MAX_SWAPPINESS #defines to improve clarity. There are no functional changes. Link: https://lkml.kernel.org/r/20240103164841.2800183-1-schatzberg.dan@gmail.com Link: https://lkml.kernel.org/r/20240103164841.2800183-2-schatzberg.dan@gmail.com Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Chris Li <chrisl@kernel.org> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Yue Zhao <findns94@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Roman Gushchin
|
87024f5837 |
mm: memcg: rename soft limit reclaim-related functions
Rename exported function related to the softlimit reclaim to have memcg1_ prefix. Link: https://lkml.kernel.org/r/20240625005906.106920-4-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kefeng Wang
|
593a10dabe |
mm: refactor folio_undo_large_rmappable()
Folios of order <= 1 are not in deferred list, the check of order is added into folio_undo_large_rmappable() from commit 8897277acfef ("mm: support order-1 folios in the page cache"), but there is a repeated check for small folio (order 0) during each call of the folio_undo_large_rmappable(), so only keep folio_order() check inside the function. In addition, move all the checks into header file to save a function call for non-large-rmappable or empty deferred_list folio. Link: https://lkml.kernel.org/r/20240521130315.46072-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lance Yang <ioworker0@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Honggyu Kim
|
8f75267d22 |
mm: rename alloc_demote_folio to alloc_migrate_folio
The alloc_demote_folio can also be used for general migration including both demotion and promotion so it'd be better to rename it from alloc_demote_folio to alloc_migrate_folio. Link: https://lkml.kernel.org/r/20240614030010.751-3-honggyu.kim@sk.com Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Hyeongtak Ji <hyeongtak.ji@sk.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Honggyu Kim
|
a00ce85af2 |
mm: make alloc_demote_folio externally invokable for migration
Patch series "DAMON based tiered memory management for CXL memory", v6. Introduction ============ With the advent of CXL/PCIe attached DRAM, which will be called simply as CXL memory in this cover letter, some systems are becoming more heterogeneous having memory systems with different latency and bandwidth characteristics. They are usually handled as different NUMA nodes in separate memory tiers and CXL memory is used as slow tiers because of its protocol overhead compared to local DRAM. In this kind of systems, we need to be careful placing memory pages on proper NUMA nodes based on the memory access frequency. Otherwise, some frequently accessed pages might reside on slow tiers and it makes performance degradation unexpectedly. Moreover, the memory access patterns can be changed at runtime. To handle this problem, we need a way to monitor the memory access patterns and migrate pages based on their access temperature. The DAMON(Data Access MONitor) framework and its DAMOS(DAMON-based Operation Schemes) can be useful features for monitoring and migrating pages. DAMOS provides multiple actions based on DAMON monitoring results and it can be used for proactive reclaim, which means swapping cold pages out with DAMOS_PAGEOUT action, but it doesn't support migration actions such as demotion and promotion between tiered memory nodes. This series supports two new DAMOS actions; DAMOS_MIGRATE_HOT for promotion from slow tiers and DAMOS_MIGRATE_COLD for demotion from fast tiers. This prevents hot pages from being stuck on slow tiers, which makes performance degradation and cold pages can be proactively demoted to slow tiers so that the system can increase the chance to allocate more hot pages to fast tiers. The DAMON provides various tuning knobs but we found that the proactive demotion for cold pages is especially useful when the system is running out of memory on its fast tier nodes. Our evaluation result shows that it reduces the performance slowdown compared to the default memory policy from 11% to 3~5% when the system runs under high memory pressure on its fast tier DRAM nodes. DAMON configuration =================== The specific DAMON configuration doesn't have to be in the scope of this patch series, but some rough idea is better to be shared to explain the evaluation result. The DAMON provides many knobs for fine tuning but its configuration file is generated by HMSDK[3]. It includes gen_config.py script that generates a json file with the full config of DAMON knobs and it creates multiple kdamonds for each NUMA node when the DAMON is enabled so that it can run hot/cold based migration for tiered memory. Evaluation Workload =================== The