Move certificate handling out of the kernel/ directory and into a certs/
directory to get all the weird stuff in one place and move the generated
signing keys into this directory.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
Add a MODULE_LICENSE() line to the PKCS#7 test key module to fix this
warning:
WARNING: modpost: missing MODULE_LICENSE() in
crypto/asymmetric_keys/pkcs7_test_key.o
Whilst we're at it, also add a module description.
Reported-by: James Morris <jmorris@namei.org>
Signed-off-by: David Howells <dhowells@redhat.com>
A PKCS#7 or CMS message can have per-signature authenticated attributes
that are digested as a lump and signed by the authorising key for that
signature. If such attributes exist, the content digest isn't itself
signed, but rather it is included in a special authattr which then
contributes to the signature.
Further, we already require the master message content type to be
pkcs7_signedData - but there's also a separate content type for the data
itself within the SignedData object and this must be repeated inside the
authattrs for each signer [RFC2315 9.2, RFC5652 11.1].
We should really validate the authattrs if they exist or forbid them
entirely as appropriate. To this end:
(1) Alter the PKCS#7 parser to reject any message that has more than one
signature where at least one signature has authattrs and at least one
that does not.
(2) Validate authattrs if they are present and strongly restrict them.
Only the following authattrs are permitted and all others are
rejected:
(a) contentType. This is checked to be an OID that matches the
content type in the SignedData object.
(b) messageDigest. This must match the crypto digest of the data.
(c) signingTime. If present, we check that this is a valid, parseable
UTCTime or GeneralTime and that the date it encodes fits within
the validity window of the matching X.509 cert.
(d) S/MIME capabilities. We don't check the contents.
(e) Authenticode SP Opus Info. We don't check the contents.
(f) Authenticode Statement Type. We don't check the contents.
The message is rejected if (a) or (b) are missing. If the message is
an Authenticode type, the message is rejected if (e) is missing; if
not Authenticode, the message is rejected if (d) - (f) are present.
The S/MIME capabilities authattr (d) unfortunately has to be allowed
to support kernels already signed by the pesign program. This only
affects kexec. sign-file suppresses them (CMS_NOSMIMECAP).
The message is also rejected if an authattr is given more than once or
if it contains more than one element in its set of values.
(3) Add a parameter to pkcs7_verify() to select one of the following
restrictions and pass in the appropriate option from the callers:
(*) VERIFYING_MODULE_SIGNATURE
This requires that the SignedData content type be pkcs7-data and
forbids authattrs. sign-file sets CMS_NOATTR. We could be more
flexible and permit authattrs optionally, but only permit minimal
content.
(*) VERIFYING_FIRMWARE_SIGNATURE
This requires that the SignedData content type be pkcs7-data and
requires authattrs. In future, this will require an attribute
holding the target firmware name in addition to the minimal set.
(*) VERIFYING_UNSPECIFIED_SIGNATURE
This requires that the SignedData content type be pkcs7-data but
allows either no authattrs or only permits the minimal set.
(*) VERIFYING_KEXEC_PE_SIGNATURE
This only supports the Authenticode SPC_INDIRECT_DATA content type
and requires at least an SpcSpOpusInfo authattr in addition to the
minimal set. It also permits an SPC_STATEMENT_TYPE authattr (and
an S/MIME capabilities authattr because the pesign program doesn't
remove these).
(*) VERIFYING_KEY_SIGNATURE
(*) VERIFYING_KEY_SELF_SIGNATURE
These are invalid in this context but are included for later use
when limiting the use of X.509 certs.
(4) The pkcs7_test key type is given a module parameter to select between
the above options for testing purposes. For example:
echo 1 >/sys/module/pkcs7_test_key/parameters/usage
keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7
will attempt to check the signature on stuff.pkcs7 as if it contains a
firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE).
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
Make the X.509 ASN.1 time object decoder fill in a time64_t rather than a
struct tm to make comparison easier (unfortunately, this makes readable
display less easy) and export it so that it can be used by the PKCS#7 code
too.
Further, tighten up its parsing to reject invalid dates (eg. weird
characters, non-existent hour numbers) and unsupported dates (eg. timezones
other than 'Z' or dates earlier than 1970).
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
Since CMS is an evolution of PKCS#7, with much of the ASN.1 being
compatible, add support for CMS signed-data messages also [RFC5652 sec 5].
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-By: David Woodhouse <David.Woodhouse@intel.com>
The key identifiers fabricated from an X.509 certificate are currently:
(A) Concatenation of serial number and issuer
(B) Concatenation of subject and subjectKeyID (SKID)
When verifying one X.509 certificate with another, the AKID in the target
can be used to match the authoritative certificate. The AKID can specify
the match in one or both of two ways:
(1) Compare authorityCertSerialNumber and authorityCertIssuer from the AKID
to identifier (A) above.