performance evaluation is done with redis[4], which is a widely used in-memory database and the memory access patterns are generated via YCSB[5]. We have measured two different workloads with zipfian and latest distributions but their configs are slightly modified to make memory usage higher and execution time longer for better evaluation. The idea of evaluation using these migrate_{hot,cold} actions covers system-wide memory management rather than partitioning hot/cold pages of a single workload. The default memory allocation policy creates pages to the fast tier DRAM node first, then allocates newly created pages to the slow tier CXL node when the DRAM node has insufficient free space. Once the page allocation is done then those pages never move between NUMA nodes. It's not true when using numa balancing, but it is not the scope of this DAMON based tiered memory management support. If the working set of redis can be fit fully into the DRAM node, then the redis will access the fast DRAM only. Since the performance of DRAM only is faster than partially accessing CXL memory in slow tiers, this environment is not useful to evaluate this patch series. To make pages of redis be distributed across fast DRAM node and slow CXL node to evaluate our migrate_{hot,cold} actions, we pre-allocate some cold memory externally using mmap and memset before launching redis-server. We assumed that there are enough amount of cold memory in datacenters as TMO[6] and TPP[7] papers mentioned. The evaluation sequence is as follows. 1. Turn on DAMON with DAMOS_MIGRATE_COLD action for DRAM node and DAMOS_MIGRATE_HOT action for CXL node. It demotes cold pages on DRAM node and promotes hot pages on CXL node in a regular interval. 2. Allocate a huge block of cold memory by calling mmap and memset at the fast tier DRAM node, then make the process sleep to make the fast tier has insufficient space for redis-server. 3. Launch redis-server and load prebaked snapshot image, dump.rdb. The redis-server consumes 52GB of anon pages and 33GB of file pages, but due to the cold memory allocated at 2, it fails allocating the entire memory of redis-server on the fast tier DRAM node so it partially allocates the remaining on the slow tier CXL node. The ratio of DRAM:CXL depends on the size of the pre-allocated cold memory. 4. Run YCSB to make zipfian or latest distribution of memory accesses to redis-server, then measure its execution time when it's completed. 5. Repeat 4 over 50 times to measure the average execution time for each run. 6. Increase the cold memory size then repeat goes to 2. For each test at 4 took about a minute so repeating it 50 times almost took about 1 hour for each test with a specific cold memory from 440GB to 500GB in 10GB increments for each evaluation. So it took about more than 10 hours for both zipfian and latest workloads to get the entire evaluation results. Repeating the same test set multiple times doesn't show much difference so I think it might be enough to make the result reliable. Evaluation Results ================== All the result values are normalized to DRAM-only execution time because the workload cannot be faster than DRAM-only unless the workload hits the peak bandwidth but our redis test doesn't go beyond the bandwidth limit. So the DRAM-only execution time is the ideal result without affected by the gap between DRAM and CXL performance difference. The NUMA node environment is as follows. node0 - local DRAM, 512GB with a CPU socket (fast tier) node1 - disabled node2 - CXL DRAM, 96GB, no CPU attached (slow tier) The following is the result of generating zipfian distribution to redis-server and the numbers are averaged by 50 times of execution. 1. YCSB zipfian distribution read only workload memory pressure with cold memory on node0 with 512GB of local DRAM. ====================+================================================+========= | cold memory occupied by mmap and memset | | 0G 440G 450G 460G 470G 480G 490G 500G | ====================+================================================+========= Execution time normalized to DRAM-only values | GEOMEAN --------------------+------------------------------------------------+--------- DRAM-only | 1.00 - - - - - - - | 1.00 CXL-only | 1.19 - - - - - - - | 1.19 default | - 1.00 1.05 1.08 1.12 1.14 1.18 1.18 | 1.11 DAMON tiered | - 1.03 1.03 1.03 1.03 1.03 1.07 *1.05 | 1.04 DAMON lazy | - 1.04 1.03 1.04 1.05 1.06 1.06 *1.06 | 1.05 ====================+================================================+========= CXL usage of redis-server in GB | AVERAGE --------------------+------------------------------------------------+--------- DRAM-only | 0.0 - - - - - - - | 0.0 CXL-only | 51.4 - - - - - - - | 51.4 default | - 0.6 10.6 20.5 30.5 40.5 47.6 50.4 | 28.7 DAMON tiered | - 0.6 0.5 0.4 0.7 0.8 7.1 5.6 | 2.2 DAMON lazy | - 0.5 3.0 4.5 5.4 6.4 9.4 9.1 | 5.5 ====================+================================================+========= Each test result is based on the execution environment as follows. DRAM-only: redis-server uses only local DRAM memory. CXL-only: redis-server uses only CXL memory. default: default memory policy(MPOL_DEFAULT). numa balancing disabled. DAMON tiered: DAMON enabled with DAMOS_MIGRATE_COLD for DRAM nodes and DAMOS_MIGRATE_HOT for CXL nodes. DAMON lazy: same as DAMON tiered, but turn on DAMON just before making memory access request via YCSB. The above result shows the "default" execution time goes up as the size of cold memory is increased from 440G to 500G because the more cold memory used, the more CXL memory is used for the target redis workload and this makes the execution time increase. However, "DAMON tiered" and other DAMON results show less slowdown because the DAMOS_MIGRATE_COLD action at DRAM node proactively demotes pre-allocated cold memory to CXL node and this free space at DRAM increases more chance to allocate hot or warm pages of redis-server to fast DRAM node. Moreover, DAMOS_MIGRATE_HOT action at CXL node also promotes hot pages of redis-server to DRAM node actively. As a result, it makes more memory of redis-server stay in DRAM node compared to "default" memory policy and this makes the performance improvement. Please note that the result numbers of "DAMON tiered" and "DAMON lazy" at 500G are marked with * stars, which means their test results are replaced with reproduced tests that didn't have OOM issue. That was needed because sometimes the test processes get OOM when DRAM has insufficient space. The DAMOS_MIGRATE_HOT doesn't kick reclaim but just gives up migration when there is not enough space at DRAM side. The problem happens when there is competition between normal allocation and migration and the migration is done before normal allocation, then the completely unrelated normal allocation can trigger reclaim, which incurs OOM. Because of this issue, I have also tested more cases with "demotion_enabled" flag enabled to make such reclaim doesn't trigger OOM, but just demote reclaimed pages. The following test results show more tests with "kswapd" marked. 2. YCSB zipfian distribution read only workload (with demotion_enabled true) memory pressure with cold memory on node0 with 512GB of local DRAM. ====================+================================================+========= | cold memory occupied by mmap and memset | | 0G 440G 450G 460G 470G 480G 490G 500G | ====================+================================================+========= Execution time normalized to DRAM-only values | GEOMEAN --------------------+------------------------------------------------+--------- DAMON tiered | - 1.03 1.03 1.03 1.03 1.03 1.07 1.05 | 1.04 DAMON lazy | - 1.04 1.03 1.04 1.05 1.06 1.06 1.06 | 1.05 DAMON tiered kswapd | - 1.03 1.03 1.03 1.03 1.02 1.02 1.03 | 1.03 DAMON lazy kswapd | - 1.04 1.04 1.04 1.03 1.05 1.04 1.05 | 1.04 ====================+================================================+========= CXL usage of redis-server in GB | AVERAGE --------------------+------------------------------------------------+--------- DAMON tiered | - 0.6 0.5 0.4 0.7 0.8 7.1 5.6 | 2.2 DAMON lazy | - 0.5 3.0 4.5 5.4 6.4 9.4 9.1 | 5.5 DAMON tiered kswapd | - 0.0 0.0 0.4 0.5 0.1 0.8 1.0 | 0.4 DAMON lazy kswapd | - 4.2 4.6 5.3 1.7 6.8 8.1 5.8 | 5.2 ====================+================================================+========= Each test result is based on the exeuction environment as follows. DAMON tiered: same as before DAMON lazy: same as before DAMON tiered kswapd: same as DAMON tiered, but turn on /sys/kernel/mm/numa/demotion_enabled to make kswapd or direct reclaim does demotion. DAMON lazy kswapd: same as DAMON lazy, but turn on /sys/kernel/mm/numa/demotion_enabled to make kswapd or direct reclaim does demotion. The "DAMON tiered kswapd" and "DAMON lazy kswapd" didn't trigger OOM at all unlike other tests because kswapd and direct reclaim from DRAM node can demote reclaimed pages to CXL node independently from DAMON actions and their results are slightly better than without having "demotion_enabled". In summary, the evaluation results show that DAMON memory management with DAMOS_MIGRATE_{HOT,COLD} actions reduces the performance slowdown compared to the "default" memory policy from 11% to 3~5% when the system runs with high memory pressure on its fast tier DRAM nodes. Having these DAMOS_MIGRATE_HOT and DAMOS_MIGRATE_COLD actions can make tiered memory systems run more efficiently under high memory pressures. This patch (of 7): The alloc_demote_folio can be used out of vmscan.c so it'd be better to remove static keyword from it. Link: https://lkml.kernel.org/r/20240614030010.751-1-honggyu.kim@sk.com Link: https://lkml.kernel.org/r/20240614030010.751-2-honggyu.kim@sk.com Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Hyeongtak Ji <hyeongtak.ji@sk.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Shakeel Butt