(2) Compare keyIdentifier from the AKID plus the issuer from the target
certificate to identifier (B) above.
When verifying a PKCS#7 message, the only available comparison is between
the IssuerAndSerialNumber field and identifier (A) above.
However, a subsequent patch adds CMS support. Whilst CMS still supports a
match on IssuerAndSerialNumber as for PKCS#7, it also supports an
alternative - which is the SubjectKeyIdentifier field. This is used to
match to an X.509 certificate on the SKID alone. No subject information is
available to be used.
To this end change the fabrication of (B) above to be from the X.509 SKID
alone. The AKID in keyIdentifier form then only matches on that and does
not include the issuer.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-By: David Woodhouse <David.Woodhouse@intel.com>
We only support PKCS#7 signed-data [RFC2315 sec 9] content at the top level,
so reject anything else. Further, check that the version numbers in
SignedData and SignerInfo are 1 in both cases.
Note that we don't restrict the inner content type. In the PKCS#7 code we
don't parse the data attached there, but merely verify the signature over
it.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-By: David Woodhouse <David.Woodhouse@intel.com>
The ESP code has been updated to generate a completely linear
AD SG list. This unfortunately broke authencesn which expects
the AD to be divided into at least three parts.
This patch fixes it to cope with the new format. Later we will
fix it properly to accept arbitrary input and not rely on the
input being linear as part of the AEAD conversion.
Fixes: 7021b2e1cddd ("esp4: Switch to new AEAD interface")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
It is possible for a PKCS#7 message to have detached data. However, to verify
the signatures on a PKCS#7 message, we have to be able to digest the data.
Provide a function to supply that data. An error is given if the PKCS#7
message included embedded data.
This is used in a subsequent patch to supply the data to module signing where
the signature is in the form of a PKCS#7 message with detached data, whereby
the detached data is the module content that is signed.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Vivek Goyal <vgoyal@redhat.com>
If an X.509 certificate has an AuthorityKeyIdentifier extension that provides
an issuer and serialNumber, then make it so that these are used in preference
to the keyIdentifier field also held therein for searching for the signing
certificate.
If both the issuer+serialNumber and the keyIdentifier are supplied, then the
certificate is looked up by the former but the latter is checked as well. If
the latter doesn't match the subjectKeyIdentifier of the parent certificate,
EKEYREJECTED is returned.
This makes it possible to chain X.509 certificates based on the issuer and
serialNumber fields rather than on subjectKeyIdentifier. This is necessary as
we are having to deal with keys that are represented by X.509 certificates
that lack a subjectKeyIdentifier.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Vivek Goyal <vgoyal@redhat.com>
Extract both parts of the AuthorityKeyIdentifier, not just the keyIdentifier,
as the second part can be used to match X.509 certificates by issuer and
serialNumber.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Vivek Goyal <vgoyal@redhat.com>
CRYPTO_AUTHENC needs to depend on CRYPTO_NULL as authenc uses
null for copying.
Reported-by: Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the authenc tests while the conversion to the
new IV calling convention takes place. It also replaces the authenc
test vectors with ones that will work with the new IV convention.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since the API for jent_panic() does not include format string parameters,
adjust the call to panic() to use a literal string to avoid any future
callers from leaking format strings into the panic message.
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The condition checking allowed key length was invalid.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As architecture specific drivers need a software fallback, export Poly1305
init/update/final functions together with some helpers in a header file.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AVX2 variant of ChaCha20 is used only for messages with >= 512 bytes
length. With the existing test vectors, the implementation could not be
tested. Due that lack of such a long official test vector, this one is
self-generated using chacha20-generic.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As architecture specific drivers need a software fallback, export a
ChaCha20 en-/decryption function together with some helpers in a header
file.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Adds individual ChaCha20 and Poly1305 and a combined rfc7539esp AEAD speed
test using mode numbers 214, 321 and 213. For Poly1305 we add a specific
speed template, as it expects the key prepended to the input data.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc7539 and rfc7539esp to the new AEAD interface.
The test vectors for rfc7539esp have also been updated to include
the IV.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Martin Willi <martin@strongswan.org>
Introduce constrains for RSA keys lengths.
Only key lengths of 512, 1024, 1536, 2048, 3072, and 4096 bits
will be supported.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the rfc4309 test while the conversion to the
new seqiv calling convention takes place. It also replaces the
rfc4309 test vectors with ones that will work with the new IV
convention.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc4106 to the new calling convention where
the IV is now part of the AD and needs to be skipped. This patch
also makes use of the new type-safe way of freeing instances.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch allows the AEAD speed tests to cope with the new seqiv
calling convention as well as the old one.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the rfc4106 test while the conversion to the
new seqiv calling convention takes place. It also converts the
rfc4106 test vectors to the new format.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch replaces the seqniv generator with seqiv when the
underlying algorithm understands the new calling convention.
This not only makes more sense as now seqiv is solely responsible
for IV generation rather than also determining how the IV is going
to be used, it also allows for optimisations in the underlying
implementation. For example, the space for the IV could be used
to add padding for authentication.
This patch also removes the unnecessary copying of IV to dst
during seqiv decryption as the IV is part of the AD and not cipher
text.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch fixes a bug where we were incorrectly including the
IV in the AD during encryption. The IV must remain in the plain
text for it to be encrypted.
During decryption there is no need to copy the IV to dst because
it's now part of the AD.
This patch removes an unncessary check on authsize which would be
performed by the underlying decrypt call.
Finally this patch makes use of the type-safe init/exit functions.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch allows the CRYPTO_ALG_AEAD_NEW flag to be propagated.
It also restores the ASYNC bit that went missing during the AEAD
conversion.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a type-safe function for freeing AEAD instances
to struct aead_instance. This replaces the existing free function
in struct crypto_template which does not know the type of the
instance that it's freeing.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently the task of freeing an instance is given to the crypto
template. However, it has no type information on the instance so
we have to resort to checking type information at runtime.
This patch introduces a free function to crypto_type that will be
used to free an instance. This can then be used to free an instance
in a type-safe manner.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AEAD speed tests doesn't do a wait_for_completition,
if the return value is EINPROGRESS or EBUSY.
Fixing it here.
Also add a test case for gcm(aes).
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
All tests for cbc(aes) use only blocks of data with a multiple of 4.
This test adds a test with some odd SG size.
Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AEAD version of cryptd uses the same context for its own state
as well as that of the child. In doing so it did not maintain the
proper ordering, thus resulting in potential state corruption where
the child will overwrite the state stored by cryptd.
This patch fixes and also sets the request size properly.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO2uAAoJEOvOhAQsB9HWOT0P/jvFrpj2iuWqdMcvBuMdlx6K
/9qiMsOStbxmbmjj3RsbFCkeHJMUBCI0ZVrIosdEyeZWx33fHkZJisvN1i1PMA63
qppcZtkGxSmCOi6+e9k+qZNBvKBWy2oCXyLx7zaUKkWuR7wGe9488+9dqd9x+/gu
i/HTvf8Omrukwko2a0omWUSmUimhveb/hQ7Vxc/M9lbxFeO3jMabV5ZzgfnoTTrh
Rd2zo4kGbhj8nxonCUHgamnk6hoTE3KYhBPvqohzTDSTALmZVxhCwaQzQWzq+kdl
oSLa+tik508/csh98tN9dlMkJReHlDNdJIbfazQ1vHI00T5PsQELexFT02iKBhS7
5mdHSPp5P1TgGB6Fk3lN+hVO6Ja0S/vmJUi72M2y5DPd55lnvOaCVuqzWIJTYOoN
tqllBH4WIz27hsJWiMLgkJQaDxfBFYx104tOq56s5SeOthBluSE2xoNDrzZGyvRh
NeVza4ccgxIj0p2xfgeErx89r4GSCNk/LakpcMJReaT7ri23mTCDZJNLMcVW7BYm
2MW6M3LF748eN3P2YyNnU+TeQNpIho4whuwfOV+uR4tpdd5MtMaObWimwxBN7URM
LeW3gIwsZFHxYU9NLeZoQZVi6gDmaVe7ma82AbHXaV/mQVYsSP9M6gCO+FASCTGt
Rz6Nyl4/Ns8rdXUoOud8
=qotW
-----END PGP SIGNATURE-----
Merge tag 'module-implicit-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull implicit module.h fixes from Paul Gortmaker:
"Fix up implicit <module.h> users that will break later.
The files changed here are simply modular source files that are
implicitly relying on <module.h> being present. We fix them up now,
so that we can decouple some of the module related init code from the
core init code in the future.
The addition of the module.h include to several files here is also a
no-op from a code generation point of view, else there would already
be compile issues with these files today.
There may be lots more implicit includes of <module.h> in tree, but
these are the ones that extensive build test coverage has shown that
must be fixed in order to avoid build breakage fallout for the pending
module.h <---> init.h code relocation we desire to complete"
* tag 'module-implicit-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
frv: add module.h to mb93090-mb00/flash.c to avoid compile fail
drivers/cpufreq: include <module.h> for modular exynos-cpufreq.c code
drivers/staging: include <module.h> for modular android tegra_ion code
crypto/asymmetric_keys: pkcs7_key_type needs module.h
sh: mach-highlander/psw.c is tristate and should use module.h
drivers/regulator: include <module.h> for modular max77802 code
drivers/pcmcia: include <module.h> for modular xxs1500_ss code
drivers/hsi: include <module.h> for modular omap_ssi code
drivers/gpu: include <module.h> for modular rockchip code
drivers/gpio: include <module.h> for modular crystalcove code
drivers/clk: include <module.h> for clk-max77xxx modular code