|
462966dc7d |
mm: vmscan: reset sc->priority on retry
The commit 6be5e186fd65 ("mm: vmscan: restore incremental cgroup iteration") added a retry reclaim heuristic to iterate all the cgroups before returning an unsuccessful reclaim but missed to reset the sc->priority. Let's fix it. Link: https://lkml.kernel.org/r/20240529154911.3008025-1-shakeel.butt@linux.dev Fixes: 6be5e186fd65 ("mm: vmscan: restore incremental cgroup iteration") Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev> Reported-by: syzbot+17416257cb95200cba44@syzkaller.appspotmail.com Tested-by: syzbot+17416257cb95200cba44@syzkaller.appspotmail.com Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
b82b530740 |
mm: vmscan: restore incremental cgroup iteration
Currently, reclaim always walks the entire cgroup tree in order to ensure fairness between groups. While overreclaim is limited in shrink_lruvec(), many of our systems have a sizable number of active groups, and an even bigger number of idle cgroups with cache left behind by previous jobs; the mere act of walking all these cgroups can impose significant latency on direct reclaimers. In the past, we've used a save-and-restore iterator that enabled incremental tree walks over multiple reclaim invocations. This ensured fairness, while keeping the work of individual reclaimers small. However, in edge cases with a lot of reclaim concurrency, individual reclaimers would sometimes not see enough of the cgroup tree to make forward progress and (prematurely) declare OOM. Consequently we switched to comprehensive walks in 1ba6fc9af35b ("mm: vmscan: do not share cgroup iteration between reclaimers"). To address the latency problem without bringing back the premature OOM issue, reinstate the shared iteration, but with a restart condition to do the full walk in the OOM case - similar to what we do for memory.low enforcement and active page protection. In the worst case, we do one more full tree walk before declaring OOM. But the vast majority of direct reclaim scans can then finish much quicker, while fairness across the tree is maintained: - Before this patch, we observed that direct reclaim always takes more than 100us and most direct reclaim time is spent in reclaim cycles lasting between 1ms and 1 second. Almost 40% of direct reclaim time was spent on reclaim cycles exceeding 100ms. - With this patch, almost all page reclaim cycles last less than 10ms, and a good amount of direct page reclaim finishes in under 100us. No page reclaim cycles lasting over 100ms were observed anymore. The shared iterator state is maintaned inside the target cgroup, so fair and incremental walks are performed during both global reclaim and cgroup limit reclaim of complex subtrees. Link: https://lkml.kernel.org/r/20240514202641.2821494-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Rik van Riel <riel@surriel.com> Reported-by: Rik van Riel <riel@surriel.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Facebook Kernel Team <kernel-team@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baolin Wang
|
0d648dd5c8 |
mm: drop the 'anon_' prefix for swap-out mTHP counters
The mTHP swap related counters: 'anon_swpout' and 'anon_swpout_fallback' are confusing with an 'anon_' prefix, since the shmem can swap out non-anonymous pages. So drop the 'anon_' prefix to keep consistent with the old swap counter names. This is needed in 6.10-rcX to avoid having an inconsistent ABI out in the field. Link: https://lkml.kernel.org/r/7a8989c13299920d7589007a30065c3e2c19f0e0.1716431702.git.baolin.wang@linux.alibaba.com Fixes: d0f048ac39f6 ("mm: add per-order mTHP anon_swpout and anon_swpout_fallback counters") Fixes: 42248b9d34ea ("mm: add docs for per-order mTHP counters and transhuge_page ABI") Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Suggested-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
SeongJae Park
|
c961bddb7d |
mm/vmscan: remove ignore_references argument of reclaim_folio_list()
All reclaim_folio_list() callers are passing 'true' for 'ignore_references' parameter. In other words, the parameter is not really being used. Simplify the code by removing the parameter. Link: https://lkml.kernel.org/r/20240429224451.67081-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |